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Abstract

Purpose of Review—First, we will identify candidate predictive biomarkers of antidepressant 

response of TMS based on the neuroimaging literature. Next, we will review the effects of TMS 

on networks involved in depression. Finally, we will discuss ways in which our current 

understanding of network engagement by TMS may be used to optimize its antidepressant effect.

Recent findings—The past few years has seen significant interest in the antidepressant 

mechanisms of TMS. Studies using functional neuroimaging and neurochemical imaging have 

demonstrated engagement of networks known to be important in depression. Current evidence 

supports a model whereby TMS normalizes network function gradually over the course of several 

treatments. This may, in turn, mediate its antidepressant effect.

Summary—One strategy to optimize the antidepressant effect of TMS is to more precisely target 

networks relevant in depression. We propose methods to achieve this using functional and 

neurochemical imaging.
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Introduction

Traditionally, transcranial magnetic stimulation (TMS) has been used for treatment of major 

depression via focal stimulation of the frontal lobes [1]. A hypofrontality model of 

depression, as supported by hypoperfusion of the left DLPFC on PET-imaging of depressed 

patients [2, 3] and post-stroke depression [4] provided the initial impetus for targeting the 

left DLPFC with TMS. Early case reports that TMS to the left DLPFC was efficacious in 

treating depression [5, 6] were followed by verification of the efficacy of TMS to the left 

DLPFC in both open label studies and rigorous sham controlled trials [7-9]. Antidepressant 

effects of TMS have been supported by several meta-analyses [10-13].

Early neuroimaging studies of the antidepressant mechanisms of TMS provided evidence 

that baseline frontal lobe perfusion predicted TMS response. In turn, TMS treatment 

modulated the abnormal frontal lobe perfusion often observed in depressed patients [14-17]. 

As neuroimaging technology, acquisition, and analytic techniques have advanced, studies of 

the antidepressant mechanisms of TMS increasingly focus on network-based mechanisms 

associated with the clinical expression of the depressive illness (e.g. emotional regulation, 

reward processing, anhedonia and psychomotor slowing).

This review will highlight how advances in magnetic resonance imaging (MRI) techniques 

(see [18, 19]) have been used to understand antidepressant mechanisms of TMS. The 

objectives of this review are threefold: 1. To identify neural predictors of antidepressant 

response; 2. To examine the effects of TMS on brain regions and networks involved in major 

depression, and 3. To use neural networks to inform the optimization of the antidepressant 

effects of TMS. To identify gaps in knowledge and to guide directions for future research, 

this review is restricted to major depressive disorder and focuses on two MRI modalities: 

resting state fMRI and neurochemical Imaging.

Resting state fMRI

Baseline predictors of TMS response

One highly replicated biomarker of the depressed state is elevated functional connectivity of 

the default mode network (DMN) [20-22]. The DMN comprises the medial prefrontal cortex 

(MPFC), posterior cingulate cortices, precuneus, inferior lateral parietal lobes, and parts of 

the medial temporal lobe. The BOLD signal of the DMN is most active when the subject is 

at rest and deactivates during periods of effortful behavior [23]. The DMN plays a key role 

in self-referential processing [24, 25], a process necessary for adaptive functioning which 

entails making sense of one's internal reality and one's role in the external environment. 

Negative self-referential processing is a hallmark feature of major depression and is 

expressed via cognitive symptoms including a negativity bias, rumination, pessimism, and 

hopelessness. The degree of increased functional connectivity (“hyperconnectivity”) of the 

DMN during the depressed state has been correlated with rumination [26] and persistent 

pessimism following antidepressant treatment [27]. Hyperconnectivity of the DMN 

normalizes following treatment with electroconvulsive therapy (ECT) [28] and serotonin-

norepinephrine reuptake inhibitors [29].
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A primary goal of personalized medicine is to discover measurements that can reliably 

predict the likelihood that a patient will respond to each one of a variety of prospective 

treatments [30]. In the quest for such predictive biomarkers of TMS treatment for 

depression, several investigators have evaluated differences in baseline, pre-TMS resting 

state functional connectivity of the DMN in patients who subsequently either responded or 

did not respond to a course of high-frequency (≥10Hz) TMS. Three studies in individuals 

with TRD produced convergent findings. First, TMS targeting the dorsomedial prefrontal 

cortex (DMPFC) produced better antidepressant response in patients with higher baseline 

functional connectivity between the DMPFC and sgACC and between the sgACC and 

DLPFC and lower baseline functional connectivity of cortico-thalamic, cortico-striatal and 

cortico-limbic projections [31]. Second, using a left DLPFC target [32] our group observed 

that higher FC between the sgACC and DLPFC, DMPFC, VMPFC, mOFC and bilateral 

posterior parietal cortex was associated with better antidepressant response. Another group 

replicated the predictive value of sgACC-DLPFC hyperconnectivity for response to 10Hz 

TMS over the left DLPFC [33]. The sgACC is a structure repeatedly found to be overactive 

and hypermetabolic in depression [34, 35]. These studies all highlight the potential for 

functional connectivity with the sgACC node of the default mode network to be a candidate 

predictive biomarker for response to TMS.

Several lines of research lend more direct support to the potential role of sgACC-DLPFC 

functional connectivity as a predictor of TMS-driven antidepressant response. In 

retrospective analyses, Fox and colleagues compared treatment efficacy of previously 

published studies on TMS for depression that used different methods of left DLPFC target 

identification. Relative to a set of normative resting state functional connectivity data, the 

best antidepressant response across studies was associated with increasing functional 

connectivity between the DLPFC target location and the left sgACC [36]. These results were 

then replicated and extended in a prospective study of a sample of depressed patients. First, 

the authors showed that it was feasible to identify a region within left DLPFC that was 

maximally functionally connected to the sgACC. Furthermore, this region of maximal 

functional connectivity remained stable across subsequent days.[37]. Additionally, the 

DLPFC TMS target producing the greatest antidepressant response was most strongly 

functionally connected to the sgACC. Of note, open label studies have provided evidence 

that sgACC is an effective target for deep brain stimulation for depression [38] providing a 

link between targets of noninvasive and deep brain stimulation which has held true for 

several neuropsychiatric disorders [39].

One obstacle to identifying a strong predictive biomarker of TMS response is that most 

studies average measurements of functional connectivity across groups of patients. Thus, it 

is difficult to make inferences about the relationship between functional connectivity and an 

individual patient's antidepressant response. Accordingly, Fox and colleagues [36] have 

demonstrated that the use of baseline functional connectivity of the individual patient can 

meaningfully predict subsequent antidepressant response to TMS. Similar studies of this 

type, which base targeting on network-based measurements from individual patients, show 

promise for optimizing antidepressant response from TMS.
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Change in functional connectivity from pre- to post-TMS: Evidence for TMS-induced 
neuroplasticity

Converging evidence demonstrates that TMS normalizes the functional connectivity of 

cortical circuits characterized by abnormal pre-TMS functional connectivity during the 

depressed state. Studies from our lab showed that daily 10Hz TMS over the left DLPFC for 

25 days normalized functional connectivity between the sgACC and several nodes of the 

DMN and the cognitive executive network (CEN) [32], though there were no functional 

connectivity changes between the left DLPFC and other nodes of the CEN. Another study 

using the same left DLPFC stimulation site and parameters was associated with similar 

changes in functional connectivity, although the normalization of functional connectivity 

was specific to treatment responders [33].

Targeting the DMPFC has also been associated with normalization of functional 

connectivity with the sgACC. Specifically, in a sample of 25 patients on stable medication 

treated with a 4-week course of 10Hz TMS, functional connectivity of the sgACC was 

reduced following TMS. The reduction of sgACC functional connectivity to the mid-

cingulate, caudate, and insula was correlated with antidepressant response. Additionally, 

increases in DMPFC-thalamus functional connectivity correlated with improvement in 

depression [31].

In summary, studies using similar methods of open-label TMS in depressed cohorts, provide 

convergent evidence that effective TMS treatment is associated with normalization of 

specific nodes of the DMN, a network involved in the negative self-referential processing 

typical of depression. Two of the three studies also demonstrate (to different degrees) that 

the cognitive executive network (CEN) and the interactions of the CEN and DMN also 

normalize with TMS. Resting state fMRI is easy to acquire and thus may be particularly 

suitable as a biomarker for predicting and tracking treatment response.

Functional connectivity is constrained, in part, by structural connectivity of white matter 

connections between neural regions [40, 41]. Abnormalities in white matter structure may 

underlie circuit dysfunction that may impede signal propagation beyond the stimulation site 

to more distributed networks. For example, the effects that occur “at a distance” in the 

sgACC with DLPFC stimulation and in downstream networks depend on the integrity of 

axonal pathways. Indeed, preliminary data from our lab suggests that abnormalities in the 

structural connectome, as measured by diffusion tensor imaging predict treatment response 

to TMS [42]. How white matter abnormalities affect the response to TMS is an important, 

but relatively neglected area of investigation.

Neurochemistry – Monoamine Neurotransmitters

Studies in both animals and humans implicate neurotransmitter systems in the antidepressant 

mechanism of TMS. These include both monoamine neurotransmitter systems, including 

dopamine and serotonin, as well as the amino acid transmitter systems GABA and 

glutamate.
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Dopamine depletion is known to correlate with depression [43, 44] and dopamine reuptake 

inhibitors may produce their antidepressant effects by increasing the availability of 

dopamine at striatal synapses [45]. Studies in healthy human subjects [46] and in subjects 

with depression [47, 48] using radioligands with affinity for D2 receptors show that TMS to 

the left DLPFC stimulates striatal dopamine release (but see also [49-51]). This effect has 

also been observed in the rat dorsolateral striatum and nucleus accumbens [52, 53]. As 

dopamine signaling in the striatum is important for reward processing, which is 

compromised in anhedonia, and for motor control, which is impaired in psychomotor 

symptoms of depression [54, 55], it is possible that this mechanism of dopamine 

enhancement may play a role in the antidepressant mechanism of TMS. Our findings from 

resting state fMRI suggest that functional connectivity from target to the striatum may be 

necessary for treatment response [56].

Both animal and human studies demonstrate that TMS modulates serotonin release. In 

healthy volunteers TMS over the left DLPFC at 10Hz modulates serotonin release 

throughout the limbic system, including in the cingulate gyrus, cuneus, parahippocampal 

gyrus and insula [57]. TMS over prefrontal targets in rats is associated with increases in 

serotonin release in hippocampus suggesting that TMS and monoamine reuptake inhibitors 

could share a final common pathway of antidepressant mechanism [58, 59]. However, 

serotonin modulation by TMS has yet to be demonstrated for individuals with depression.

If serotonin and dopamine release prove to be integral to the antidepressant mechanism of 

TMS, as could be investigated with PET to test whether neurotransmitter release correlates 

with treatment response, this would raise a host of questions about overlapping mechanisms 

between TMS and medication treatments. For example, is treatment resistance due to 

different mechanisms of monoamine release? Does TMS enhance monoamine release 

through direct neuronal stimulation instead of reuptake inhibition or monoamine oxidase 

inhibition? Such PET findings would also open up another avenue to target TMS by 

choosing a site that maximizes downstream monoamine release.

Neurochemistry – Amino Acid Neurotransmitters

Several lines of evidence implicate GABA, the primary inhibitory neurotransmitter in the 

brain, in the pathophysiology of depression. MR-Spectroscopy reveals low GABA levels in 

the limbic system in severe depression in both adults [60, 61] and adolescents. In the 

sgACC, GABA levels have correlated inversely with anhedonia symptoms in adolescents 

[62]. Glutamate decarboxylase (GAD) enzymes, which synthesize GABA, are low in post-

mortem brains of individuals who suffered depression [63] as are GABAergic interneuron 

counts [64]. Single and paired pulse TMS-based assays of cortical inhibition have also been 

used to probe GABAA and GABAB receptor activity and have found that depression severity 

correlates with level of GABA signaling deficit [65]. GABA has also been implicated in 

animal models of learned hopelessness suggesting depression may result from an inhibitory/

excitatory imbalance [66].

GABA homeostasis may be related to other biomarkers of depression. For example, GABA 

in the medial PFC has been found to correlate with reductions in functional connectivity of 
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the default mode network [67], raising the question that these two biomarkers of depression 

may be causally related [68, 69]. Additionally, multiple antidepressant treatments have been 

shown to elevate (or normalize) GABA levels, including ECT [70] and SSRIs [71]. More 

recent MR-spectroscopy results from ketamine studies add to the evidence that GABA 

modulation seems to be a final common pathway of psychopharmacological and 

neuromodulation treatments of depression [72]. An intriguing possibility is that GABAergic 

mechanisms modulate abnormal circuit functional connectivity in depression.

TMS targeting the left DLPFC at 10Hz has been shown to increase GABA in the MPFC in 

treatment-resistant depression in adults [73]. The effect was limited to treatment responders. 

Glutamate and glutamine metabolism is also dysregulated in depression [74] although this 

has been more difficult to study, given technical limitations of MR spectroscopy of 

separating the resonances of these two neurotransmitters. TMS has been found to increase 

glutamate concentration in the MPFC in healthy individuals [75]. However, results after 

TMS for depression have been less conclusive. One study showed a lack of effect on 

glutamate in the MPFC in depressed adults [73]. Another found elevation in the glutamine/

glutamate ratio immediately after a course of TMS and again at 6 month follow up in both 

DLPFC and MPFC [76], an effect in which the Gln/Glu ratio change was correlated with 

symptomatic improvement.

In summary, there is evidence that TMS over the left DLPFC modulates the GABA and 

glutamate systems and this modulation has been correlated with response to treatment for 

depression. Studies in this area have been limited by lack of blinding, use of standard rather 

than image-guided targeting, and the coarse region-of-interest approach necessary for MR-

Spectroscopy. Future studies could benefit from addressing these shortcomings, as well as 

using correlation with neurophysiological measures in the same patients [77]. Larger studies 

may be able to determine the predictive value of neurotransmitter levels for treatment 

response. Finally, co-localization of neurochemical maps (e.g. GABA level maps) with 

functional or structural connectivity maps could help determine if targeting lateral-convexity 

regions that project to GABA-deficient regions optimizes treatment response.

Conclusions and Future Directions

The Search for Biomarkers of Antidepressant Response

There have been a number of advances in the search for biomarkers of the TMS 

antidepressant response, but the utility of these markers awaits prospective TMS trials in 

which depressed subjects are selected for the presence or absence of the biomarker. This 

approach has distinct advantages. First, it can provide more robust evidence that TMS 

engages a circuit known to be abnormal. Second, it will help determine if personalizing 

treatment by pairing individuals who have the “appropriate predictive biomarker with the 

appropriate target” leads to a better response rate.

Using MRI to Optimize TMS for Depression

MRI can be used to optimize the spatial targeting of the stimulus so as to most effectively 

change abnormally functioning neural circuits. One approach has been to design magnetic 
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coils that penetrate to deeper neural structures; for example, the H-Coil, which can penetrate 

to 5cm and directly stimulate at that depth [78]. However, this coil does so at the expense of 

focality, which may explain why it is not more clinically effective for depression than 

current superficial TMS using a standard treatment protocol [79].

An alternative approach is to personalize targeting of superficial TMS based on the 

functional connectivity of an individual's different prefrontal projections. For example, 

DLPFC targets that we know are optimally connected to the sgACC could be studied in 

sham-controlled and head-to-head studies with currently-accepted targets. A treatment 

protocol would start with a resting state fMRI, which would be immediately analyzed online 

for functional connectivity to the sgACC (the striatum could be another candidate “deep 

target’). Resting state fMRI in an individual patient may reveal that sgACC-DLPFC 

functional connectivity is normal, or even lower than normal, which is a poor predictor of 

response according to the preliminary studies [32, 33]. However, if functional connectivity 

between the DMPFC and sgACC is abnormally high, it would indicate that this patient 

would have a higher likelihood of response to TMS targeting the DMPFC [31] and that this 

target should be chosen.

Conclusions and Future Directions

Although fMRI provides some mechanistic insight into the effects of TMS on 

neuroplasticity, the BOLD signal used in fMRI is based on blood oxygenation, while the 

physiologic underpinnings are at the neuronal signaling level [80]. Cerebral blood flow 

change and functional connectivity have been found to correlate with power in the alpha 

band of the EEG and quantitative EEG methods have been developed to study functional 

connectivity [81]. In turn, TMS may also be optimized if delivered at a frequency that can 

create resonance with baseline oscillatory activity of neural networks [82-86]. Future studies 

of mechanism of action that incorporate pre/post EEG with fMRI BOLD can leverage the 

high temporal resolution of EEG to better understand the response of intrinsic connectivity 

networks to TMS therapy.

Current evidence suggests that functional connectivity of networks important in depression 

has the potential to predict antidepressant response to TMS. TMS, in turn, can induce 

plasticity in these same networks and this may contribute to its antidepressant mechanism. 

Targeting TMS to achieve network engagement has shown promise in optimizing TMS 

response. Additional research is needed to fully exploit the neuromodulatory properties of 

TMS to normalize networks in individual depressed patients.
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