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ABSTRACT
The term regulon has been coined in the genetic model plant Arabidopsis thaliana, denoting a structural
and physiological defense apparatus defined genetically through the identification of the penetration
(pen) mutants. The regulon is composed partially by the soluble N-ethylmaleimide-sensitive fusion protein
attachment protein receptor (SNARE) syntaxin PEN1. PEN1 has homology to a Saccharomyces cerevisae
gene that regulates a Secretion (Sec) protein, Suppressor of Sec 1 (Sso1p). The regulon is also composed
of the b-glucosidase (PEN2) and an ATP binding cassette (ABC) transporter (PEN3). While important in
inhibiting pathogen infection, limited observations have been made regarding the transcriptional
regulation of regulon genes until now. Experiments made using the model agricultural Glycine max
(soybean) have identified co-regulated gene expression of regulon components. The results explain the
observation of hundreds of genes expressed specifically in the root cells undergoing the natural process
of defense. Data regarding additional G. max genes functioning within the context of the regulon are
presented here, including Sec 14, Sec 4 and Sec 23. Other examined G. max homologs of membrane
fusion genes include an endosomal bromo domain-containing protein1 (Bro1), syntaxin6 (SYP6), SYP131,
SYP71, SYP8, Bet1, coatomer epsilon (e-COP), a coatomer zeta (z-COP) paralog and an ER to Golgi
component (ERGIC) protein. Furthermore, the effectiveness of biochemical pathways that would function
within the context of the regulon ave been examined, including xyloglucan xylosyltransferase (XXT),
reticuline oxidase (RO) and galactinol synthase (GS). The experiments have unveiled the importance of the
regulon during defense in the root and show how the deposition of callose relates to the process.

Abbreviations: SNARE, soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor; ERGIC, ER to
Golgi component
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Introduction

The ability of eukaryotic membranes to fuse is important to
many biological processes, including secretion.1 Owing to its
importance, the genetically regulated process is ancient with
gene homologs found in all eukaryotes.2 Subsequent biochemi-
cal experiments have determined the affinity that these proteins
have for each other under various conditions.3,4 These experi-
ments have provided foundational knowledge while also reveal-
ing new roles for some of the proteins. In A. thaliana, the
secretory apparatus functions in defense responses.5 Further-
more, this secretion system has been expanded to include struc-
tural, biochemical and physiological components and is
referred to as a regulon, a binary system composed of two par-
allel pathways converging on defense.6,7,8 Subsequent experi-
ments have shown that the regulon components have the
ability to coordinately regulate their expression (co-regulate)
other regulon genes.7,9 In the review presented here, details are
provided that describe the components of the regulon. The
review examines how observations first made over a century
ago regarding ecological plant variants capable of warding off

pathogens have provided clues as to how the plant defense pro-
cess functions.10 The review subsequently intercalates more
recent genetic evidence that puts those original ecological
observations into the context of the regulon.5,6,8-12 The review
describes co-regulation of the regulon genes. The review then
describes the identification of other genes expressed in the cells
undergoing the process of defense that would be expected to
function within the regulon platform.

Early observations of a genetic basis for the regulon

Observations made over a century ago identified the capa-
bility of certain ecological variants of the legume Trifolium
repens to engage a successful defense response in their shoot
that acts against various herbivores.10 This genetic system is
defined by two loci.10-12 One diploid parent provides the
dominant allele (Ac) driving a-hydroxynitrile glycoside pro-
duction and one parent provides a dominant allele (Li)
encoding for its hydrolyzing a-hydroxynitrile glycosidase.10-12

These observations implicate two different modes of secre-
tion would converge during the process of defense because
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a-hydroxynitrile glycosidases have a signal peptide allowing
it to enter the secretion system while glycosides can be
mobilized by ABC transporters.13,14 Subsequent experiments
performed in the plant genetic model A. thaliana have led
to the identification of this genetic framework, referred to
as a regulon.6 The framework of the regulon is defined by
three genes including the syntaxin PENETRATION1
(PEN1), b-glucosidase (PEN2) and an ATP binding cassette
(ABC) transporter (PEN3) (Fig. 1).5,6,15,16

Knowledge of how regulon components function clearly
implicated other genes would have roles within the context
of the regulon. Using the Glycine max-Heterodera glycines
pathosystem as an experimental model, Klink et al.17 per-
formed gene expression studies examining RNA isolated
from G. max root cells parasitized by H. glycines. The
experiments led to the determination of gene expression
patterns in cells undergoing the process of defense. In those
and related studies, Klink et al.17-21 identified that the
defense apparatus may be quite extensive, possibly com-
posed of hundreds to thousands of genes. Experiments then
examined gene expression patterns occurring at the major
H. glycines resistance locus, resistance to heterodera glycines
1 (rhg1).22,23 Transcriptional mapping studies of the rhg1
locus have identified a-SNAP/Sec 17 as a highly expressed
component.23,24 a-SNAP is homologous to the Saccharomy-
ces cerevisae Secretion (Sec) gene, Sec 17 (a-SNAP/Sec 17)
that functions in secretion.1 In S. cerevisiae, mutants of Sec
17 (sec 17), accumulate 50 nm vesicles that cannot fuse
with a target membrane leading to the failure of the cells to
transport the cargo protein carboxypeptidase Y.1,25 This
result demonstrates that a-SNAP/Sec 17p functions in
membrane fusion during anterograde transport. Invaluable
to the study of the rhg1 locus in G. max has been the avail-
ability of the genetic mapping data and its sequenced
genome.22,26-29 Subsequent work has shown the rhg1 locus
contains multiple copies of a-SNAP/Sec 17, but no clear
understanding of a defense role had been obtained.30,31

However, Matsye et al.23,24 and Sharma et al.9 demonstrated
a clear role for Gm-a-SNAP in defense of G. max to H. gly-
cines parasitism. The identification of a-SNAP/Sec 17 as a
resistance gene in G. max strengthens the observation that
identified SNARE functioning in defense in the plant
genetic model A. thaliana.5,9,24

Genetic identification of the importance of secretion

Secretion is an orderly stepwise process that has been demon-
strated through the genetic identification of the Sec and related
genes in S. cerevisiae (Fig. 2).1,32-35 Functional equivalents
(homologs) subsequently have been identified in all eukar-
yotes.2,36-43 A core set of proteins, known as Soluble NSF
Attachment Protein REceptor (SNARE) is one macromolecular
part of the membrane fusion apparatus (Fig. 2). The compo-
nents of SNARE include syntaxin (SYP)/Suppressor of sec 1
(SSO1), a gene homologous to A. thaliana PEN1. 5 Other
SNARE components include synaptobrevin (SYB)/YKT6/
SEC22 and SNAP-25/SEC9.44-49 The SNARE proteins tether
the vesicle to the target membrane. Mammalian uncoordi-
nated-18 (MUNC18/SEC1), also known as SM, may inhibit or
facilitate fusion.50,51 Synaptotagmin (SYT)/Tricalbin-3 (TCB3)
is believed to serve as a calcium sensor. SNARE metabolism,
including its disassembly is mediated by two additional pro-
teins including a-SNAP/Sec 17p and the ATPase N-ethylmalei-
mide-sensitive factor (NSF)/Sec 18p.1,3 The entire SNARE
complex can be biochemically isolated as part a larger 20 S par-
ticle, including a-SNAP/Sec 17p and NSF/Sec 18p, that medi-
ates secretion.52,53 Complimentary studies in animal systems
investigating pathogenesis have identified botulinum and teta-
nus microbial neurotoxin effectors that target SNARE compo-
nents and thus inhibit secretion.54-61 The effect of the
neurotoxins is paralysis. Similar types of effectors are also being
identified in plants leading to impaired functionality of 20 S
components during defense, confirming its importance in the
process of defense.62,63

Figure 1. The regulon. In experiments involving Blumeria graminis f. sp. hordei, Erysiphe cichoracearum, Golovinomyces orontii, a structural, biochemical and physiological
apparatus referred to as the regulon has been designated to refer to a defense apparatus involving the PENETRATION1-3 proteins. (A) The spore has germinated produc-
ing a neck that is attached to the appressorium which begins to push through the cell wall resulting in a plant cell response that leads to callose deposition. (B) The haus-
torium develops and pushes through the callose during a susceptible response. (C) Golgi-drived vesicles deliver the PEN1-3 proteins to the infection site, leading to a
successful defense response that includes increased deposition of callose.5,6,8,15,16,254-266
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a-SNAP/Sec 17 relates to plant defense by its association
with SNARE during membrane fusion

The observation that Gm-a-SNAP functions in G. max defense
to H. glycines has introduced questions regarding its activity.
The observations that have been made regarding a-SNAP/Sec
17p is that it possesses diverse roles based on the cellular milieu.
Through biochemical experiments S€ollner et al.52 have identi-
fied a number of SNARE-related proteins that are specific for a
certain vesicle or target membrane, but requires a-SNAP/Sec
17p for fusion. This work has indicated a-SNAP/Sec 17p is a
universal component of constitutive and regulated membrane
fusion with variations in SNARE composition dictating speci-
ficity.52 In examining neuronal exocytosis, Barszczewski et al.62

have identified clusters of a-SNAP/Sec 17p at the plasma mem-
brane revealing the addition of NSF/Sec 18p facilitates exocyto-
sis. Schwartz and Merz64 have shown a-SNAP/Sec 17p can
rescue a SNARE complex that is stalled in its ability to complete
fusion, identifying the central role of a-SNAP/Sec 17p in mem-
brane fusion. Lobinger et al.65 have examined a-SNAP/Sec 17p
further. The experiments have demonstrated a-SNAP/Sec 17p,
along with Sec 1p (Munc18) (SM), actually accelerates fusion
that is engaged by SNARE while also protecting it from disas-
sembly by NSF/Sec 18p. Yu et al.66 have determined that the
amount of SNARE-SM components in the cell are important
for faithful fusion to occur. Yu et al.66 have also determined
that for secretion to occur efficiently, the components require
macromolecular crowding which is a condition known to influ-
ence the thermodynamic and kinetic behaviors of macromole-
cules.66 Experiments presented by Zick et al.67-69 have revealed
the high concentration of purified components can overcome
the requirement of lipids for progression to fusion under physi-
ological conditions. This point is important because even in
other systems including Drosophila, the balance of a-SNAP/Sec
17p and NSF/Sec 18p concentrations are important for secre-
tion even when overexpressed.42 In other experimental systems,
a-SNAP/Sec 17p works with NSF/Sec 18p to facilitate and dis-
assemble all types of SNARE complexes after membrane

fusion.70-73 Therefore, the experimental evidence demonstrates
a-SNAP/Sec 17p has multiple functions prior to, during and
after the process of membrane fusion and that it works at all
sites of fusion of membrane-bound structures that utilize
SNARE.

Regulon components homologous to the SNARE
component PEN1 exhibit co-regulation

A number membrane-bound structures exist within the vesicle
transport system.4 These structures include the endoplasmic
reticulum (ER), conserved oligomeric Golgi (COG) complex,
trans-Golgi network/early endosome (TGN/EE), homotypic
fusion and protein sorting (HOPS) complex, the class C core
vacuole/endosome tethering (CORVET), exocyst, trafficking
protein particle (TRAPP) I–III complexes, Golgi-associated ret-
rograde protein (GARP) complex, endosome-associated retro-
grade protein (EARP) complex, depends on SLY1-20 (Dsl1)
complex and plasma membrane (PM). For details, please refer
to Vuka�sinovi� and �Z�arsk�y.4 These structures utilize different
macromolecular protein complexes to facilitate their interac-
tions and fusion events.

SNARE, benefitting from having the longest experimental
history, has had its core components identified decades ago
(Fig. 2).3 While the proteins function effectively to mediate
fusion, comparatively little is understood regarding whether
the genes influence each other’s expression (co-regulation). An
early attempt made in S. cerevisiae attempted to understand
whether the SNARE genes exhibited co-regulation.74 In this
study, it has been shown that sec mutants did not exhibit coor-
dinated suppressed transcriptional activity of the other Sec
genes.74 However, technical limits of the time may have com-
plicated such observation. In contrast, engineering SNARE
components for constitutive induced expression has been
shown to lead to induced expression of other SNARE compo-
nents.75 Furthermore, experiments in other biological systems
have shown e-COP overexpression can overcome a

Figure 2. The process of membrane fusion involving the regulon. The involved proteins include SYP121 (PEN1/Sso1p), MUNC18/Sec 1p, SNAP-25/Sec 9p, SYB/VAMP/
Ykt6p/Sec 22p), SYT/Tcb3p, NSF/Sec 18p and a-SNAP/Sec 17p, composing the 20 S particle. (A) the secretory vesicle, containing membrane fusion proteins comes into
close association with target membrane proteins. (B) membrane fusion and release of cargo. (C) conjugated glucosides are transported through an ABC transporter in the
vicinity of its secreted glucosidase resulting in activation of the glucosidase.3
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temperature-dependent suppression of a-COP expression.76

Similar results have been shown for the ER to Golgi component
(ERGIC).77 The observation of co-regulated gene expression of
vesicle fusion components has held up to genomics-level scru-
tiny.78 These observations are consistent with those made in
the G. max-H. glycines pathosystem.7,9 The question in relation
to SNARE became how extensive is co-regulated gene expres-
sion during plant defense?

Regulon components homologous to b-glucoside PEN2
exhibit co-regulation

Experiments have been presented showing that the co-regula-
tion of defense-related genes is not limited to the vesicle trans-
port system components. Work done in Lotus japonicus has
shown that LjBGD7, a root expressed PEN2 b-glycosidase
homolog, is related to a-hydroxynitrile glucosidase.79 LjBGD7
acts to produce hydrogen cyanide (HCN), functioning effec-
tively in defense.79 Furthermore, LjBGD7 is co-regulated with
the cytochrome P450 protein LjCYP79D4. 79. In L. japonicus,
LjCYP79D4 has increased relative levels of expression exclu-
sively in the roots where LjBGD7 occurs.79 In related studies,
Morant et al.80 demonstrated the co-expression of a-hydroxy-
nitrile glucoside and their cognate hydrolyzing a-hydroxyni-
trile glucosidase. Furthermore, the heterologous expression of a
Manihot esculenta (cassava) CYP79D2 in L. japonicus, results
in cyanogenic a-hydroxynitrile glucoside accumulation.79 The
experiments have clearly identified that genes functioning in
a-hydroxynitrile glucoside production and metabolism are co-
regulated.

Regulon components homologous to the ABC transporter
PEN3 exhibit co-regulation

The ATP binding cassette (ABC) transporter regulon compo-
nent PEN3 delivers metabolites through various membranes.
While comparatively little is known about ABC transporters in
plants, work in animal systems have demonstrated they are
capable of co-regulating the expression of other genes relating to
their own function.81,82 However, while evidence exists for the
ability of the regulon components to effect co-regulation the
scope and breadth had not been examined in detail. The co-reg-
ulation of pathway components leading to the production of sec-
ondary metabolites is not limited to PEN2. For example, The
Nicotiana benthamiana terpene synthases TPS10 and TPS14 are
co-regulated with the two cytochrome P450s (CYP71B31 and
CYP76C3) in flowers at anthesis.83 Furthermore, the protein
products are found in the endomembrane system resulting in
monoterpene alcohol linalool production.83 Therefore, it is likely
that other secondary metabolite pathways are important to
defense in theG. max-H. glycines pathosystem (Fig. 3).

Callose is a structural defense element whose genetic
components exhibit co-regulation

The recent identification of callose existing at sites of resistance
in G. max roots parasitized by incompatible H. glycines is con-
sistent with numerous observations of its presence at defense
sites in many plant pathosystems.9,84-110 These studies have

provided extensive support that callose performs an active role
in defense. Consistent with these observations, other functional
studies have demonstrated the active role callose plays as it par-
ticipates in defense.111-117 However, in contrast, very limited
studies have shown that callose may not accumulate to appreci-
able levels at defense sites or participate in defense at all.118,119

Callose is a glucose-derived polysaccharide polymerized
mainly by callose synthase (CaLS) or GLUCAN SYN-
THASE–LIKE (GSL) enzymes, forming b-1,3- and lesser
amounts of b-1,6-branches. Conversely, b-1,3-glucanases
depolymerize callose. During defense, plants deposit a plate-
like structure referred to as a cell wall apposition that is
also known as a papillae. It is these papillae that contain
callose, among other materials, that are thought to provide
a physical barrier to the establishment of an invasion site
for the pathogen.120 The development of papillae at the
molecular level requires the vesicle transport system.115 For
example, in A. thaliana, papillae formation as a conse-
quence of infection by Blumeria graminis f.sp. hordei is
mediated by PEN1.115 The transport of callose has been
suggested to occur through multivesicular bodies. However,
conclusive evidence has not presented.114,115,120 These obser-
vations directly link vesicle transport to the delivery of cal-
lose at infection sites, consistent with the observations of
Sharma et al. 9 in the G. max-H. glycines pathosystem.

Co-regulated gene expression occurring during defense is
extensive

The regulon is likely to be an apparatus having a broad struc-
tural, biochemical and physiological basis. This concept is sup-
ported through gene expression experiments. For example, gene
expression experiments examining nematode-parasitized cells
undergoing a defense response identified many expressed genes
that would be defense candidates in G. max that would be pre-
dicted to associate with the regulon (Fig. 4; Table 1; Table S1).23

Figure 3. Components of the regulon, composed of PEN1, PEN2 and PEN3, are
under co-regulation.9 Other components functioning within this apparatus are rep-
resented by the outer ring.
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To examine this concept further, experiments have been done
examining candidate defense genes functioning in different
defense pathways. These genes include G. max homologs of Sec
14-1, Sec 4-6, Sec 23-5, Bro1-1, SYP6-1, SYP131-1, SYP71-6,
SYP8-2, Bet1-1, e-COP-1, z-COP-3 and ERGIC-3-3. Genetic
pathways that associate with the regulon have also been exam-
ined, including those incorporating reticulon oxidase-40 (Fig. 5;
Table S2), xyloglucan xylosyltransferase 2-5 (Fig. 6; Table S2)
and galactinol synthase-3 (Fig. 7; Table S2). As a control to show
the expression of any gene will not result in engineered resis-
tance, we have selected a G. max homolog of the A. thaliana
APETALA2 (AP2) Gm-Apetala2-1 (Glyma01g44130).121 In A.
thaliana, APETALA2 (AP2) is the founding member of a family
of transcription factors originally identified to regulate flower
development.121,122 Further analysis has shown Gm-Apetala2-1
exhibits homology to the A. thaliana AP2 homolog TINY.123

Ectopic expression of A. thaliana TINY, caused by a semidomi-
nant dissociation insertion mutation, affects fertility, plant height
and the elongation of hypocotyls.123,124 However, Gm-Apetala2-1
is not expressed within the control pericycle cells or syncytia
undergoing the process of defense and therefore it would not be
expected to contribute to the process (Table S1). A qPCR analy-
sis shows the genetically engineered plants exhibit induced candi-
date gene expression (Fig. S1). An analysis of genetically
engineered roots infected with H. glycines reveals suppressed par-
asitism as compared to control plants (Fig. 8; Table S3).

The regulon apparatus functions broadly in defense

It is not surprising that the presented genes, identified to be
expressed within the syncytium undergoing the process of
defense, have roles in defense. The S. cerevisae Sec 14p is a cyto-
plasmic protein required for secretory vesicle formation from
the Golgi apparatus and is encoded by a phosphatidylinositol
(PtdIns) transfer protein (PITP).25,33,125,126 Sec 14p also func-
tions as a sensor of the PtdIns/phosphatidylcholine (PtdCho)
ratio in Golgi by directly regulating PtdCho biosynthesis.127

The S. cerevisae Sec 4p is a Rab GTPase that functions to regu-
late the assembly of the exocyst through its interaction with Sec
15p.128,129 The exocyst is a protein complex functioning in vesi-
cle transport and membrane fusion between post-Golgi secre-
tory vesicles to the plasma membrane. This interaction
provides a regulatory function, occurring upstream of SNARE-
mediated membrane fusion.130

The S. cerevisae Sec 23p is a cytosolic protein that functions
in concert with Sar1p, Sec 24p, Sec 13p and Sec 14p as the min-
imal unit for COPII carrier formation.131-133 An important part
of this process is phosphorylation of COPII coats.131-133 During
vesicle formation, Sec 12p-mediated activation of Sar1p results
in its recruitment to the ER membrane which results in recruit-
ment of Sec 23p-Sec 24p. This action results in the formation
of the inner COPII prebudding complex which allows export
protein capture.131-133

Figure 4. Proteins shown to function during the defense process G. max has to H. glycines parasitism. The previously identified regulon components including SYP31/
Sed5p, PEN1 (SYP121/Sso1p), MUNC18/Sec 1p, SNAP-25/Sec 9p, SYB/VAMP/Ykt6p/Sec 22p, SYT/Tcb3p, NSF/Sec 18p and a-SNAP/Sec 17p, b-glucosidase, ABC-G. Pre-
sented here, Sec14, Sec 4, Sec 23, Bro1, SYP6, SYP131, SYP71, SYP8, Bet1, Ce, Cz, ERGIC3.7,9,24
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Figure 5. Enzymes functioning in xyloglucan biosynthesis are xyloglucan glycosyltransferase (CSLCS4) (E.C. 2.4.1.168), xyloglucan 6 xylosyltransferase (XXT1, XXT2) (E.C.
2.4.2.39), xyloglucan 6 xylosyltransferase (XXT5) (E.C. 2.4.2.39), xyloglucan galactosyltransferase (KATMARI1) (no E.C. #), xyloglucan galactosyltransferase (no E.C. #), a-1,2
fucosyltransferase (E.C. 2.4.1.69). Xyloglucan terminology: X, glucose residues substituted by a-D-xylose; G, non-substituted glucosyl units within a xylosylglycan; L, glu-
cose residues substituted by a-D-xylose and b-D-galactose; F, glucose residues substituted by a-D-xylose, b-D-galactose and a-L-fucose. Supplemental data is provided
(Table S2).267-275

Figure 6. Enzymes functioning in reticuline metabolism. The biogenesis of (S)-reticuline begins with (L)-tyrosine. While a number of subsequent intermediates are made
through different pathways, they converge on the production of (S)-noroclaurine via the enzymatic activity of noroclaurine synthase (E.C. 4.2.1.78). Subsequent enzymatic
steps include norcoclaurine 6-O-methyltransferase (E.C. 2.1.1.128), coclaurine N-methyltransferase (E.C. 2.1.1.140), the CYP80B1 N-methylcoclaurine 30-monooxygenase (E.
C. 1.14.13.71), 30-hydroxy-N-methylcoclaurine 40-O-methyltransferase (E.C. 2.1.1.116), berberine bridge enzyme tetrahydroprotoberberine synthase (reticuline oxidase) (EC
1.5.3.9). (S)-reticuline is an intermediate whose subsequent metabolism results in the generation of a wide number of isoquinoline alkaloids that are an important
response to pathogen attack. Supplemental data is provided (Table S2).229-237
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The S. cerevisae Bro1p is endosome-associated, functioning in
the multivesicular body134,135 Bro1p is a cytoplasmic protein
named for its »160 aa domain that interacts with the endosomal
sorting complex required for transport complexes (ESCRT).136-138

Mutation of residues within this Bro1p domain interferes with its
ability to localize to endosomes.139 An analysis of Bro1p has been
performed, revealing it contains a tetratricopeptide repeat (TPR)-
like structure that is known to function as a putative ESCRT-III
binding site.139 Mutant analysis of Bro1p binds sucrose non-fer-
menting 7 protein (Snf7p) (ESCRT-III). 135 Bro1p-like proteins
also function in plants.140-143

A number of syntaxins that would function in related ways
during membrane fusion function in defense. SYP6 has been
shown to localize to the trans-Golgi network (TGN) and binds
to a-SNAP.144-152 SYP131 is related to t-SNARE that functions
in plant-arbuscular mycorrhizal interactions.153 SYP131 is
closely related to SYP132, shown to function in symbiotic inter-
actions.154 SYP71 localizes mainly to the plasma membrane and
also the cell plate, endosome and ER.155,156 SYP71 can also be
subverted during virus infection to facilitate its pathogenic-
ity.157 SYP8 (At-SYP51) has been shown to accumulate on
tonoplast and small prevacuolar compartments and co-localize
with TGN markers and only partially with endocytic compart-
ments with roles in vacuolar sorting, exocytosis and
endocytosis.158

The S. cerevisae Bet1p functions in anterograde transport
from the ER to Golgi, found on Golgi membranes and is
recruited to COPII vesicles by Sec 24p. Bet1p activates Bos1p
with this interaction regulated by the small GTP-binding pro-
tein Ypt1p. Bet1p overexpression overcomes mutants of sec
35.159-169

Sec 35p is novel, implicated in the tethering ER-derived
vesicles.170 This tethering occurs at the Golgi apparatus. 170
Sec 35p binds to the hydrophilic Sec 34p to form a 480 kD
complex that facilitates vesicle traffic.170

The e-COP and z-COP proteins are part of the COPI coat, a
700 kD structure composed of a, b, b’ g, d, e and z subunits
that function in retrograde transport between the Golgi and
ER. Furthermore, COPI functions in the maturation of endo-
somes and autophagy.76,171-178 Among these intermolecular
interactions, e-COP (Sec 28p) has been shown to stabilize

a-COP (Ret1p).76 This function was observed out of work
done in a number of studies that showed that the proteins com-
posing COPI (Ret1p [a-COP], Sec 26p [b-COP], Sec 27p
[b’-COP], Sec 21p [g-COP], Ret2p [d-COP], Ret3p [z-COP])
are essential for viability at all temperatures with e-COP being
temperature sensitive.76,172,179,180

The tubulovesicular ERGIC structure performs an impor-
tant role in the sorting of proteins destined to be delivered to
various cellular compartments. The ERGIC appears to be a sta-
ble compartment for COPII-dependent delivery of materials
that are subsequently transported to the Golgi. ERGIC3 is a
protein involved in this process.77,181-191

Secretion functions to drive a defense response

The demonstrated function of the secreted XTH and a-hydrox-
ynitrile glucosidase proteins in defense indicated that the physi-
ological needs of G. max resistance to H. glycines parasitism ran
deep into the central metabolic processes of the parasitized cell.
From genomics analyses performed in A. thaliana, a funda-
mental shift in metabolism during plant defense to pathogen
attack has been long known and is consistent with observations
made in the G. max-H. glycines pathosystem.17,23,192 In agree-
ment with these observations is the demonstration of the
involvement of the membrane fusion apparatus that would
deliver XTH and a-hydroxynitrile glucosidase to the cell
periphery and an ABC transporter that would likely deliver
conjugated metabolites to the site of parasitism.7,9 Therefore, it
appears that the defense of G. max to H. glycines parasitism
involves altering the structure of the cell wall through the enzy-
matic activities of XTH, impeding the ability of H. glycines to
make a functional syncytium. The defense process also involves
the delivery of secondary metabolites to combat pathogen effec-
tiveness. Furthermore, other metabolites are probably impor-
tant to the defense process.

Hemicellulose: xyloglucan metabolism functions in defense
in the root

Cytological observations of G. max undergoing the process of
resistance to H. glycines have shown the cells engaged in the
resistant reaction are limited in their ability to expand.193-196

These observations have indicated cell wall composition and
modification are important to the defense process. A large pro-
portion of the cell wall is composed of hemicellulose, a network
that functions as a structural stabilizer. The majority of hemi-
cellulose is composed of xyloglucan. Xyloglucan biosynthesis
occurs by the stepwise activities of Golgi-localized enzymes and
the delivery of these complex polysaccharides are generally
believed to occur through bulk flow mediated by secretory
vesicles (Fig. 5).197-199 The location of these materials in the
Golgi, along with the secretion of these materials into the apo-
plast strenghtens the importance of the vesicle transport system
in defense. Upon polymerization, the hemicellulose strand can
be modified by xyloglucan endotransglycosylase/hydrolase
(XTH) (E.C. 2.4.1.207), an ancient gene family found in all
plants that may predate land colonization.200-204 A G. max
XTH has been shown to be highly expressed in H. glycines para-
sitized root cells undergoing defense and functions in the

Figure 7. Enzymes functioning in stachyose metabolism. The enzymes involved
include galactinol synthase (E.C. 2.4.1.123), raffinose synthase (E.C. 2.4.1.82) and
stachyose synthase (E.C. 2.4.1.67). Supplemental data is provided (Table S2).248-253
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Figure 8. The overexpression of candidate defense genes in G. max leads to suppressed parasitism by H. glycines. (A) Sec 14-1; (B) Sec 4-6; (C) Sec 23-5; (D) Endosomal Tar-
geting BRO1-Domain-1; (E) SYP6; (F) SYP131-1; (G) SYP71-6; (H) SYP8-2; (I) Bet1-1; (J) Coatomer e-1; (K) Coatomer z-3; (L) ERGIC-3-3; (M) RO-40; (N) XXT 2-5; (O) GS-3; (P)
AP2-1. The overexpression experiments present the outcome as the female index (FI) which is a percent of infection in relation to the control plants. wr, analysis examin-
ing cysts per whole root sample. pg, analysis examining cysts per gram of root tissue. � Statistically significant, p < 0.05; �� Not statistically significant, p > 0.05. Analyzed
by Mann–Whitney–Wilcoxon [MWW] Rank-Sum Test. 276 Supplemental data is provided (Table S3).
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defense process.7,23 XTHs function to restructure cell walls
through cell wall loosening or intercalation of new xyloglu-
can.205-209 These two different functions of XTH are possible
because it serves as a xyloglucan endo-transglucosylase (XET)
where xyloglucan polymers are cleaved and joined to different
xyloglucan chains.210 In contrast, the XEH activity of XTH
hydrolyzes xyloglucan polymers.209 Regarding rapid cell wall
expansion, auxin is known to regulate this process.211-213 XTH
has a signal peptide and the protein can be N-glycosylated,
indicating processing through the secretory pathway.214-220 The
overexpression of XTH in Populus sp. results in the initial
shortening of xyloglucan chain length, providing mechanistic
insight into how plants can use XTH to limit cellular expansion
during a defense reaction.7,221

The demonstration that XTH is highly expressed during
the G. max defense process toward H. glycines parasitism
has indicated that the metabolic processes that lead to the
generation of the xyloglucan would also be important.23 In
examining this result further, we have identified that
mRNA of 4 genes encoding the enzymes that function in
xyloglucan biogenesis and metabolism are present in syncy-
tia undergoing he process of defense (Table S2). The
enzymes that function in xyloglucan biogenesis and metabo-
lism have been shown to localize to the Golgi apparatus,
clearly implicating the importance of a functional secretion
system to defense. To test this hypothesis, we have cloned a
G. max homolog of XXT and overexpressed it in a suscepti-
ble genotype, resulting in impaired parasitism (Fig. 7;
Table S3). The results emphasize the importance of hemi-
cellulose metabolism to defense. Furthermore, the impor-
tance of a functional secretion system is demonstrated since
the proteins are processed through the secretory pathway
with some functioning within the Golgi apparatus.

Reticuline metabolism functions in defense in the root

Plants produce an astonishing number of secondary metabo-
lites, numbering over a hundred thousand in total.222 One of
these important secondary metabolites, whose subsequent
metabolism leads to the production of defense molecules, is
(S)-reticuline. (S)-reticuline is a benzylisoquinoline alkaloid
belonging to a family of secondary metabolites consisting of
more than 2,500 different known small molecules.223,224 Some
of the early biochemistry regarding reticuline has been worked
out by understanding its basic structure.225-228 The biogenesis
of (S)-reticuline begins with (L)-tyrosine. While a number of
subsequent intermediates are made through different pathways,
they converge on the production of (S)-noroclaurine.229-237 (S)-
reticuline is an intermediate whose subsequent metabolism
results in the generation of a wide number of isoquinoline alka-
loids that are an important response to pathogen attack.230 A
second pathway that leads to (S)-reticuline biosynthesis is also
known to have its origins with (L)-tyrosine and leading to (S)-
norlaudanosoline production, but the pathway has been
described in mammalian cells.238,239

Reticuline oxidase (RO) has also been described as berberine
bridge enzyme (BBE).227,229,240 RO originally had been shown
to be associated with a particle within the cell.228 RO has a sig-
nal peptide, indicating it is targeted to the ER.230 In Berberis

wilsoniae var. subcaulialata, RO has been shown to localize
within vesicles with other enzymes involved in the biosynthesis
and metabolism of (S)-reticuline.241 The RO-containing
vesicles have been shown to compose a low number of detect-
able polypeptides (»20), indicating that vesicles with different
types of cargo function in defense. 241 In opium poppy (Papa-
ver somniferum cv Marianne), RO has been shown to localize
in the companion cells of phloem.242 Furthermore, the subcel-
lular localization of RO is the ER.223,241,243,244 This observation
is consistent with the presence of a signal peptide for the G.
max RO-40 (Fig. S2). After elicitor treatment, the ER undergoes
a major ultrastructural arrangement becoming dilated and pro-
ducing vesicles that later fuse with the vacuole.241,243,244 Nota-
bly, a vacuolar sorting determinant is present in the N-
terminus of the RO protein.243 The production of the metabolic
intermediates leading to the production of to (S)-reticuline and
the structural requirements appear to be shared between differ-
ent plant groups.230,243-246 We have identified G. max homologs
of genes functioning in reticuline biogenesis and metabolism
(Table S2). Further work using Coptis japonica as a model
revealed that an ABC transporter was responsible for delivering
berberine to its site of function.247 This observation provided
mechanistic insight into the delivery of secondary metabolites
synthesized by RO to the vacuole. As observed by Sharma
et al.,9 it is likely that a number of different ABC transporters
function during the defense of G. max to parasitic nematodes.

Stachyose metabolism functions in defense in the root

Stachyose is produced in an enzymatic process beginning with
galactinol synthase (E.C. 2.4.1.123) action involving myo-inosi-
tol and UDP-D-galactose.248 The process leads to the produc-
tion of galactinol. 248 The only known role for galactinol is for
the production of larger soluble oligosaccharides such as raffi-
nose, stachyose, and verbascose.249 However, galactinol has
been shown to be induced in its production during a defense
response in roots and functions in signaling during systemic
acquired resistance.250 Subsequent enzymatic activities of raffi-
nose synthase (E.C. 2.4.1.82) and stachyose synthase (E.C.
2.4.1.67) result in the production of stachyose (Fig. 7).251-253

The enzymes for the biogenesis of stachyose have been identi-
fied in G. max (Table S2).

The framework of defense involving the co-regulation of
regulon in roots

The framework of defense as G. max protects itself from its major
pathogen, H. glycines is based off of cytological observations and
genetic experiments relating its rhg1 locus.7,9,22,24,28,30,31,193 These
results put into context the identification of an H. glycines effector
that binds G. max a-SNAP/Sec 17 that would have the function of
disarming its defense response.63 Evidence has been presented
showing that the transcriptional activity of these genes influences
each other, indicative of co-regulation.7,9,24 The co-regulation of
components of a structural and biochemical element helps in
explaining why so many genes are transcriptionally active in the
cells destined to undergo the process of resistance. Additional
experimental evidence is presented here to support those observa-
tions. The experiments show how the expression of these genes
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recapitulates the natural defense process that leads to suppressed
parasitism byH. glycines inG.max. Furthermore, the identification
of callose at the site of defense expands the biochemical and struc-
tural environment pertaining to defense, unifying work done in
other plant pathosystems.5,6,8,15,16,115,254,255 The work likely has
identified a genetic program that is functional in other plants
against other pathogens or could be altered to facilitate symbiotic
interactions. As a polymer, callose has the capacity of rapid build-
ing blockmobilization to infection sites with their subsequent poly-
merization into structures that can impede pathogenesis.9,255-257

Methods

The data that has been presented in this review has been
obtained through the published methods in Sharma et al. 9
Laser microdissection (LM) has been used to collect control
cells (pericycle) at 0 days post infection (dpi) and Heterodera
glycines-induced syncytia undergoing the process of resistance
at 3 and 6 dpi. Uninoculated roots have been used to obtain
pericycle cells which serve as the source of the control mRNA
samples. Microarray hybridizations have been run in triplicate
(arrays 1-3). The hybridizations have used probe derived from
RNA isolated from LM-collected syncytia obtained from 3
independent replicate experiments. For robustness, the experi-
ments have been run independently in two different H. gly-
cines-resistant genotypes. For the gene to be considered
expressed at a given time point (3 or 6 days post infection
[dpi]), probe signal must have been measurable above thresh-
old on all three arrays for both G. max[Peking/PI 548402] and G.
max[PI 88788] (6 total arrays), p < 0.05. The Bioconductor
implementation of the standard Affymetrix� detection call
methodology (DCM) analysis consists of four steps, including
(1) removal of saturated probes, (2) calculation of discrimina-
tion scores, (3) p-value calculation using the Wilcoxon’s rank
test, and (4) making the detection call (present [p < 0.05]/mar-
ginal [p D 0.05]/absent [p > 0.05]). In the analysis presented

here, the probe set is accepted as detecting probe if p < 0.05.
The PCR and qPCR primers used in the studies are provided
(Table S4). The qPCR data has been obtained using 2¡DDC

T to
calculate fold change (Fig. S2).9,258 The female index (FI), is the
community-accepted method to determine the effect a condi-
tion has on H. glycines parasitism.259 The results have been pre-
sented as female cysts per whole root mass and female cysts per
gram (Table S3).
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