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Abstract

Accumulating evidence suggests that the central locus for the progression of chronic kidney 

disease (CKD) is the renal proximal tubule. As injured tubular epithelial cells dedifferentiate in 

attempted repair they stimulate inflammation and recruit myofibroblasts. At the same time, tissue 

loss stimulates remnant nephron hypertrophy. Increased tubular transport workload eventually 

exceeds the energy-generating capacity of the hypertrophied nephrons, leading to anerobic 

metabolism, acidosis, hypoxia, endoplasmic reticulum stress and the induction of additional 

inflammatory and fibrogenic responses. The result is a vicious cycle of injury, misdirected repair, 

maladaptive responses and more nephron loss. Therapy that might be advantageous at one phase 

of this progression pathway could be deleterious during other phases. Thus, interrupting this 

downward spiral requires narrowly targeted approaches that promote healing and adequate 

function without generating further entry into the progression cycle.

The primary anatomical locus driving progressive chronic kidney disease (CKD) remains 

controversial, with debate cycling through different segments of the nephron. It is likely that 

each part of the nephron contributes. But a prominent role is played by the proximal tubule. 

Even in primary glomerular disease, where recent research emphasis has focused on the 

podocyte dysfunction that initiates glomerular injury,1 the resulting proteinuria2,3 and the 

formation of glomerular synechiae that lead to extrusion of the plasma contents into the 

tissue;4 the only pathologic processes that have been strongly implicated in progression 

relate to the tubulointerstitium. Indeed, the best clinical marker for progression of focal 

segmental glomerulosclerosis is tubulointerstitial inflammation.5,6 Further, a widely 

accepted mechanism of progression involves a lesion at the glomerulotubular junction that 

interrupts the passage of filtrate from the glomerulus into the tubule.4 In a number of 

diseases of either glomerular or tubular origin, the presence of atubular glomeruli7 suggests 

that the critical event is the demise of the proximal tubule.8 Anatomical studies of Bright’s 

disease by Oliver9 implicated proximal tubule hypertrophy, consistent with more recent 
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studies of diabetic nephropathy.10 Given these findings in varied conditions, it is appropriate 

to consider the role of the tubulointerstitium in a progression pathway that is common to all 

CKD.

Clinical clues to the pathogenesis of progression

Insight into the pathogenesis of CKD can be derived from risk factors that are not 

modifiable, those that can be modified by medical intervention, and additional, 

environmental factors that could contribute to progression (reported by other authors11–15 

and reviewed by this author in more detail elsewhere16). Non-modifiable risk factors include 

fetal programming/low nephron number; poor kidney function at the time of clinical 

presentation; and, in children, significant somatic growth in the presence of kidney 

dysfunction or decreased renal mass. These factors have in common that they involve 

increased amounts of work by the nephrons that remain after the initial injury. Potentially 

modifiable risk factors include obesity, hypertension, acidosis, proteinuria, anemia, vascular 

dysfunction and cigarette smoking. Obesity17 may contribute to progression by increasing 

per-nephron load, as is the case for the non-modifiable risk factors listed above, or it may 

reflect metabolic factors that affect kidney function. Hypertension18,19 remains a complex 

issue. The influence of high blood pressure has been attributed to modified circulation,20 

hyperfiltration21 or proteinuria.22 Both experimental23 and clinical24 data support acidosis as 

a modifiable progression factor. It has been suggested that acidosis plays a role in the 

activation of the terminal complement pathway;25 other effects on metabolism remain to be 

tested. The consideration of proteinuria as a potentially modifiable progression factor is 

widely accepted by nephrologists,13,18,19 although the mechanism by which proteinuria 

engenders progression remains poorly understood (see below). Finally, the impacts of 

anemia,26 cigarette smoking27 and direct effects of uremia on vascular function28,29 support 

a role for renal perfusion in the maintenance of renal function.

A risk factor that may or may not relate to perfusion, acute kidney injury (AKI), has 

received considerable attention recently. Clinical and epidemiological data indicate that 

CKD is much more common in individuals who have experienced an episode of AKI,14 and 

experimental models support this observation.30 AKI also is a progression factor in patients 

who have CKD.31 Experimental studies have defined a cascade of events that are initiated by 

AKI.32 Many of these events, and the contributing factors that are listed above, can be 

placed into a common schema wherein tubulointerstitial mechanisms involved in either 

normal function or attempted repair, usually beneficial, generate a vicious cycle that leads to 

the ultimate demise of the kidney. These mechanisms will be discussed here.

Mechanisms of renal injury and repair may lead to CKD

In adults, the primary causes of renal impairment are diabetes and hypertension.33 In 

children, these actually are rare causes of CKD, with more common causes being 

developmental abnormalities and genetically determined disorders, supplemented by 

acquired causes such as glomerular disease.34–36 Recent data suggest that, even in adult 

disorders, genetics may play a significant role in determining which patients are more likely 

to develop CKD.37,38 Regardless of the stimulus in adults or children, renal injury initiates a 
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repair process that involves five components that are mutually reinforcing (Figure 1). Cell 
activation occurs to permit tissue cell precursors to multiply and migrate into areas where 

repair is required. This process actually involves multiple events, including the stimulation 

of cell division, production of chemokines and adhesion molecules to recruit cells to the area 

of need, and re-differentiation of the precursor cells into functional tissue. Altered 
metabolism is needed to respond to the changing needs for different cell populations as they 

undergo dedifferentiation, proliferation, repair and redifferentiation. Inflammation occurs to 

remove debris in order to permit healing to occur. To promote cell trafficking and subsequent 

structural integrity, extracellular matrix (ECM) production is required.39 ECM provides a 

provisional matrix for cell migration and the assembly of structures, and offers new material 

to support these structures and maintain requisite cell phenotype. Finally, throughout this 

process, the nephron must maintain a relatively controlled balance among physiological 

parameters in order to protect body homeostasis. It does so through the production and 

regulation of a number of hormonal mediators including those that regulate not only renal 

function but also calcium/phosphorus homeostasis, erythropoiesis and blood pressure. 

Bricker and colleagues proposed that these hormonal mediators, produced to maintain 

normal renal physiology, have extension effects on non-target tissues that underlie the 

pathogenesis of the uremic state.40,41 Within the kidney, a critical factor in homeostasis is 

the tubuloglomerular feedback that maintains body fluid and electrolyte balance.

While repair functions are essential, they must be tightly regulated. If they are applied to an 

inappropriate target or in an unbalanced manner, these same processes promote misdirected 
repair, leading to renal dysfunction, scarring and CKD (Figure 2). Given the delicate balance 

and structure-function relationships in the kidney, insufficient, excessive or inappropriately 

applied repair mechanisms yield decreased functional renal mass. The kidney must respond 

to these changes. If there is appropriate adaptation, homeostasis is reestablished, even if at a 

level of renal function that may be somewhat below the previous steady-state. If, however, 

adaptation requires ongoing compensatory mechanisms, these mechanisms may cause 

further injury to the remaining nephrons in a vicious cycle of injury, maladaptation and 

misdirected repair. This latter series of events defines the course of progressive CKD.

Many cells and proteins that contribute to normal homeostasis in the tubulointerstitial milieu 

also may contribute to progression. Table 1 lists many such cells and their functions. In 

particular, the renal tubular cell produces, among other proteins, endothelin-1 

(vasoconstriction42), hypoxia-inducible factors HIFs (profibrotic and altering 

metabolism43,44, kidney-injury molecule (KIM)-1 (adhesion and regeneration45,46), 

macrophage chemoattractant protein (MCP)-1 (chemokine47) and transforming growth 

factor (TGF)-β (Smad protein48). Two examples of how the same processes may be 

involved in both repair and progression are offered here, involving the roles of the hypoxia-

inducible factors (HIFs) and kidney injury-molecule (KIM)-1. HIFs have long been 

suspected of being involved in progression. HIF α-chains are rapidly destabilized by prolyl 

hydroxylases, so that the α/β HIF heterodimer is short-lived under normal conditions. Under 

conditions of hypoxia, the HIF α-chain is stabilized. HIFs act as transcription factors and 

provide a central component of the response to hypoxia by promoting the expression of 

erythropoietin and vascular endothelial growth factor (VEGF), as well as multiple genes 

involved in the regulation of metabolism.49 However, the HIFs also promote the expression 
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of numerous genes that could contribute to fibrosis. Genetic manipulation of HIF-1α 
expression in mice has demonstrated that HIF is profibrotic in several mouse models of 

progressive CKD.43,50,51 However, inhibition of HIF exacerbates injury in several other 

models.52–55 While it is possible that these results are model dependent, the general trend 

suggests that HIFs play a role in protecting the kidney against acute hypoxic injury, whereas 

they may play a deleterious role in more chronic, fibrotic injury. Given that repeated 

episodes of AKI presage CKD32,56 and that the tubulointerstitium is a region of relatively 

low oxygen tension,57 elucidating how the outcome of HIF signaling is determined remains 

an important consideration in approaching CKD.

Similarly. KIM-1 may have different roles under different conditions. Originally described 

as a sensitive biomarker for AKI,46 it was subsequently determined to be an adhesion 

molecule that promotes renal regeneration.45 It also confers a phagocytic phenotype on 

tubular cells58 that reduces the extent of renal injury in AKI.59 However, chronic 

overexpression of KIM-1 induces renal fibrosis.60 It is likely that such events as activation, 

phagocytosis and immune stimulation are important for repair after AKI but, misapplied 

chronically, contribute to progression.

The pathophysiology of progressive CKD

Accepting the premise underlying evolution, pathogenic mechanisms per se represent 

“normal” physiological mechanisms that are dysregulated for some reason. To illustrate this 

principle, Figure 3 represents a modification of Figure 1; the same processes are now 

referred to by the manner in which they contribute to CKD progression. Each will be 

considered here.

Cell activation

The chemotactic and cytokine activity mediating both repair and progression is likely 

derived from multiple sources. The renal tubular cell itself may have immunologic 

properties when appropriately activated, including phagocytosis and subsequent antigen 

presentation,61 as well as co-stimulation of dendritic cells62,63 or lymphocytes.64 The 

proximal tubular cell is activated to migrate and proliferate in order to replenish the tubular 

structure, but it also produces chemoattractants and fibrogenic factors (reviewed in65,66). 

Some examples are listed in Table 1. Cells in the tubulointerstitium produce a variety of 

proinflammatory and profibrotic agents. The origin of the tubulointerstitial myofibroblast 

will be discussed below.

Importantly, in response to injury, cells that normally are stably differentiated to promote 

homeostasis may instead dedifferentiate into a phenotype to support the reorganization of 

new functional units. For example, in AKI renal tubular epithelial cells may undergo a 

phenotypic switch from a columnar epithelium with a brush border and tight intercellular 

junctions that facilitate electrolyte transport, to a cell that may divide, migrate and take on a 

secretory phenotype, producing chemokines and inflammatory mediators. This process of 

epithelial-to-mesenchymal transition (EMT), a normal part of the response to injury that 

promotes healing, also may be an important contributor to repeated, ongoing cycles of tissue 

damage and misdirected repair.
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Inflammation

As described above, cellular infiltrates are a hallmark of chronic progression. With injury, 

macrophages are recruited through the production of inflammatory cytokines such as 

MCP-167 and fractalkine68 to remove debris and permit regeneration.69 Interrupting 

adhesion molecule expression decreases this recruitment.65,70 The macrophages themselves 

produce a number of inflammatory molecules including mediators of further inflammation 

and fibrogenesis47 such as tumor necrosis factor (TNF)-α, platelet-derived growth factor 

(PDGF), basic fibroblast growth factor (FGF2), transforming growth factor (TGF)-β and 

reactive oxygen species (ROS). This process has been likened to that involved in sepsis. In 

sepsis, both a spectrum of endogenous inflammatory and other mediators called danger/

damage-associated molecular patterns (DAMPs) and a similar spectrum of pathogen-

associated molecular patterns (PAMPs) activate Toll-like receptors (TLRs) and NOD-like 

receptors (NLRs) to disrupt cellular metabolism, alter vascular perfusion and activate a 

number of metabolic processes in the kidney, centered upon mitochondria and energy 

metabolism.71 A similar set of responses may be mediated by DAMPs in CKD progression 

(reviewed in72).

Fibrosis

Fibrosis involves the replacement of normal, functioning tissue with scar. The accumulating 

extracellular matrix (ECM) in the scarred kidney includes both increased amounts of 

“normal” renal ECM73,74 and abnormal types or locations of ECM.75,76 For example, 

fibronectin is present in small quantities in the normal kidney77 but increases in disease sa 

part of the local response to injury. Changes in the quantity and type of ECM that are present 

may affect the cell-matrix interactions that regulate cell function and phenotype.78,79 As 

cells are injured, they produce atypical forms and amounts of ECM. This response alters the 

signals transmitted into the cell from the ECM, which in turn leads to further 

dedifferentiation of the cells in a vicious cycle that promotes EMT and maintenance of the 

mesenchymal phenotype.

Continued debate surrounds the origin of the actual scar-producing cell(s) in CKD.80 The 

myofibroblast (MFb) has been attributed to (1) activation of quiescent, resident fibroblasts in 

the kidney,81 (2) recruitment from the bone marrow or other distant sites82,83 or (3) EMT of 

other cells that already reside in the kidney. Although it has been suggested that the tubular 

epithelium is the precursor of the MFb,84,85 recent attention has focused on the vascular 

pericyte,86,87 a multipotential cell that may differentiate into an adipocyte as well as to a 

fibroblast. To a degree, this debate is important mostly to determine whether there is a 

specific cell that might be targeted to directly inhibit the excess production of ECM. In 

actuality, multiple cell types participate in the pathogenesis of renal fibrosis. These include 

not only the MFb, but also tubular cells that recruit inflammatory cells and activate 

fibroblasts, macrophages that induce further immune responses and promote ROS 

generation, and local cells that mediate the production of renin, VEGF, chemokines, TGF-β, 

etc. Metaphorically speaking, the MFb could be viewed as the “soloist” in an orchestra of 

cells that generate the “symphony” of fibrosis. All parts are necessary for the whole.
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The fibrogenic role of urine or glomerular filtrate also should be considered. Kriz and 

colleagues have put forth a model4 in which loss of podocytes permits synechiae between 

the glomerular tuft and Bowman’s capsule, permitting the extrusion of plasma contents 

directly into the adjacent tubulointerstitium. The resulting inflammation precipitates 

scarring. A similar phenomenon could explain the apparent relationship between severity of 

proteinuria and progression of tubulointerstitial disease. Intratubular delivery of plasma 

proteins, lipids and metals would lead to their reabsorption by the tubule. Intracellular or 

interstitial accumulation of these moieties would then stimulate all of the pathogenic 

processes described here.42 The exact nature of the fibrogenic signal in urine remains 

uncertain.

Tubuloglomerular feedback

As damage to the kidney causes nephron loss, physical forces, altered processing of 

glomerular filtrate and changes in distal tubular delivery of fluid and solute lead to altered 

renin production at the macula densa. The renin-angiotensin-aldosterone system (RAS) 

appears to play a significant role in nephron hypertrophy after kidney injury88 and stimulates 

the production of fibrogenic factors.89 It is possible that the RAS also pathologically 

modulates blood flow to the nephron. Decreased perfusion could be a significant 

maintenance factor in CKD progression.20 Alternatively, the role of renin may not be based 

solely on blood pressure, perfusion or proteinuria. The ESCAPE trial in children found that 

the effects of RAS antagonism on progression remain even if blood pressure and proteinuria 

have returned to baseline levels after 2–3 years of treatment.90

Metabolic changes

This additional effect of RAS antagonism could be explained on the basis of nephron 

hypertrophy. Cell activation and metabolic responses occur in tandem in both AKI and 

CKD. However, whereas in Figure 1 cell activation precedes metabolic changes, for 

conceptual purposes the order is reversed in the cycle shown in Figure 3. This change 

accounts for the central role of tubuloglomerular feedback in progression. Although overall 

glomerular filtration decreases in CKD, selective glomerular filtration may increase. As 

nephrons are lost, a combination of physical forces and active regulation (e.g., through the 

RAS) leads to increases in perfusion, single-nephron plasma flow and SNGFR. In order to 

maintain glomerulotubular balance, tubular reabsorption must become more aggressive. 

More energy production is required to support the consequently increased tubular transport 

activity, requiring changes in tubular metabolism. The increased consumption of oxygen and 

substrate causes hypoxia and metabolic stress that are pro-inflammatory91 and profibrotic. 

Paradoxically, the essential physiological mechanism of glomerulotubular balance, by 

meeting the need to absorb locally increased amounts of filtrate, stimulates hypertrophy, 

placing an increased metabolic load on the tubule and forcing the tubular cell to and beyond 

the limits of its capacity. Increased protein synthesis and relative hypoperfusion cause 

endoplasmic reticulum stress92 that may lead to tubular cell apoptosis, further fibrosis,93 and 

more nephron loss.94 Notably, this concept places a new perspective on the classical work of 

Brenner and others, in which such factors as increased glomerular protein load were noted to 

cause hyperfiltration95 and subsequent glomerulosclerosis. Arguably, the sequence of events 

is that hyperfiltration causes increased per-nephron workload, leading to tubular hypertrophy 
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and the metabolic changes that are described here. Glomerulosclerosis could be a secondary 

event.

The tubule as a major determinant of progression

A model can therefore be proposed in which tubular injury represents the ultimate, final 

common pathway for CKD progression. As shown in Figure 4, even primarily glomerular 

disease contributes to progression via the tubule. Podocyte depletion causes misdirected 

filtration, with transudation of plasma causing inflammation and nephron loss. Similarly, 

proteinuria activates tubular cells to mediate fibrogenic responses. As nephrons are lost, 

remnant nephron hypertrophy causes increased metabolic demand. Primary tubular injury 

more directly activates this deleterious tubular response.

The result is the cycle of progression depicted in Figure 5. Acutely upon tubular loss, 

physical factors provide the same amount of blood to a lesser number of nephrons, 

increasing single-nephron perfusion. The renin-angiotensin system system is activated and, 

in part, alters autoregulation to maintain perfusion rates. However, within a matter of hours, 

this same system also triggers an increase in renal DNA synthesis and protein expression, 

resulting in more permanent, hypertrophic changes.96 Increased perfusion places an 

increased filtered load on the nephron. This has two effects. The first is delivery of 

biologically active molecules to the tubule, as described above, causing further scarring. 

Secondly, this increased filtration necessitates increased tubular transport work to maintain 

glomerulotubular balance. The kidney receives up to 25% of the cardiac output at rest, and 

expends large quantities of energy for the active transport that is needed to reabsorb 99% of 

the filtrate. The kidney consumes about 400 μMol oxygen per minute to provide the energy 

source (ATP) needed to meet this demand.97 Although the total oxygen utilization by the 

CKD kidney is decreased, the per-nephron oxygen utilization is increased.97 Because blood 

flow is relatively sluggish in the tubulointerstitium, it is at baseline a somewhat hypoxic 

microenvironment,57 and decreased perfusion may further deny oxygen and substrate, 

depressing ATP synthesis.

The result is tissue hypoxia, which has multiple effects. A shift in metabolism from 

oxidative phosphorylation to glycolysis98 promotes the development of acidosis, which, as 

described in the clinical section of this article, accelerates the progression of CKD. Because 

of its high metabolic needs, the renal tubular cell contains large amounts of mitochondria to 

generate ATP.99 In response to hypoxia, mitochondrial complex 3 is stabilized,100 generating 

superoxide that ultimately raises the levels of various reactive oxygen species (ROS) in the 

cytoplasm. At low concentrations ROS function as intracellular signaling molecules, but at 

high concentrations they may alter the structure of receptors or other signaling proteins, 

interfering with the normal regulation of these molecules. Hypoxia exacerbates ER stress, 

leading to the autophagy of proteins and even mitophagy of mitochondria.92 The decrease in 

mitochondria further decreases ATP generation. While the source of intracellular ROS 

remains somewhat controversial,101–103 one downstream mediator of ROS actions is the 

stabilization and generation of HIF, which promotes extracellular matrix expression50 and 

decreases cell metabolic rates further. With decreased tubular function, less local generation 

of pro-angiogenic factors such as VEGF leads to decreased health of the peritubular 
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vasculature,104 further promoting hypoxia and HIF expression.55 HIF itself stimulates the 

expression of numerous profibrotic factors.105 The result is further nephron loss and 

continuance of this vicious cycle.106

Based on this model, it is reasonable to propose that the renal tubule plays a central role in 

the progression of CKD. It sends signals to other tissues in the kidney and more distantly, 

recruiting inflammatory cells and ECM-producing cells. Locally, it activates other cells to 

participate in the perpetuation of renal injury and the replacement of healthy tissue with scar. 

Remnant nephron hypertrophy triggers a series of events by which normal physiological 

functions of the nephron, applied to maintain that function, lead to its demise.

Clinical and research implications of this paradigm

Given this set of circumstances, a primary goal for research and treatment should be to 

attempt to resolve a paradox: treatments that enhance kidney function may also accelerate 

progression and, conversely, treatments to delay progression may also require diminishing 

remnant-nephron adaptive responses. Thus, identifying the means to promote oxygen and 

substrate delivery to the nephron would moderate the negative impact of hypertrophy on 

metabolism. A better understanding of disease mechanisms might also enhance our ability to 

treat certain conditions. In the examples mentioned earlier, KIM-1 and HIF appear to 

contribute significantly to favorable outcome in AKI. Addressing the way in which these 

molecules advance progression, rather than blocking these molecules directly, would leave 

the favorable effects intact but delay the progression of CKD.

Even if such optimal treatments are identified, their application will be complicated. 

Therapy that might be advantageous early in the disease course—such as facilitating repair

—could be deleterious later, after misdirected or unbalanced repair becomes a major 

mechanism of scarring. Unfortunately, we lack accurate markers for these different phases of 

response to injury.107 The situation is further complicated by the heterogeneity of the 

kidney; at any given time, different areas of the kidney may be undergoing repair, scarring or 

the physiological progression of nephron loss. The key issues are thus identifying (1) 

appropriate and rationally-designed therapies, (2) specific targets for those treatments and 

(3) the means to direct treatments to their intended targets. Alternatively, this conundrum 

illustrates the importance of continuing study to understand and inhibit the pathogenesis of 

primary diseases, before tubular maladaptation and progression supervene.
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CLINICAL SUMMARY

• The tubulointerstitium contributes to CKD progression in all kidney diseases.

• Activation and dedifferentiation of proximal tubular cells mediates multiple 

components of the fibrogenic response.

• A critical factor in the pathophysiology of progression is remnant nephron 

hypertrophy.

• All of the components of this pathophysiology represent normal, beneficial 

tubular functions that are misapplied in a maladaptive response to injury.
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FIGURE 1. 
Multiple biological processes contribute to repair of the injured kidney.
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FIGURE 2. 
Possible outcomes of repair after injury. If repair is appropriately applied and adequate, 

normal function is re-established. But if repair is insufficient, nephron mass is decreased; if 

it is excessive or misapplied, dysfunctional tissue results. In either of these latter cases, the 

remnant kidney must adapt. Successful adaptation also re-establishes homeostasis, but 

maladaptation leads to further cycles of injury and repair and chronic, progressive disease.
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FIGURE 3. 
Biological process involved in progression are parallel to those involved in repair. Compare 

this figure with Figure 1. Although activated cells show increased metabolic activity, for 

progression the metabolic response is placed before activation to emphasize the role of 

altered metabolism after the compensatory hypertrophic response of the nephron.
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FIGURE 4. 
Both glomerular and tubular injury lead to tubulointerstitial responses and renal tubular cell 

activation, potentially initiating progressive CKD. Reprinted with permission from.89
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FIGURE 5. 
Remnant nephron hypertrophy may create a vicious cycle in which processes that preserve 

functional homeostasis drive further nephron loss. Adapted with permission from.16
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Table 1

Tubulointerstitial cells that may contribute to progression*

Cell type Product or function

Endothelium NO production, Tissue perfusion

Tubule cell Endothelin, HIF, KIM-1, MCP-1, TGF-β, others

Juxtaglomerular cells Renin

Interstitial cells Erythropoietin

Pericyte Differentiation into fibroblasts

Resident fibroblast ECM production

Myofibroblast ECM production/scarring

Macrophage Phagocytosis, cytokines, ROS

Dendritic cell DAMP pattern sensing; T cell activation

T lymphocytes Cytokine production

Platelets Endothelial dysfunction

*
This list is not complete for either cell types or functions, but is provided to offer an indication that multiple cell types participate in progression. 

DAMP, danger/damage-associated molecular patterns; ECM, extracellular matrix; HIF, hypoxia-inducible-factor; KIM-1, kidney injury 
molecule-1; MCP-1, macrophage chemoattractant protein-1; NO, nitric oxide; ROS, reactive oxygen species; TGF-β, transforming growth factor-β.
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