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Determination of Phenotypic Resistance Cutoffs From
Routine Clinical Data
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Background: HIV-1 drug resistance can be measured with
phenotypic drug-resistance tests. However, the output of these tests,
the resistance factor (RF), requires interpretation with respect to the
in vivo activity of the tested variant. Specifically, the dynamic range
of the RF for each drug has to be divided into a suitable number of
clinically meaningful intervals.

Methods: We calculated a susceptible-to-intermediate and an
intermediate-to-resistant cutoff per drug for RFs predicted by
geno2phenopyeisiance;. Probability densities for therapeutic success
and failure were estimated from 10,444 treatment episodes. The
density estimation procedure corrects for the activity of the backbone
drug compounds and for therapy failure without drug resistance. For
estimating the probability of therapeutic success given an RF, we fit
a sigmoid function. The cutoffs are given by the roots of the third
derivative of the sigmoid function.

Results: For performance assessment, we used geno2phenojesistance]
RF predictions and the cutoffs for predicting therapeutic success in 2
independent sets of therapy episodes. HIVdb was used for performance
comparison. On one test set (n = 807), our cutoffs and HIVdb
performed equally well receiver operating characteristic curve [(ROC)—
area under the curve (AUC): 0.68]. On the other test set (n = 917), our
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cutoffs (ROC-AUC: 0.63) and HIVdb (ROC-AUC: 0.65) performed
comparatively well.

Conclusions: Our method can be used for calculating clinically
relevant cutoffs for (predicted) RFs. The method corrects for the
activity of the backbone drug compounds and for therapy failure
without drug resistance. Our method’s performance is comparable
with that of HIVdb. RF cutoffs for the latest version of geno2phe-
NOresistance] Nave been estimated with this method.

Key Words: phenotypic drug-resistance testing, clinically relevant
cutoffs, antiretroviral therapy, human immunodeficiency virus type
1, statistical methods
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INTRODUCTION

Drug resistance of HIV type 1 (HIV) can be measured
in vitro with phenotypic resistance tests.' The output of
these tests is the fold-change in the median inhibitory
concentration between a certain HIV variant and a reference
strain. This quantity is called the resistance factor (RF) and is
also referred to as phenotype, in this context. Statistical
models trained on genotype—phenotype pairs afford accurate
prediction of the RF, given a genotype.*> The utility of
phenotypes in optimizing cART has been established.®®
However, phenotypes require interpretation with respect to
the in vivo activity of the tested variant, ie, the range of
possible RFs for a drug (dynamic range) has to be divided
into a suitable number of clinically meaningful intervals.®-13
These intervals are drug dependent and defined in cutoffs of
the RF. Historically, refinement of the interpretation of the RF
has undergone several iterations. Initially, a cutoff per drug
was defined in terms of the reproducibility of the phenotypic
tests (technical cutoffs).!# Later, the distribution of RFs of
(samples from) therapy-naive patients was used for defining
a susceptible-to-resistant RF cutoff for each drug (biological
cutoffs).!1>-16 Finally, it was recognized that the RF, an in vitro
measurement, requires explicit transformation for its intended
in vivo application, the prediction of the suppression of the
viral load (VL). Efforts in defining clinically relevant cutoffs
(short: clinical cutoffs) gave rise to the notion of the division
of the dynamic range into the idealized categories susceptible,
intermediate, and resistant (SIR), using 2 cutoffs per drug.
Susceptible indicates full drug activity, intermediate
decreased drug activity, and resistant no drug activity.®!1-14
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Although drug compounds in cART act in concert, the RF
quantifies the activity of a drug in vitro and in isolation. Thus,
RF cutoff determination with clinical data requires correcting
for the activity of the backbone compounds.®!! This correc-
tion can be achieved using hard-to-obtain data from (pseudo-)
monotherapies for cutoff determination. In pseudo-
monotherapies, an examined drug compound is added to
a failing regimen. This allows for observing the activity of the
drug with reduced influence of the backbone.?%-!7 Correction
for the backbone activity can be also achieved mathemati-
cally.'18.19 However, no methodology exists for calculating
cutoffs that produce clinically meaningful SIR categories
without requiring the expert selection of thresholds for
drug activity.

In this analysis, we establish a novel methodology for
calculating clinically relevant phenotypic resistance cutoffs
from routine clinical data. Although drug resistance is
a continuum, we aim at calculating cutoffs with which the
dynamic range can be divided into intervals that best
approximate the SIR categories, as defined above. We correct
for the activity of the backbone compounds mathematically, as
well as for lack of therapeutic success despite full susceptibility
to the drug compounds in a cART, as measured in a phenotypic
test or predicted by a genotypic interpretation system.

MATERIALS AND METHODS
Drugs Considered in This Study

The following antiretroviral drugs are considered in this
work: lamivudine (3TC), abacavir (ABC), zidovudine (AZT),
stavudine (d4T), didanosine (ddI), emtricitabine (FTC), tenofo-
vir (TDF), efavirenz (EFV), nevirapine (NVP), amprenavir
(APV), atazanavir (ATV), darunavir (DRV), fosamprenavir
(FPV), indinavir (IDV), lopinavir (LPV), nelfinavir (NFV),
saquinavir (SQV), and tipranavir (TPV). Other antiretroviral
drugs were excluded because of insufficient representation in the
EuResist Integrated Database (EIDB??) or lack of a model for
genotypic drug-resistance interpretation in geno2phenopresisiance]
(g2p; http://www.geno2pheno.org; see Ref. 4).

Data Sources

A total of 36,744 protease and reverse-transcriptase
sequences from treatment-naive patients were obtained from
the Los Alamos National Laboratory Sequence Database
(LANLSD?!;  http://www.hiv.lanl.gov/; downloaded on
March 31, 2015).

HIV data from routine clinical practice were obtained
from 2 sources: the EIDB (http://www.euresist.org; downloaded
April 11, 2014) and the HIVdb treatment-change episode (TCE)
repository?? (http://hivdb.stanford.edu; downloaded November
21, 2013). The EIDB contains data from 66,254 patients,
including HIV genotypes, VL measurements, CD4 counts, and
compounds used in antiretroviral therapies. The HIVdb TCE
repository stores 1527 TCEs from 4 data sources, including 58
TCEs from the EuResist database. In the context of the HIVdb
TCE repository, a TCE documents relevant clinical parameters
concerning a change in the drug compounds of cART.

€130 | www.jaids.com

Distribution of Fold-Change for Therapy-
Naive Patients

Nucleotide sequences from LANLSD were aligned, trans-
lated, and interpreted with g2p v. 3.4, a data-driven genotypic
drug-resistance interpretation system that predicts the RF from
the genotype for various protease inhibitors (PIs) and reverse-
transcriptase inhibitors (RTIs). Sequences resulting in an align-
ment error or producing a warning due to missing important
sequence regions were discarded. Because we require an RF
distribution for susceptible virus variants, sequences containing at
least one major drug-resistance mutation?® were excluded as well,
as therapy-naive patients may carry drug-resistant variants.?*2>
The remaining sequences were used for calculating a therapy-
naive RF distribution for the drugs considered in this study.

Calculation of Probabilities of
Susceptibility (POS)

g2p is a genotypic drug-resistance interpretation system
that predicts RFs for PIs and RTIs, given a nucleotide sequence
of the protease and reverse-transcriptase genes. The number of
genotype-phenotype pairs per drug on which g2p v. 34 is
trained is given in Table 1, Supplemental Digital Content,
http:/links.Ilww.com/QAI/A934. Using g2p v. 3.4, all nucleo-
tide sequences in EIDB were aligned. Sequences resulting in
an alignment error or producing a warning due to missing
important sequence regions were discarded. The remaining
protease and reverse-transcriptase sequences were translated
and interpreted. The resulting RF predictions were used for
fitting a sigmoid function for approximating the POS given
a predicted RF, as described before (probability of resistance®).
Briefly, a 2-component Gaussian-mixture model is fitted to the
RF predictions for each drug. These 2 Gaussians represent the
susceptible and resistant viral populations, respectively. A
sigmoid function is then fitted to approximate the probability of
resistance, given an RF, that can be calculated with these 2
Gaussians. We define the POS as one minus the probability
of resistance.

Definition of Treatment Episode (TE)

TEs differ from TCEs in that no treatment change is
required, ie, TEs encompass first-line therapies as well. In this
analysis, a TE consists of a baseline protease and reverse-
transcriptase genotype, a list of drug compounds used in
therapy, a follow-up VL and, optionally, a baseline VL. The
baseline genotype and the baseline VL must have been obtained
no earlier than 90 days before treatment initiation, in line with
previously developed definitions of the standard datum.?%-26
However, baseline genotypes for first-line therapies are exempt
from this requirement, as the virus has not been subject to
selective pressure by drug therapy. In the presence of multiple
data points, baseline measurements obtained at a date closest to
therapy initiation are preferred. Follow-up VLs must have been
obtained between 4 and 12 weeks after therapy initiation,
preferring VL measurements whose measurement date is closest
to 8 weeks after therapy start. TEs with a VL below 400 HIV-1
RNA copies per milliliter of blood serum (short: cp/mL) or
presenting at least 100-fold reduction in the VL are labeled as

Copyright © 2016 The Author(s). Wolters Kluwer Health, Inc.
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successes. TEs for which a baseline VL is available, the follow-
up VL is above 400 copies per milliliter, and the VL reduction is
less than 100-fold are labeled as failures.?2¢ TEs containing
drugs not considered in this analysis or with unboosted Pls
(except for nelfinavir) do not satisfy the TE definition.

Definition of Treatment-Failure Episode (TFE)
TEs with baseline sequences predicted by g2p to have
high RFs for some of the therapy’s drug compounds are rare in
EIDB. Therefore, we resort to nucleotide sequences measured
during therapy, which imply therapeutic failure, as a certain
degree of viral replication is required for sequencing. Toward
this end, we define a TFE as follows. A TFE consists of a list of
drugs used during therapy and an HIV sequence obtained during
the therapy. The therapy is required to have lasted at least 4
weeks, and the genotype is required to have been obtained no
earlier than 4 weeks before therapy stop. In TFEs, we assume
that the treating clinician changed the therapy based on the
results of the genotypic drug-resistance test. TFEs-containing
drugs not considered in this analysis or with unboosted PIs
(except for nelfinavir) do not satisfy the TFE definition.

Calculation of Probabilities of Success
After application of the TE definition to the EIDB,
approximately 10% of the resulting TEs were selected at

random and set aside for testing purposes. The remaining TEs
were merged with TFE obtained from EIDB, labeled as failures.
The resulting data set was used for estimating RF-conditional
probabilities of success for each drug (see Methods, Supple-
mental Digital Content, http:/links.Iww.com/QAL/A934).
Summarizing, TE baseline genotypes were interpreted with
22p, resulting in predicted RFs for the drugs in each TE. For
each drug considered in this analysis, RF-conditional success
and failure probability densities were estimated using weighted
kemel density estimation 27. When estimating the success
density, we correct for the activity of the backbone compounds
of therapy by down-weighting RFs from success-labeled TEs
with the POS of the backbone compounds. When estimating the
failure density, we correct for lack of success in the absence of
resistance by down-weighting failures with the POS of their drug
compounds. The resulting success and failure densities were
used for calculating empirical probabilities of success. Aiming at
noise reduction and analytical determination of cutoffs, we fit the
following sigmoid function to the probabilities of success. Let
a, b, ¢, d € R be the parameters of the sigmoid function.

B a—d
A e = M

For determining the susceptible-to-intermediate (lower)
and the intermediate-to-resistant (upper) cutoffs, we use the

TABLE 1. Therapy Characteristics

EuResist TE Development Set

EuResist TFE Development Set

EuResist TE Test Set

HIVAbTCE TE Test Set

N 8855
Log baseline VL
Available 7016 (82%)
Mean 4.4
Median 4.6
IQR 5.2-3.8
Baseline CD4 count
Available 6849 (77%)
Mean 283.4
Median 257
IQR 410-83
No. recorded past treatment lines
Mean 2.8
Median 1
IQR 4.0
Compound frequency
NRTI 8703 (98%)
NNRTI 2933 (34%)
PI 5531 (62%)

First-line therapies
Genotypic resistance

3315 (37%)

NRTI 3420 (39%)
NNRTI 2691 (30%)
PI 1558 (18%)

No resistance

4499 (51%)

1589

NA
NA
NA
NA

NA
NA
NA
NA

6-1

1539 (97%)

602 (38%)

754 (47%)
0 (0%)

1169 (74%)
809 (51%)
529 (33%)
252 (16%)

807

765 (95%)
45
4.6

52-38

670 (83%)
298.1
281
418-120

40

792 (98%)
264 (33%)
532 (66%)
379 (47%)

243 (30%)
195 (24%)
111 (14%)
485 (60%)

917

917 (100%)
43
42
47-37

917 (100%)
290.9
258
398-141

52

905 (99%)

398 (43%)

714 (78%)
0 (0%)

843 (92%)

461 (50%)

553 (60%)
26 (3%)

For therapies in the development and test sets, the following characteristics are summarized above: baseline VL, baseline CD4 count, number of recorded past treatment lines,
number of first-line therapies, drug-class composition, and genotypic resistance by drug class.
IQR, interquartile range; NA, not available; NNRTI, nonnucleoside RTI; NRTI, nucleotide/nucleoside RTI; TE, therapy episode; TFE, therapy-failure episode.

Copyright © 2016 The Author(s). Wolters Kluwer Health, Inc.
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TABLE 2. Drug-Compound Distributions

EuResist TE EuResist
Development EuResist TFE TE Test HIVAbTCE
Set Development Set Set TE Test Set

3TC or 6069 1093 674 484

FTC
ABC 1445 313 157 265
AZT 1756 525 181 169
D4T 833 463 90 407
ddI 928 396 99 338
TDF 3669 442 411 307
EFV 1831 357 204 287
NVP 502 246 60 111
APV/r 336 64 31 117

or

FPV/r
ATV/r 926 98 117 76
DRV/r 569 27 63 6
IDV/r 136 65 14 103
LPV/r 2306 258 244 223
NFV 344 188 39 72
SQV/r 205 70 27 115
TPV/r 55 13 7 3

The numbers of drug compounds in the development and test sets are tabulated
above.
TE, therapy episode; TFE, therapy-failure episode.

roots of the third derivative of the right-hand side of Equation
1, as these are located at the extrema of the curvature of
P; (x) . Thus, they are located at RF values at which the
probability of success is significantly reduced or marginal,
respectively. Cutoff determination for each drug was per-
formed with 1000 bootstrap replicates?® of each subset of TEs
including that drug. However, for some drugs, this procedure
selected the lower cutoff at an RF below the 95th percentile of
the RF distribution of therapy-naive patients. To avoid what
could be interpreted as overcalling of intermediate resistance,
the lower cutoff for a drug was selected either at the smaller
root of the third derivative of the right-hand side of Equation
1 or at the 95th percentile of the RF distribution of therapy-
naive patients for that drug, whichever is larger.!”

Performance Assessment and Comparison

We assess the performance of the cutoffs calculated with
the procedures we used on 2 test data sets. The first test data set
includes TEs from the EIDB which were not used for cutoff
determination (approximately 10% of the total). The second
test data set contains TEs extracted from the HIVdb TCE
Repository by applying the TE definition to it. For each TE,
a genetic susceptibility score (GSS) was calculated. Specifi-
cally, RFs predicted for the drug compounds in the TEs were
obtained with g2p, subsequently producing SIR labels through
the cutoffs. Each drug was assigned an integer score, depend-
ing on its SIR label: S — 1,1 — 0.5, R — 0. The GSS for
a TE amounted to the sum of its integer scores. Performance of
the GSS in predicting therapeutic success was calculated in
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terms of area under the receiver operating characteristic curve
(AUC?®). For performance comparison, the baseline genotypes
of the TEs in the test data sets were interpreted with HIVdb
v.6.0.6,39 resulting in SIR labels for the drug compounds in the
TEs. GSS was calculated as described above, and the
performance of the GSS in predicting therapeutic success
was quantified in terms of area under the curve (AUC) as well.
P-values were calculated with a 2-sided Wilcoxon signed-rank
test.3! Whenever multiple testing was performed, P values
were corrected using the Benjamini—Hochberg method.?

RESULTS

Among 36,744 nucleotide sequences of the protease
and reverse-transcriptase genes downloaded from LANLSD,
43 (<1%) protease and 75 (<1%) reverse-transcriptase
sequences were discarded because of alignment problems or
sequence-quality warnings. Furthermore, 860 (2.3%) protease
and 680 (1.8%) reverse-transcriptase sequences were dis-
carded because they contained some major drug-resistance
mutations. In addition, a total of 74,764 nucleotide sequences
from EIDB were submitted to g2p for interpretation, some of
which did not correspond to either the protease or reverse-
transcriptase genes. Of these, 21,199 (28%) were discarded
because of alignment problems or because they triggered
a sequence-quality warning. RF percentiles for the resulting
RF distributions for therapy-naive patients, along with the
corresponding POS, can be found in Table 2, Supplemental
Digital Content, http:/links.lww.com/QAI/A934. On aver-
age, RFs at the 95th percentile of the RF distribution of
therapy-naive patients have a POS of 0.87 with a SD of 0.13.
Baseline characteristics for the TEs and TFEs extracted from
EIDB and the HIVdb TCE repository are shown in Table 1,
whereas the drug-compound distribution for these data sets is
shown in Table 2. On average (SD), follow-up VLs used for
labeling TEs were obtained 7.04 (2.48) weeks after treatment
initiation, with a median time of 7 weeks after treatment
initiation (interquartile range: 9-5 (Figure 1, Supplemental
Digital Content, http://links.lww.com/QAI/A934)). Successes
accounted for 79% or 83%, respectively, of TEs that were
labeled using a follow-up VL obtained 4 or 12 weeks after
treatment initiation, respectively. Upper and lower RF cutoffs
obtained with the procedure described in Methods are
displayed in Table 3. Lower cutoffs for the drugs ddI, TDF,
NVP, and NFV were replaced by the 95th percentile of the RF
distribution of therapy-naive patients, as they were smaller than
this percentile. For performance assessment and comparison,
GSS for the TEs in 2 test sets were computed with predicted
RFs, discretized with the obtained cutoffs, as well as with
HIVdb discrete predictions. On the EIDB test set, our method
and HIVdb performed equally well (AUC = 0.68). However,
our method (1 = 2.55; o = 0.88) produced lower GSS than
HIVdb (u=2.66; o = 0.75; P < 1071°). Our method’s integer
scores for NRTIs (n = 0.83; o = 0.35; vs. u = 0.86; o = 0.30),
NNRTIs (n=0.92; 0 = 0.24; vs. p = 0.95; o = 0.20), and PIs
(nL=0.88; 0 =0.30; vs. p = 0.92; o = 0.23) were lower than
those produced with HIVdb (corrected P < 0.0043). On the
HIVdbTCE test set, our method (AUC = 0.63) and HIVdb
(AUC = 0.65) performed comparably well. On average, our

Copyright © 2016 The Author(s). Wolters Kluwer Health, Inc.
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TABLE 3. Clinically Relevant Phenotypic Resistance Cutoffs

Lower Sigmoid Cutoff Lower Sigmoid Cutoff

Selected Lower

Upper Sigmoid Cutoff Upper Sigmoid Cutoff

(SD) Percentile Cutoff (SD) Percentile
3TC or FTC 3.17 (1.02) 0.99 3.17 5.46 (1.04) 1
ABC 1.78 (1.03) 0.98 1.78 3.03 (1.09) 1
AZT 3.34 (1.05) 0.97 3.34 6.89 (1.08) 1
D4T 1.53 (1.02) 0.99 1.53 2.16 (1.09) 1
ddI 1.51 (1.1) 0.75 1.82 3.8 (1.21) 1
TDF 1.6 (1.03) 0.92 1.71 2.32 (1.03) 1
EFV 3.61 (1.08) 0.98 3.61 7.74 (1.1) 1
NVP 4.88 (1.08) 0.94 5.34 13.35 (1.09) 0.99
APV/r or 2.64 (1.08) 0.99 2.64 5.33 (1.17) 1
FPV/r
ATV/r 2.77 (1.11) 0.98 2.77 5.15 (1.19) 1
DRV/r 3.94 (6.89) 1 3.94 14.68 (20.53) 1
IDV/r 3.09 (1.16) 0.99 3.09 6.56 (1.5) 1
LPV/r 2.29 (1.09) 0.99 2.29 7.45 (1.27) 1
NFV 2.32 (1.09) 0.91 2.6 5.78 (1.2) 1
SQV/r 2.64 (1.12) 0.99 2.64 6.13 (1.22) 1
TPV/r 2.36 (3.63) 0.96 2.36 13.65 (5.61) 1

For every drug, sigmoid functions were fitted to empirical probabilities of success. Lower and upper clinically relevant fold-change cutoffs for each drug were selected at the roots
of the third derivative of the corresponding sigmoid function (sigmoid cutoffs). Above, these cutoffs are tabulated along with the percentile of the RF distribution of therapy-naive
patients to which they correspond. Lower sigmoid cutoffs corresponding to a percentile of the RF distribution of therapy-naive patients below the 95th percentile were replaced by the

95th percentile of this distribution (marked in bold).

method (n = 1.82; o = 0.97) produced lower GSS than
HIVdb (n =2.18; ¢ = 0.88; P < 1071%) on the HIVdbTCE
test set. Integer scores of our method for NRTIs (n = 0.16;
o =0.33; vs. pn =0.21; 0 = 0.37), NNRTIs (L =0.19; o =
0.39; vs. 0 =0.19; 0 = 0.39), and PIs (0= 0.06; o = 0.23; vs.
p = 0.07; o = 0.24) were also lower than those produced
with HIVdb (corrected P < 0.043).

DISCUSSION

In this work, we present a method for calculating
clinically relevant cutoffs for the RF that does not depend on
expert interpretation. Our method offers the following advan-
tages. (1) The cutoffs produced with this method are tightly
coupled with the clinically meaningful definition of lower and
upper RF cutoffs for producing SIR categories (see Introduc-
tion). We achieve this by translating this definition into an
adequate mathematical counterpart. Specifically, our method
chooses cutoffs at the curvature extrema of a sigmoid function
approximating the probability of success (Fig. 1). By doing so,
we circumvent the need for manual selection of (arbitrary) drug
activity thresholds.!?> Nevertheless, cutoffs can be chosen
manually based on other geometric features of the sigmoid
function (see Figure 2 and Table 3, Supplemental Digital
Content, http://links.lww.com/QAI/A934) or at specific proba-
bilities of success. (2) Our method corrects for the activity of
backbone drug compounds, but does not achieve this using
coarse, discrete weights, as with GSS. Instead, we correct for
backbone activity in success-labeled TEs with fine-grained RF
weights that depend on the POS of all therapy compounds. (3)
In failure-labeled TEs, we correct for failures not associated with

Copyright © 2016 The Author(s). Wolters Kluwer Health, Inc.

resistance, which is especially important because we use data
from routine clinical practice for calculating the cutoffs.

We have observed that empirical probabilities of success
decrease as log RF values reach their lower limit (Fig. 1). This
artifact results from the use of the probability density functions
of the normal distribution for estimating success and
failure densities (see Methods, Supplemental Digital Content,
http:/links.Iww.com/QAI/A934). However, this artifact is
corrected for by subsequent fitting of sigmoid functions to
the empirical probabilities of success (Fig. 1).

We exemplify the computation of RF weights for an
antiretroviral therapy with 3 drug compounds (see Table 4,
Supplemental Digital Content, http://links.lww.com/QAl/
A934). For failure-labeled TEs, weights decrease with the
sum of the POS for all compounds in the therapy. The
maximum weight, 1, is awarded to RFs from TEs for which
the sum of POS is equal to 0. Thus, the influence of RFs from
failure-labeled TEs is greater the less the susceptibility of the
virus to the administered drug compounds, which corrects for
failure in the absence of resistance. In contrast, for calculating
RF weights for success-labeled TEs, the POS of the drug in
question is subtracted from the sum of POS for the backbone
drug compounds. The maximum weight, 1, is awarded to RFs
of the drug in question indicating full drug susceptibility,
whereas the virus is not susceptible to the backbone drug
compounds. Hence, RFs from success-labeled TEs have
a greater influence, the higher the susceptibility of the drug
in question and the lower the susceptibility of the backbone
drug compounds. This corrects for the activity of the
backbone compounds. For selected drug compounds, a com-
parison of the densities obtained with and without RF
weighting, respectively, is shown in Figure 2. When weighted
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FIGURE 1. Density and probability plots (selected compounds). Weighted kernel density estimation was used for estimating
a success and a failure density for each drug compound. These densities were used for calculating RF-dependent empirical success
probabilities, to which a sigmoid function was fitted. A lower and an upper RF cutoff were chosen at the roots of the third
derivative of the sigmoid function. However, the lower cutoff was replaced by the 95th percentile of the RF distribution of therapy-
naive patients, if it was lower than this percentile. Success and failure densities, as well as empirical and sigmoid success prob-
abilities are plotted above for the drug compounds 3TC or FTC (A), TDF (B), EFV (C), and DRV/r (D). Ninety-fifth percentiles of the
RF factor distribution, as well as lower and upper cutoffs determined with the roots of the third derivative are indicated by vertical
dashed lines. Resistance-factor density is also depicted as a rug plot at the top of each individual plot. Note that for producing
these joint depictions of probabilities of success and of success and failure densities, success and failure densities were rescaled to
the interval between zero and one. This was accomplished by dividing the values of the densities by the largest value of both
densities.

failure densities are compared with their unweighted counter- FTC and DRV.33-37 Thus, for cutoff calculation, our method
parts, one can observe a shift of the probability mass from downweights therapy failures that are not caused by drug
lower RF ranges to higher ones. This effect is especially  resistance. Comparative examination of the weighted and
pronounced in the failure densities of ddI and IDV because = unweighted success densities for ddl and IDV makes the
their side-effect profiles are less favorable than those of 3TC/ effects of the weighting procedure apparent. Specifically, the
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FIGURE 2. Comparison of weighted and unweighted densities (selected compounds). Empirical success and failure densities were
estimated with weighted kernel density estimation, as described in Methods. Above, the weighted densities for the drug com-
pounds 3TC or FTC (A), ddI (B), DRV/r (C), and IDV/r (D) are plotted along with their unweighted versions. Resistance-factor
density is also depicted as a rug plot at the top of each individual plot.

weighting procedure compensates for the effect of the
backbone drug compounds by down weighting the success
densities at higher RF values.

The definition of SIR categories takes the activity of
a drug into account, and (intentionally) does not account for
the differential capacities of antiretroviral drugs to elicit
virological success. For instance, at the same probability of
success, the virus may be classified as susceptible to one drug
whereas it is classified as intermediate for another drug.
Taking this into consideration, cutoff determination through
mathematical optimization is hampered by the difficulty of

Copyright © 2016 The Author(s). Wolters Kluwer Health, Inc.

finding an adequate objective function for optimization that is
universal for all drugs. In the past, cutoff calculation has been
attempted by maximizing the AUC quantifying the perfor-
mance of prediction of therapeutic success.!® Briefly, cutoffs
are iteratively optimized by producing a GSS with a given set
of cutoffs and subsequently modifying these cutoffs such that
there is an increase in the AUC. This procedure involves the
calculation of cutoffs for all drugs in the data set simulta-
neously, and may be less effective in separating the effects of
individual drugs. Furthermore, the use of such an objective
function is bound to maximize predictive performance in the
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GSS while producing inconsistencies of the applied SIR
categories. We avoid this undesired effect by estimating
cutoffs for each drug separately. Nonetheless, the separation
of the contributions of individual drugs to therapeutic success
remains challenging, as antiretroviral drugs may interact with
each other.3839

Except for DRV/r and TPV/r, the SD of the calculated
cutoffs is at most 1.5. The higher variability of the cutoffs for
DRV/r can be explained by the drug’s comparatively
high barrier to resistance.>3 Our data set contains only few
DRV/r-containing TEs with an RF above the upper cutoff (Fig.
1). Therefore, significantly different numbers of TEs with
a high resistance to DRV/r at baseline will be selected across
bootstrap replicates, which results in increased variability. The
increased variability for the cutoffs for TPV/r is due to the low
numbers of TEs containing this drug (Table 2). We tested the
calculated cutoffs on 2 test sets. The performance of cutoffs
was equal or comparable with that of HIVdb. However, the
GSS calculated with the cutoffs were significantly smaller than
those calculated with HIVdb. Therefore, our cutoffs have
a higher tendency to label an RF with nonsusceptible SIR
categories than HIVdb. We interpret this to be a result of the
strict adherence to SIR categories in the cutoff estimation
procedure. Specifically, genotypic drug-resistance interpreta-
tion systems produced by experts may take the propensities of
individual drugs to elicit therapeutic success into account more
strongly. This results in fewer resistant predictions for drugs
with a high potency and a high barrier to resistance.

In this work, we present a method for calculating
clinically relevant cutoffs for (predicted) RFs. The method
corrects for the activity of the backbone drug compounds and
for therapy failure without drug resistance. A sigmoid function
is used for estimating the probability of therapeutic success,
given an RF. Therefore, RF cutoff selection can be based on
geometric features of the sigmoid function or on thresholds of
the probability of success. Validation with 2 clinical data sets
showed that the performance of our method was comparable
with that of a popular rules-based drug-resistance interpretation
method. The method has been applied for estimating RF
cutoffs for the latest version of g2p, v. 3.4.
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