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Abstract

Motivated by analysis of gene expression data measured in different tissues or disease states, we 

consider joint estimation of multiple precision matrices to effectively utilize the partially shared 

graphical structures of the corresponding graphs. The procedure is based on a weighted 

constrained ℓ∞/ℓ1 minimization, which can be effectively implemented by a second-order cone 

programming. Compared to separate estimation methods, the proposed joint estimation method 

leads to estimators converging to the true precision matrices faster. Under certain regularity 

conditions, the proposed procedure leads to an exact graph structure recovery with a probability 

tending to 1. Simulation studies show that the proposed joint estimation methods outperform other 

methods in graph structure recovery. The method is illustrated through an analysis of an ovarian 

cancer gene expression data. The results indicate that the patients with poor prognostic subtype 

lack some important links among the genes in the apoptosis pathway.
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1. INTRODUCTION

Gaussian graphical models provide a natural tool for modeling the conditional independence 

relationships among a set of random variables (Lauritzen (1996); Whittaker (1990)). They 
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have been successfully applied to infer relationships between genes at transcriptional level 

(Schäfer and Strimmer (2005); Li and Gui (2006); Li, Hsu, Peng et al. (2013)). Gaussian 

graphical models are tightly linked to precision matrices. Suppose X = (X1,…, Xp)′ follows 

a multivariate Gaussian distribution Np(μ, Σ). The precision matrix Ω = Σ−1 describes the 

graphical structure of its corresponding Gaussian graph. If the (i, j)-th entry of the precision 

matrix ωij is equal to zero, then Xi and Xj are independent conditioning on all other 

variables Xk, k ≠ i, j. Correspondingly, no edge exists between Xi and variable Xj in the 

graphical structure of Gaussian graphical model. If ωij ≠ 0, then Xi and Xj are conditionally 

dependent and they are therefore connected in the graphical structure. Define the support of 

Ω by , which is also the set of edges in the Gaussian graphical model. If 

the maximum degree of Ω,  is relatively small, we call Ω sparse. Since 

the expression variation of a gene can usually be explained by a small subset of other genes, 

the precision matrix for gene expression data of a set of genes is expected to be sparse.

Many methods for estimating high-dimensional precision matrix or its Gaussian graphical 

model have been developed in the past decade. Meinshausen and Bühlmann (2006) 

introduced a neighborhood selection approach by regressing all other variables on each 

variable with an ℓ1 penalty. The method consistently estimates the set of non-zero elements 

of the precision matrix. Efficient algorithms for exact maximization of the ℓ1-penalized log-

likelihood have also been proposed. Yuan and Lin (2007), Banerjee, Ghaoui and 

d’Aspremont (2008) and Dahl, Vandenberghe and Roychowdhury (2008) adopted an interior 

point optimization method to solve this problem. Based on the work of Banerjee, Ghaoui 

and d’Aspremont (2008) and a block-wise coordinate descent algorithm, Friedman, Hastie 

and Tibshirani (2008) developed the graphical Lasso (GLASSO) for sparse precision matrix 

estimation; it is computationally efficient even when the dimension is greater than the 

sample size. Yuan (2010) developed a linear programming procedure and obtained oracle 

inequalities for the estimation error in term of matrix operator norm. Cai, Liu and Luo 

(2011) developed a constrained ℓ1 minimization approach (CLIME) to estimate sparse 

precision matrix. All of these methods addressed the problem of estimating a single 

precision matrix or a single Gaussian graphical model.

In many applications, the problem of estimating multiple precision matrices arises when data 

are collected among multiple groups. For example, gene expression levels are often 

measured over multiple groups (tissues, environments, or subpopulations). Their precision 

matrices and the corresponding graphical structures imply gene regulatory mechanisms and 

are of great biological interest. Since the gene regulatory networks in different groups are 

often similar to each other, the graphical structures share many common edges. Estimating a 

single precision matrix group by group ignores the partial homogeneity in their graphical 

structures, which often leads to low power. To effectively utilize the shared graphical 

structures and to increase the estimation precision, it is important to estimate multiple 

precision matrices jointly.

Previous attempts to jointly estimate multiple precision matrices include Guo, Levina, 

Michailidis et al. (2011) and Danaher, Wang and Witten (2014). Guo, Levina, Michailidis et 

al. (2011) proposed a hierarchical penalized model to perserve the common graphical 
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structure while allowing differences across groups. Their method achieves Frobenius norm 

convergence when p log(p)/n goes to zero, where p is the number of variables, and n is the 

total sample size. Unfortunately, for genomic applications, the number of genes often 

exceeds the total sample size and, as a result, invalidates the theoretical justification in Guo, 

Levina, Michailidis et al. (2011). Danaher, Wang and Witten (2014) proposed two 

algorithms of joint graphical lasso (FGL and GGL) to estimate precision matrices that share 

common edges. Their approach is based upon maximizing a penalized log likelihood with a 

fused Lasso or group Lasso penalty. The paper did not provide any theoretical justification 

on the statistical convergence rate of their estimators.

In this paper, we propose a weighted constrained ℓ∞/ℓ1 minimization method to estimate K 
sparse precision matrices (MPE) jointly. Different from Guo, Levina, Michailidis et al. 

(2011) and Danaher, Wang and Witten (2014), the proposed estimators converge to the true 

precision matrices even when p = O{exp(na)}, for some 0 < a < 1. In addition, when K is 

sufficiently large, compared to the estimators from separate estimation methods, our 

proposed estimators converge to the true precision matrices (under the entry-wise ℓ∞ norm 

loss) faster. An additional thresholding step on the estimators with a carefully chosen 

threshold yields thresholded estimators with additional theoretical properties. The 

thresholded estimators from our method converge to the true precision matrices under the 

matrix ℓ1 norm. Finally, when the graphical structures across groups are the same, our 

method leads to the exact recovery of the graph structures with a probability tending to 1.

The rest of the paper is organized as follows. Section 2 presents the estimation method and 

the optimization algorithm. Theoretical properties of the proposed method and accuracy of 

the graph structure recovery are studied in Section 3. Section 4 investigates the numerical 

performance of the method through a simulation study. The proposed method is compared 

with other competing methods. The method is also illustrated by an analysis of an epithelial 

ovarian cancer gene expression study in Section 5. A brief discussion is given in Section 6 

and proofs are presented in the Appendix.

2. METHODOLOGY

The following notations are used in the paper. For a vector a = (a1,…, ap)T ∈ ℝp, define 

 and . The vector a−i is the vector of a without the i-th 

entry. The support of a is defined as supp(a) = {i : ai ≠ 0}. For a matrix A = (aij) ∈ ℝ p×q, its 

entrywise ℓ∞ norm is denoted by |A|∞ = maxi,j |aij|. Its matrix ℓ1-norm is denoted by 

, and its spectral norm is denoted by ║A║2. The sub-matrix 

A−i,−i is the matrix of A without the i-th row and the i-th column. Denote by λmax(A) and 

λmin(A) the largest and smallest eigenvalues of A, respectively. For two sequences of real 

numbers {an} and {bn}, write an = O(bn) if there exists a constant C such that |an| ≤ C|bn| 

holds for all sufficiently large n, write an = o(bn) if limn→∞ an/bn = 0. If an = O(bn) and bn = 

O(an), then an ⩆ bn.
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2.1 The Joint Estimation Method

We introduce an estimation method to jointly estimate K precision matrices with partial 

homogeneity in their graphical structures. The method uses a constrained ℓ1 minimization 

approach, that has been successfully applied to high dimensional regression problems 

(Donoho, Elad and Temlyakov (2006); Candés and Tao (2007)) and signal precision matrix 

estimation problem (Cai, Liu and Luo (2011)) to recover the sparse vector or matrix.

For 1 ≤ k ≤ K, let X(k) ∼ N(μ(k), Σ(k)) be a p-dimensional random vector. The precision 

matrix of X(k), denoted by , is the inverse of the covariance matrix Σ(k). Suppose 

there are nk identically and independently distributed random samples of 

. The sample covariance matrix for the k-th group is

where . Denote by n = Σk nk the total sample size and wk = nk/n the 

weight of the k-th group. We estimate  for k = 1, …, K by the constrained 

optimization

(1)

where λn = C(log p/n)1/2 is a tuning parameter. The ℓ∞/ℓ1 objective function is used to 

encourage the sparsity of all K precision matrices. The constraint is imposed on the 

maximum of the element-wise group ℓ2 norm to encourage the groups to share a common 

graphical structure.

Denote by  the solution to (1). They are not symmetric in general. To make 

the solution symmetric, the estimator  is constructed by comparing  and 

and assigning the one with a smaller magnitude at both entries,

This symmetrizing procedure is not ad-hoc. The procedure assures that the final estimator 

 achieves the same entry-wise ℓ∞ estimation error as . The details are discussed in 

Section 3.
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2.2 Computational algorithm

The convex optimization problem (1) involves estimating K p × p precision matrices. To 

reduce the computation complexity, it can be further decomposed into p sub-problems that 

involve estimating K p × 1 sparse vectors:

(2)

for 1 ≤ j ≤ p, where ej ∈ ℝp is the unit vector with j-th element 1 and other elements 0. A 

lemma shows that solving (2) is equivalent to solving (1).

Lemma 1—Suppose  is the solution to (1) and , where  is the 

solution to (2). Then  for 1 ≤ k ≤ K.

Problem (2) can be solve by a second-order cone programming. The existing packages to 

solve (2) include the SDTP3 and the SeDuMi package in Matlab, and the CLSOCP package 

in R. CLSOCP uses a one-step smoothing Newton method of Liang, He and Hu (2009). This 

algorithm has good precision but works relatively slowly for high dimensional problems. 

SeDuMi and SDTP3 adopt the primal-dual infeasible-interior point algorithm (Newsterov 

and Todd (1998)). The most time-consuming part of the algorithm is to solve the Schur 

complement equation, which involves Cholesky factorization. The sparsity and the size of 

the Schur complement matrix are two factors that affect efficiency. SDTP3 is able to divide a 

high dimensional optimization problem into sparse blocks and uses the sparse solver for 

Cholesky factorizations. It is therefore faster than SeDuMi in solving (2). In this paper, we 

used the SDTP3 package for all the computations. For a problem with p = 200, nk = 150 and 

K = 3, it takes a dual-core 2.7 GHz Intel Core i7 laptop approximately 11 minutes to solve 

(1).

2.3 Tuning Parameter Selection

Choosing the tuning parameters in regularized estimation is in general a difficult problem. 

For linear regression models, Chen and Chen (2008); Wang, Li and Leng (2009); Wang and 

Zhu (2011) studied how to consistently choose the tuning parameters when p = O(na) for 

some a > 0. Recently, Fan and Tang (2013) proposed a general information criterion (GIC) 

for choosing the tuning parameter for estimating the generalized linear model in ultra-high 

dimensional settings, p = O(exp(na)) for some a > 0. The GIC criterion adopts a novel 

penalty on the degree freedom of the model so that it consistently chooses the proper tuning 

parameter under mild conditions. Unfortunately, the Gaussian graphical model is different 

from the generalized linear model, and therefore the justification of GIC does not apply to 

our problem. We propose a tuning parameter selection method based on BIC and a re-fitted 

precision matrix on the restricted model.
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Since  follows a multivariate Gaussian distribution Np(μ(k), Σ(k)), we have

(3)

where . The regression coefficients satisfy (Anderson (2003))

(4)

Based on these results, we propose a tuning parameter selection procedure:

1. For a given λ, calculate the estimator . Based on the support of , use 

least squares and neighborhood selection to re-fit the precision matrix estimator 

.

2.
Define , the set of non-zero off-diagonal elements of 

the i-th row of .

3.
If , let the i-th column of  equal to the i-th column of 

. If , fit the regression model

(5)

If  equals the true support , 

and . Suppose the solution to (5) is . Define

After fitting Model (5), let , and .

4.
Repeat Step 3 for i = 1,…, p and k = 1,…, K. The resulting matrices , k = 1,

…, K are not symmetric. We symmetrize  by the same procedure:
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We use , k = 1,…, K as the estimators corresponding to the tuning parameter λ. 

The optimal tuning parameter can be selected by Bayesian information criterion (BIC),

(6)

where . We obtain the solution to our method over 

a wide range of tuning parameters and choose  that minimizes BIC(λ).

Since the refitted estimator can potentially reduce some bias introduced in the optimization 

due to the penalty term, using it in BIC (6) improves the tuning parameter selection in the 

numerical studies. However, using  as an estimator of Ω(l) is not recommended because 

when  is large, the re-fitted estimator might lead to overfitting. Overfitting 

does not severely affect the tuning parameter selection, because BIC puts penalties on 

complicated models that are less likely to be chosen.

3. THEORETICAL PROPERTIES

3.1 Estimation Error Bound

We investigate the properties of the proposed estimator by considering the convergence rates 

of , including estimation error bounds and graph structure recovery. We assume 

the following conditions:

(C1) There exists some constant a > 0, such that

(C2) sup1≤k≤K {λmax (Ω(k))/λmin(Ω(k))} ≤ M0 for some bounded constant M0 > 0.

(C3)
If eij = I(i = j), ,  and the 

largest eigenvalue of Cov(Zij) is λmax,ij, supij λmax,ij ≤ M1.

(C4) n1 ⩆ n2 ⩆ ⋯ ⩆nK ⩆ n/K.

Condition (C1) allows p to grow exponentially fast as n. It also allows the number of groups 

K to grow slowly with p and n. For example, when log p = O(nr) and K = O(nb) for r + 2b < 

1 and 3b < r, (C1) holds. Condition (C3) allows X(k) to be dependent across groups. When 

X(k) are independent, Cov(Yij) = IK, and thus maxij λmax,ij = 1.

Let  be the maximum matrix ℓ1 norms of 

the K matrices. A theorem establishes the convergence rate of the precision matrix estimates 

under the element-wise ℓ∞ norm.
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Theorem 1—Let λn = C0 (log p/n)1/2 for some constant . If (C1)–(C4) hold,

(7)

with a high probability converging to 1 and C1 = 2C0.

Remark 1: The value of C0 depends on M0. In practice, M0 is often unknown. 

However, we can use the tuning parameter selection method, such as BIC in (6), to 

choose λn. The details are discussed in Section 2.3.

Remark 2: Theorem 1 (and Theorems 2 and 3) does not require the true precision 

matrices Ω(k) to have identical graphical structures. Both the values and locations of 

non-zero entries can differ across Ω(k), k = 1,…, K.

Define

Proposition 1—Let  be the set of estimators , where  only depends 

on the k-th sample . Assume the samples are independent across K 

groups. Under (C4), there exists a constant α > 0, such that

for sufficiently large n.

Theorem 1 shows that the convergence rate of  from our 

joint estimation method is less than or equal to C1 Mn (log K log p/n)1/2 with a probability 

tending to 1. When K is bounded, Proposition 1 shows that with a non-vanishing probability 

αK, the minimax convergence rate of any separate estimation method is at least αMn(K log 

p/n)1/2. For bounded but sufficiently large K, C1 (log K)1/2 ≤ αK1/2. Therefore, the 

convergence upper bound  in (7) for the joint estimation method is 

less than the convergence lower bound  in Proposition 1 for the separate 

estimation method. In other words, compared to separate estimation methods, our joint 

estimation method leads to estimators with a faster convergence.
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An additional thresholding step on the estimators with a careful chosen threshold leads to 

new estimators, that converge to the true precision matrices under the matrix operator norm. 

Define the thresholded estimator  as follows,

with C1 the constant defined in (7). Let  and . 

Define  as the union sparsity.

Theorem 2—Suppose that (C1)–(C4) hold. Then with a high probability converging to 1,

(8)

The convergence rates of  depend on the union sparsity level s0(p). When the precision 

matrices share the same graphical structure,  for all k = 1,
…, K. When the number of shared edges in the graphical structures increases, the union 

sparsity s0(p) decreases, and consequently  converges to Ω(k) faster.

Let . Matrix Â = (âij)p×p measures the overall estimation 

errors among the entries of  and Ω(k) for k = 1,…, K.

Corollary 1—Suppose that the conditions in Theorem 2 hold. Then with a high probability 

converging to 1,

3.2 Graphical Structure Recovery

Theoretical analysis for graphical structure recovery is very complicated when the graphical 

structures of the precision matrices are different across the K groups since the results depend 

on the structures of the shared edges. Here we focus on the case in which the K precision 

matrices have a common support. Let  be the support for the k-th 

precision matrix, and the common support be . When , , k = 

1,…, K, by Theorem 1 we estimate  by
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where C1 is a constant given in Theorem 1. Let

We have a result on support recovery.

Theorem 3—Suppose that the conditions in Theorem 1 hold. Assume that

(9)

Then  with a high probability converging to 1.

When the graphical structures are the same across all K groups, the lower bound condition 

(9) is weaker than the lower bound condition needed for graphical structure recovery by 

separate estimation methods. Based on Proposition 1 and its proof, to fully recover the 

shared graphical structure by separate estimation methods, a necessary condition is

When K is sufficiently large, this condition is stronger than (9).

4. SIMULATION STUDIES

4.1 Data generation

We evaluated the numerical performance of the proposed method and other competitive 

methods, including the separate precision matrix estimation procedures proposed by 

Friedman, Hastie and Tibshirani (2008) and Cai, Liu and Luo (2011) and the joint estimation 

method proposed by Guo, Levina, Michailidis et al. (2011) and Danaher, Wang and Witten 

(2014). The separate precision matrix estimation methods were applied to each group, and 

therefore ignored the partial homogeneity in graphical structures among groups. In all 

numerical studies, we set p = 200, K = 3 and (n1, n2, n3) = (80, 120, 150). The simulated 

observations were generated in each group independently from a multivariate Gaussian 

distribution N{0, (Ω(k))−1}, where Ω(k) is the precision matrix in the k-th group. For each 

model, 100 replications were performed.
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We present results for two different types of graphical models: the Erdös and Rényi (ER) 

model (Erdös and Rényi (1960)) and the Watts-Strogatz (WS) model (Watts and Strogatz 

(1998)). For the ER model, the graph contains p vertices and each pair of vertices are 

connected with a probability 0.05. For the WS model, first a ring lattice of p vertex is 

created; one vertex is connected with its neighbors within order distance of 15, and then the 

edges of the lattice are rewired uniformly and randomly with a probability 0.01. These graph 

models have several topological properties such as sparcity and a “small world” property 

often observed in true biological gene regulatory networks. See Fell and Wagner (2000); 

Jeong, Tombor, Albert et al. (2000); Vendrascolo, Dokholyan, Paci et al. (2002); Greene and 

Higman (2003).

Based on the ER model or the WS model, a common graph structure was generated. Let M 
be the number of edges in the common graph structure. Then, ⎿ρM⏌ random edges were 

added to the common graph structure to generate graph structures for each group, where the 

parameter ρ was the ratio between the number of group-specific edges and common edges. 

We considered ρ = 0, 1/4, and 1. The first setting represents the scenario where the precision 

matrices in all groups share the same graph structure. After the graph structure of each group 

was determined, the values of non-zero off-diagonal entries were generated independently as 

uniform in [−1, −0.5] ∪ [0.5, 1]. The diagonal values were assigned to a constant so that the 

condition number of each precision matrix was equal to p.

4.2 Simulation results

Each method was evaluated for a range of tuning parameters under each model. The optimal 

tuning parameter was chosen by BIC (6). Several measures are used to compare the 

performances of these estimators. The estimation error was evaluated in terms of average 

matrix ℓ1 norm, ℓ2 norm (spectral norm), and Frobenius norm:

The graph structure recovery results were evaluated by average sensitivity (SEN), specificity 

(SPE), and Matthews correlation coefficient (MCC). For a true precision matrix Ω0 = (ω0,ij) 

with support set , suppose its estimator  has the support set 

. Then the measures with respect to Ω0 and  are defined as follows:

Here, TP, TN, FP, and FN are the numbers of true positives, true negatives, false positives 

and false negatives:
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We compared  and  and report the average sensitivities (SEN), specificities (SPE), 

and Matthews correlation coefficient (MCC) among K groups.

The comparisons of the results for the four graphical models are shown in Tables 1 and 2. It 

shows that when ρ = 0, the true graph structures are the same across all three groups, joint 

estimation methods perform much better than the separate estimation methods. As ρ 
increases, the structures across different groups become more different, and the joint 

estimation methods gradually lose their advantages. Our method has the best performance in 

graph structure recovery among all the methods. Even when ρ = 1, it still performs 

significantly better than the separate estimation methods. Our method has the best 

performance in graph structure recovery and it achieves the highest Matthews correlation 

coefficient. Its estimation error measured under the matrix ℓ1, ℓ2, and the Frobenius norm are 

comparable to other joint estimation methods.

Since the tuning parameter selection may affect the performance of the methods, we plot in 

Figure 1 the receiver operating characteristic (ROC) curves averaged over 100 repetitions 

with the false positive rate controlled under 10%. The methods proposed by Danaher, Wang 

and Witten (2014) have two tuning parameters. For each sparsity tuning parameter, we first 

chose an optimal similarity tuning parameter from a grid of candidates by BIC and then 

plotted the ROC curves based on a sequence of sparsity tuning parameters and their 

corresponding optimal similarity tuning parameters. Because these methods involve 

choosing two tuning parameters, they are slower than our method in computation (The 

computation of FGL and GGL is based on the R package “JGL” contributed by Danaher 

(2013)). Figure 1 shows that our method consistently outperforms the other methods in 

graph structure recovery.

5. EPITHELIAL OVARIAN CANCER DATA ANALYSIS

Epithelial ovarian cancer is a molecularly diverse cancer that lacks effective personalized 

therapy. Tothill, Tinker, George et al. (2008) identified six molecular subtypes of ovarian 

cancer, labeled as C1–C6, where the C1 subtype was characterized by significant differential 

expressions of genes associated with stromal and immune cell types. The patients in C1 

subtype group have shown to have a lower survival rate compared to the patients from other 

subtypes. The data set includes RNA expression data collected from n = 78 patients of C1 

subtype and n = 113 patients from the other subtypes. We are interested to see how the 

wiring (conditional dependency) of the genes at the transcription levels differs among 

molecular subgroups of ovarian cancer. We focus on the apoptosis pathway from the KEGG 

database (Orgata, Goto, Sato et al. (1999); Kanehisa, Goto, Sato et al. (2012)) to see whether 

the genes related to this pathway (p = 87) are differentially wired between the C1 and other 

subtypes.
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To stabilize the graph structure selection, we bootstraped the samples 100 times within each 

group. At each time, Iik was sampled uniformly taking values in i = {1,…, nk}, with k = 1, 2. 

Let , where  is the p-dimensional gene expression data for the Iik-th patient in 

the kth subtype group. The bootstrap sample is , with k = 1, 2. We then 

applied our proposed method and its competitors to each of the bootstrapped samples to 

obtain the estimators of the two precision matrices , k = 1, 2. The supports of the 

estimators were recorded so that . We then added  up for all bootstrap 

samples and got the final frequency of each edge being selected. Those edges that were 

selected in more than 50 of the 100 bootstrap samples were finally selected as important 

edges. This type of bootstrap aggregation methods has been commonly used in recovering 

the sparse graphical structures (Meinshausen and Bühlmann (2010); Li, Hsu, Peng et al. 

(2013)), which often leads to better selection stability for sparse precision matrix.

Table 3 lists the number of edges selected by the bootstrap aggregation of our proposed 

method and its competitors. The separate estimation methods (CLIME and GLASSO) 

resulted in graphs that share fewer edges in the precision matrices of the two cancer subtype 

groups. JEMGM resulted in most shared edges, followed by GGL and our method (MPE). 

Overall, FGL and GGL selected a lot more linked genes than other methods. Figure 2 shows 

the Gaussian graphs estimated by these six methods. FGL, GGL and MPE selected more 

unique edges among the gene expression levels for the C2–C6 subtype cancer than those for 

the C1 subtype. This suggests that the patients with poor prognostic subtype (C1) lack some 

important links among the Apoptosis genes.

We further defined the nodes with degrees equal or larger than five based on the union of the 

estimated graphs of two subtypes as the hub nodes. FGL and GGL yielded estimators with 

most of the hub nodes completely unlinked in the estimated graph for C1 cancer subtype. 

The estimators by MPE had several edges between the hub nodes shared by both subtype 

groups, while also displaying some links unique to each group. The hub nodes identified by 

MPE were FASLG, CASP10, CSF2RB, IL1B, MYD88, NFKB1, NFKBIA, PIK3CA, 

IKBKG, and PIK3R5. Among these, CASP10, PIK3CA, IL1B, and NFKb1 have been 

implicated in ovarian cancer risk or progression. In particular, PIK3CA has been implicated 

as an oncogene in ovarian cancer (Shayesteh, Lu, Kuo et al. (1999)), indicating the 

importance of these hub genes in ovarian cancer progression.

6. DISCUSSION

It is of interest to discuss the connection and difference between the problem considered in 

this paper and the problem of estimating matrix graphical models (Leng and Tang (2012); 

Yin and Li (2012); Zhou (2014)). Matrix graphical models consider the random matrix 

variate X following the distribution MNp×q(M; U, V) with the probability density function 

(pdf)
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Here M ∈ ℝ p×q is the mean matrix, U ∈ ℝ p×p is the row covariance matrix, and V ∈ ℝ q×q 

is the column covariance matrix. Thus, each row and each column of X share the same 

covariance matrices U and V. This distribution implies that vec(X) follows a vector 

multivariate Gaussian distribution Npq(vec(M), U ⊗ V), where “vec” is the vectorization 

operator and “⊗” is the Kronecker product.

Our model assumes X(k) follows the vector multivariate Gaussian distribution Np(μ, Σ(k)). If 

n = n1 =… = nK, X = (X(1),…, X(K)) ∈ ℝ p×K is a random matrix variate. However, each 

column of X has its own covariance matrix Σ(k), and each row of X may also have its own. 

Therefore, the covariance matrix of vec(X) cannot be expressed as the Kronecker product of 

two positive definite matrices. In general, the degree of freedom of Cov(vec(X)) is larger 

than that of U ⊗ V mentioned above.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Receiver operator characteristic curves for graph structure recovery for the simulated Erdős 

and Rényi graphs (the first row), and the Watts-Strogatz graphs (the second row). The x-axis 

and y-axis of each panel are average false positive rate and average sensitivity across K = 3 

groups. Black solid line: CLIME; black dot-dashed line: GLASSO; black long-dashed line: 

JEMGM; grey solid line: FGL; grey dot-dashed line: GGL; grey long-dashed line: MPE.
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Figure 2. 
Estimated Gaussian Graphs by the proposed method and its competitors. The dashed edges 

are links unique to the precision matrix estimator of the C1 subtype, the dotted edges are 

unique to that of other subtypes, and the solid edges are shared by both estimators. The size 

of node is a linear function of its degree. Upper left panel: CLIME; upper middle panel: 

GLASSO; upper right panel: JEMGM; bottom left panel: FGL; bottom middle panel: GGL; 

bottom right panel: MPE.
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Table 3

Number of edges selected by the proposed method and its competitors. “C1 unique” counts the number of 

edges that only appear in the precision matrix of the gene expression levels in C1 cancer subtype; “Other 

unique” counts the number of edges that only appear in C2–C6 cancer subtypes; and “Common” counts the 

number of edges shared by both precision matrices.

Method C1 unique Other unique Common

CLIME 40 43 20

GLASSO 11 11 7

JEMGM 23 22 77

FGL 8 112 23

GGL 14 148 44

MPE 13 38 42
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