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Abundant off-fault seismicity and orthogonal structures
in the San Jacinto fault zone
Zachary E. Ross,1* Egill Hauksson,1 Yehuda Ben-Zion2

The trifurcation area of the San Jacinto fault zone has producedmore than 10% of all earthquakes in southern California
since 2000, including the June2016Mw (momentmagnitude) 5.2 Borrego Springs earthquake. In this area, the fault splits
into three subparallel strands and is associated with broad VP/VS anomalies. We synthesize spatiotemporal properties of
historical backgroundseismicity andaftershocksof the June2016event.A templatematching technique isused todetect
and locate more than 23,000 aftershocks, which illuminate highly complex active fault structures in conjunction with a
high-resolution regional catalog. The hypocenters form dipping seismicity lineations both along strike and nearly
orthogonal to the main fault, and are composed of interlaced strike-slip and normal faults. The primary faults change
dip with depth and become listric by transitioning to a dip of ~70° near a depth of 10 km. TheMw 5.2 Borrego Springs
earthquake and past events with M > 4.0 occurred on the main faults, whereas most of the low-magnitude events are
located in a damage zone (several kilometers wide) at seismogenic depths. The lack of significant low-magnitude seis-
micity on themain fault traces suggests that they do not creep. The very high rate of aftershocks likely reflects the large
geometrical fault complexity and perhaps a relatively high stress due to a significant length of time elapsed since the last
major event. The results provide important insights into the physics of faulting near the brittle-ductile transition.
INTRODUCTION
The San Jacinto fault zone (SJFZ) is the most seismically active fault
system in the southern California plate boundary, having produced
11 earthquakes with M (magnitude) > 6.0 in the last 120 years (1).
The SJFZ includes several right-lateral strike-slip faults that exhibit no-
table heterogeneity in fault geometry along strike, as measured from
surface geology, geodesy, seismicity, and focalmechanisms (2–5). A seg-
ment in the central region referred to as the Anza seismic gap (4) lacks
microseismicity and has not produced a major earthquake in the last
200 years (6). Southeast of the Anza gap, the SJFZ splits into three sub-
parallel strands called the Coyote Creek (CC), Clark (CL), and Buck
Ridge (BR) faults (Fig. 1). This comparatively small region, which is of-
ten referred to as the trifurcation area, is responsible for more than 10%
of all earthquakes produced in southern California since 2000. During
this period, 10 separate events with M > 4.0 have occurred (blue focal
mechanisms), and all have right-lateral strike-slip mechanisms. The
elevated rate of earthquakes across the whole SJFZ (compared to the
San Andreas fault) has been suggested to be driven by deep creep (7),
but this does not explain the considerable heterogeneity in seismicity
rates along strike or why the trifurcation area is very seismically active.

Some of the highest-resolution information on the internal proper-
ties of fault zone structures comes from fault zone head and trapped
waves that propagate along bimaterial interfaces and coherent low-
velocity damage zones (8–10). Fault zone trapped waves were observed
at several sites along theCC, CL, and BR faults (11–13) andwere used to
infer the presence of ~150-m-wide core damage zones in the upper 4 to
5 km. Recent local earthquake tomography focusing on the trifurcation
area indicates the existence of bimaterial interfaces along all the three
main faults and a broad damage zone throughout the region in the
upper 5 km (14). Such damage zones typically consist of hierarchical
networks of faults and cracks that evolve with the ongoing deformation
in the region (15).Wechsler et al. (16) documented pulverized anddam-
aged rocks in the trifurcation area and observed larger rock damage
near geometric complexities and areas between parallel fault segments.
Between the CC and CL faults, there are listric normal faults oriented
orthogonal to the main fault traces (17), which are likely formed from
local extension produced by subparallel slip on CC and CL. Although
these studies provide useful insight into the internal structure and me-
chanics of the SJFZ, they are restricted to shallow depths above the seis-
mogenic zone. Analysis of seismicity can illuminate fault zone structures
at seismogenic depths (18, 19). Several studies examined lineations in seis-
micity for different areas of the SJFZ and found that many structures dip
to the northeast (4, 19).

On 10 June 2016, theMw (moment magnitude) 5.2 Borrego Springs
earthquake occurred on the CL fault, generating more than 1500 after-
shocks over a span of 2 weeks that were detected with standard proce-
dures. Here, we use a template matching technique to detect and locate
more than 23,000 additional aftershocks to probe the internal structure
of the fault at seismogenic depths. The hypocenters of these aftershocks
are examined in conjunction with a high-resolution regional catalog
(20) to better understand the relationship between seismicity rates
and fault zone structures.
RESULTS
Figure 1 shows the locations of 9891 aftershocks alongside the relocated
seismicity from 1981 to the present (black dots). While a few aftershocks
(coloreddots) occurredon theCL fault itself,most eventswere generated in
a broad region between the CL and BR faults. The newly detected after-
shocks are highly clustered in space anddelineate numerous structures that
are not resolvable from the network catalog alone. Closer examination re-
veals lineations with a range of length scales oriented nearly orthogonal to
themain structures (inset). Several of the largest seismicity clusters trending
in a northeast direction appear to have been activated for the first time in at
least 35 years. They are composed of eventswith diverse focalmechanisms,
including right-lateral strike-slip, normal, and, to a lesser extent, reverse
faulting. This behavior is notable because in May 2008, a pair of M 4.1
andM 4.2 events occurred in almost the same location as the 2016 main
shockbutdidnot trigger similar seismicity thatwasdetectedby the regional
network. Of the nine aftershocks in the 2016 sequence withM > 3.0, more
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than half are normal faulting. Such diversity in focal mechanisms is ob-
served across the entire aftershock data set as well as in a previous focal
mechanism catalog for the same area (5, 21).

To better understand the relationship between the seismicity and the
three main faults, we examined the hypocenters as a function of depth.
Figure 2 shows a fault-normal cross section (A–A′), containing all
events within 5 km of the profile. Numerous structures are delineated
in the seismicity, including several that dip toward the northeast.
Dashed lines indicate the most likely positions of the fault planes for
CC, CL, and BR at these depths. These positions were determined by
the locations of the 2008Mw 4.1, 2010Mw 5.4, 2013Mw 4.7, and 2016
Mw 5.2 events together with their focal mechanisms and nearby linea-
tions of seismicity. Additional significant lineations are visible and are
likelyminor fault strands. The CL, CC, and BR faults appear to dip ~70°
to the northeast below a depth of about 10 km. Themeasured dip angles
are in agreement with the focal mechanisms of several events withM >
4.0. If these dip angles are correct, the faults must be listric and
transition to a near-vertical orientation at a depth of approximately
10 to 13 km; otherwise, they would intersect the surface several kilome-
ters to the southwest of the surface traces, which is unlikely. An addi-
tional line of evidence for this transitionary behavior is that the
lineations and focal mechanisms in the upper 6 to 10 km are markedly
more vertical than those in between depths of 10 and 16 km. The after-
shocks of the 2016 Borrego Springs earthquake primarily occupy the
region between the CL and BR faults (red dots). Similar to the historical
seismicity, they also demonstrate faint but persistent lineations dipping
at ~70°.

In Fig. 3, we show the seismicity along a fault-parallel cross section
(B–B′). In contrast to the fault-normal profile, relatively few narrow
lineations are visible in the seismicity, but there are numerous clusters
Ross, Hauksson, Ben-Zion, Sci. Adv. 2017;3 : e1601946 15 March 2017
among the detected aftershocks (red dots). Some of these structures are
associated with normal and left-lateral strike-slip faults, whereas others
are just parts of right-lateral surfaces. The largest aftershock (M 3.8)
occurred near the 10-km distance mark along strike. The rupture plane
is well resolved and dips toward the southeast, in agreement with the
normal faulting mechanism. Several steeply dipping structures located
between the CL and BR faults are visible at shallower depths. Many of
the structures are coincident with the right-lateral faults in Fig. 2, which
require that they are orthogonal to each other (Fig. 1, inset). Several pre-
vious studies identified earthquakes with rupture directivities to the
northeast and northwest (22–24), and these events can be tied to these
specific fault structures.

Focal mechanisms formore than 400 aftershocks of the 2016 Borrego
Springs sequence exhibit unusual diversity between the CL and BR faults
on a scale of ~100 m (Fig. 4). This complex pattern points to a broad,
active damage zone between theCL and BR faults consisting of interlaced
faults and cracks of various lengths. These focalmechanisms are generally
right-lateral strike-slip in seismic lineations parallel to the SJFZ and
normal or left-lateral faulting in clusters oriented fault-perpendicular. Al-
though the damage zone produces most of the seismicity in the trifurca-
tion area, it has not produced an earthquake withM > 4.0 since at least
2001. This is in contrast to the three main strands of the SJFZ that
produced 10 separatemain shock events withM > 4.0 during this period.
The network of fine structures is strongly asymmetric to the northeast
side of the CL fault. This pronounced damage asymmetry is also seen
in the geomorphology (16) and anomalous VP/VS values (14) and, on a
smaller scale, in geological mapping of rock damage at the surface (25)
and in a 100- to 200-m-wide seismic trapping structure (12, 13). The
pronounced active structure about halfway betweenCL and BR (oriented
fault-parallel) may indicate an unknownmajor fault strand or it could be
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Fig. 1. Mapof the trifurcation areaof the SJFZ.Historical seismicity is denoted byblack dots (20). EventswithM>4.0 that have occurred in this area since 2001 are indicatedby
blue stars and focal mechanisms. Aftershocks of the 2016 Borrego Springs earthquake are colored by depth. Red stars and focal mechanisms indicate aftershocks withM > 3.0.
Stations used are denoted by green triangles. The inset contains a close-up of the detected aftershocks, which delineate numerous strike-slip and normal faults in conjugate
orientations. Profiles of seismicity along cross secitons A–A′ and B–B′ are shown in Figs. 2 and 3. SAF, San Andreas fault.
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an edge to the active damage zone. This structure coincides with a hor-
izontal VP/VS signature in the tomographic model of Allam et al. (14).

With amore complete picture of the internal structure of the SJFZ at
depth, it cannowbe comparedwith historical seismicity patterns.With-
in the trifurcation area, the three main faults have produced M > 4.0
earthquakes on average every 2.2 years but generated only a few small
events on the faults themselves. The damage zone between the CL and
BR faults has produced microearthquakes daily but no M > 4.0 earth-
quakes in at least 16 years. To further investigate this behavior, we
divided the relocated network catalog from 1981 to the present into
on-fault and off-fault groups. The on-fault events are defined to bewith-
in the white dashed regions surrounding the three main faults in Fig. 1,
which are generally within 1 km of the surface traces; all remaining
events that do not occur on the primary structures are considered
off-fault.

The on-fault events clearly have a frequency-magnitude distribution
that is different from that of the off-fault events (Fig. 5).Widening the on-
fault regions by twice as much leads to essentially the same results. The b
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values calculated with the maximum likelihood method (26) for the on-
fault and off-fault events are 1.15 ± 0.10 and 1.31 ± 0.07, respectively, in-
dicating that the two groups are statistically different. Here,M 2.0 is taken
as the completeness magnitude based on visual inspection. Because these
regions are volumes, rather than surfaces, the on-fault event distribution
contains a significant number of events produced from structures other
than the primary interfaces. This is most clearly seen by the marked
change in slope of the on-fault events around M 3.0. For the on-fault
events withM > 3.0 only, the b value is 0.77 ± 0.25, which is significantly
lower than the b value for all on-fault events together. If the true rate of
on-fault earthquakes is characterized by this b value (0.77), then this
implies that only about 2%of all earthquakes in the trifurcation area were
generated on the primary fault interfaces. Thus, the few earthquakes
produced on the fault, which include all of the largest events, form a dis-
tinctly different population from the off-fault events. This is consistent
with the notion that large faults have frequency-magnitude statistics dif-
ferent from those of small faults, and that a broad power law distribution
is produced in part by regional averaging (27).
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Fig. 2. Fault-normal cross section A–A′ detailing seismicity within 5 km. Black dots denote the regional network relocated solutions (20), whereas red dots indicate the
detected aftershocks of the 2016 Borrego Springs earthquake. Red focal mechanisms correspond to aftershocks withM > 3.0, whereas blue focal mechanisms on the CL, CC, and
BR faults are from the 2008 Mw 4.06, 2010 Mw 5.4, and 2013 Mw 4.7 sequences, respectively. The 2016 main shock is indicated by the largest red focal mechanism. All focal
mechanisms shown are rear hemisphere projections. The interpreted locations of the CC, CL, and BR fault planes are shown as dashed lines and dip nearly 70° below 10 km. A
change in dip must occur at around 10 to 13 km in order for the faults to meet with the surface expression (green triangles). In the regions off the main faults, there are damage
zones with intense distributed seismicity that includes persistently dipping lineations.
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DISCUSSION
In Fig. 6, we provide a schematic representation of the results. The CC,
CL, and BR faults are all listric, right-lateral strike-slip faults capable of
producing large events, which are nearly vertical in the top 10 to 12 km
and transition rather abruptly to a dip of roughly 70°. A broad damage
zone exists across the trifurcation area in the top 5 km and is associated
with the ongoing regional deformation, producing abundant complex
microseismicity. Several normal faults exist between the CC and CL
faults and are oriented perpendicular to the strike of the SJFZ. Between
the CL and BR faults at a depth of 8 to 16 km, there is a younger, seis-
mically active damage zone consisting of interlaced strike-slip and
normal faults.

A general increase in b value with distance away from major faults
was previously observed for the whole of southern California (28). Dif-
ferent b values were also observed between large and small faults within
a swarm in the Long Valley Caldera (29). They found that the b value
increased with elapsed time from the start of the swarm and concluded
that these variations were the result of both limitations on the maxi-
mummagnitude for the smaller faults as well as a more heterogeneous
stress field at the smaller scale. These observations are generally similar
to our observations in the SJFZ. The clear contrast in seismicity rate
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between the damage zone and main faults is seen not just within the
2016 Borrego Springs sequence but also over the entire 35-year catalog
for the region.

Earthquake hypocenters play a key role in this study, and it is im-
portant to discuss their accuracy. The relocated regional seismicity cat-
alog is estimated to have relative errors of 100 m and absolute errors of
0.8 to 1.5 km (20). For the 2016 Borrego Springs sequence, 95% of the
relative errors are less than 150 m (horizontal) and 162 m (vertical),
which is similar in quality to previous studies using template matching
(29, 30). Thus, the conclusions drawn from seismicity structures should
not be affected by the resolution of the relative location errors.However,
the less-resolved absolute position of the entire cloud of events results in
additional uncertainty over where the dip transitions occur. In addition,
velocity contrasts have been observed along all of these faults in the
upper ~7 km (14, 31, 32), which have been shown to add absolute error
in the form of a lateral shift if unaccounted for (33). We used a high-
quality three-dimensional (3D) velocity model for southern California
in the relocation process (34), which should help minimize possible
biases introduced by near-source velocity heterogeneity. The hypoDD
method (35) should further help mitigate the effects of 3D struc-
ture along the path. The dipping at depth is unlikely to result from
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Fig. 3. Fault-parallel cross section B–B′ detailing all seismicity within 5 km. Black dots denote the regional network relocated solutions (20), whereas red dots indicate the
detected aftershocks of the 2016 Borrego Springs earthquake. Red focal mechanisms correspond to aftershocks withM > 3.0. All focal mechanisms shown are rear hemisphere
projections. Numerous dipping structures are visible and aregenerally normal faulting or left-lateral strike-slip. Focalmechanisms correspond to 2016 aftershockswithM>3.0. The
2016 Borrego Springs main shock is indicated by the largest focal mechanism.
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velocity contrasts because they decrease with depth (36, 37). Further,
similar dipping behavior is not seen at the Parkfield section of the
San Andreas fault, which has a stronger velocity contrast than the study
area (10, 38).
Ross, Hauksson, Ben-Zion, Sci. Adv. 2017;3 : e1601946 15 March 2017
Several previous studies claimed that the SJFZ may be dipping
toward the northeast. Lindsey et al. (39) used amodelwith a single plane
and constant dip to fit geodetic data in the central section of the SJFZ
and concluded that it dips 80° to 85°. Given the model simplicity, the
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inferred values are similar to what would be obtained by averaging our
fault geometry over the top 16 km. The SouthernCalifornia Earthquake
CenterCommunity FaultModel has average dips of 89°, 86°, and 89° for
the CC, CL, and BR faults, respectively (40). Lineations across the entire
SJFZ were previously examined by Nemser and Cowan (19), who con-
cluded that the main fault strands exhibit down-dip segmentation, as
seen in shallow, porous sedimentary rocks. Such rocks produce com-
paction bands during failure, which lead to hardening and delocalization.
However, the low-porosity igneous rocks that exist at depth in the trifur-
cation area tend to fail in a weakening process leading to localization
(41–43). The more recent 2010 Mw 5.4, 2013 Mw 4.7, and 2016 Mw

5.2 events on the CC, BR, andCL faults, respectively, indicate thatmod-
erate events in the area tend to occur on localized faults (Fig. 2). It is
more plausible that the fault segments identified are essentially
collections of cracks within a broad damage zone (15). Because no
earthquake has ruptured the entire seismogenic zone of the central SJFZ
in more than half a century, the small events produced in the interseis-
mic period are generally insufficient to investigate whether a primary
fault plane exists at depth.

Along the strike of the SJFZ, there are significant spatial fluctuations
in the observed seismicity rates. The most extreme example of this be-
havior is between the trifurcation area and the Anza gap immediately to
the northwest, which has the lowest rate of earthquakes in the SJFZ (4).
This segment of the fault, which is a 20-km-long linear strand that is
highly localized, also has the simplest geometry in the entire SJFZ
(25). Paleoseismic studies indicate that the Anza segment had numer-
ous previous large events (Mw ~ 7.3), with a recurrence interval esti-
mated at 254 years (6). The lack of microseismicity is most likely
related to the geometrical simplicity of that segment and the fewer
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off-fault structures as compared with the trifurcation area. Other factors,
such as possibly higher frictional strength or lack of fluids, may also play a
role. The considerably higher rate of seismicity in the trifurcation area, in-
cluding numerous events withM > 4.0, increases the loading on the Anza
segment and the likelihood of a future large SJFZ event.

The relative geometric simplicity of the main faults and larger avail-
able surface area allow for larger events to occur, with focalmechanisms
typically well aligned with the regional stress field. The alignments of
seismicity and the focal mechanisms of events withM > 4.0 suggest that
themain faults become listric near a depth of 10 km.On the other hand,
the damage zone has a complex distribution of cracks with different
sizes that preferentially produce smaller events with diverse focal mech-
anisms (Fig. 4). These cracks extend down to the brittle-ductile
transition zone, are often aligned with the regional stress field, and have
a conjugate alignment nearly orthogonal to the main direction of the
SJFZ. Geometric complexity produces stress concentrations that lead
to increased low-magnitude seismicity (27) and, given the highly
complex structures observed within the trifurcation area, provides
a clear explanation for the anomalously high seismicity rates. Al-
though the SJFZ has long been known as the most active fault zone
in southern California, these observations indicate that most of the
activity is off-fault and that the primary fault interfaces are likely to
be locked.

A number of mechanisms may produce the complex off-fault
structures. These include weak dependence of strength on normal stress,
ductile shear zones at depth driving deformation in the brittle crust (44),
block rotation betweenmaster faults (45), reactivation of a rifting system
in compressive stress (46), or high-angle branching near the terminus of
large earthquake ruptures (47). The high-resolution images of these
structures provide important insights into the physics of faulting at
depth. The relative proximity of the trifurcation area to rifting in theGulf
of California and Salton Trough, its association with several major fault
branches, the relatively large average hypocenter depth, and occasional
large earthquake ruptures suggest that all these mechanisms may be re-
sponsible for the generation and evolution of the observed complex seis-
micity structures. The most likely mechanism affecting the current deep
orthogonal seismicity (Fig. 1) may be loading from an ongoing ductile
deformation with similar orientation below the seismogenic zone.
MATERIALS AND METHODS
Data
We used seismic data from 19 three-component broadband and short-
period seismometers within 20 kmof themain shock (48) for the period
9 June 2016 to 24 June 2016. The used stations are from the CI, AZ, PB,
SB, and YN networks. A total of 1580 earthquakes were detected and
located by the Southern California Seismic Network (SCSN) during the
period. SCSN analysts made the P- and S-wave arrival picks.

Template relocation
We relocated the 1580 aftershocks using a waveform cross-correlation
method (20), with the intent of using their waveforms as templates for
detecting additional earthquakes. The differential times measured dur-
ing this process were used with the hypoDD algorithm (35) to obtain
high-quality hypocenters and origin times. The new template locations
were also used to determinemore accurate focalmechanisms from first-
motion polarities and S-to-P amplitude ratios (21). A total of 412 solu-
tions had a quality of A or B, as determined by the Hash algorithm (49),
which are the focal mechanisms used in this study.
Coyote Creek Clark Buck Ridge

Fig. 6. Schematic of the SJFZ trifurcation area. Three main right-lateral strike-slip
faults are near vertical in the upper 10 km and dip roughly 70° below this depth. In the
top 5 km, there is a broad damage zone associated with the ongoing regional defor-
mation. Between the CL and BR faults, there is a seismically active damage zone at
depth consisting of interlacednormal and strike-slip faults. The damage zoneproduces
most of the earthquakes in the region and appears to terminate roughly halfway be-
tween CL and BR.
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Event detection using template matching
We used a matched filter method (29) to detect additional earthquakes
in the continuous data. The method is briefly summarized for clarity.
Data were first band-pass–filtered between 2 and 15Hz. Template wave-
forms were constructed using a 2.5-s window for P waves and a 4.0-s
window for S waves on all three components for each template event.
These windows were chosen to start 0.2 s before the analysts pick. For
source-receiver combinationswith S-P times of less than 2.5 s, theP-wave
window was shortened to the S-P time to ensure no overlap with the
S wave. The template windows were then correlated against 24-hour
continuous data at a time. Each cross-correlation function was shifted
back in time by an amount equal to the observed travel time of the
template and summed across all phases, channels, and stations. Detec-
tions were made using a threshold of eight times the median absolute
deviation for the respective day. We then measured the differential
times from the individual cross-correlation functions for each respective
phase and station using a threshold of seven times the median absolute
deviation. Both negative and positive correlation values were used, and
differential timeswere interpolated to subsample precision. This process
was then repeated for all template events, and detections that were
spaced less than 2 s apart were linked to identify the best-matching
template. For each detection chain, the template with the largest average
cross-correlation coefficient was selected, and its location was assigned
to the detected event. Applying this procedure resulted in 25,392 de-
tected events and 28 million differential times, including the 1580
template events. Magnitudes were calculated by using only phases with
measured differential times. For these phases, peak amplitude ratios
were calculated between the detected phase and the template phase.
The final magnitude estimate was formed by taking the median over
all amplitude ratios and assuming that a factor of 10 in amplitude
corresponds to one magnitude unit difference (50). The differential
times were then used as the input for hypoDD (35), resulting in 9891
events with at least 20 total phases surviving. For the relocation process,
we used the 3D velocity model of Fang et al. (34). These events were
used throughout the paper. Additional details regarding the detected
events are given in the Supplementary Materials.

Location error estimation
We used a resampling technique to estimate the relative errors of the
locations for the 2016 Borrego Springs sequence (51). For this
procedure, we randomly sampled 90% of the event pairs and used these
values as new inputs to the hypoDD program. This process was re-
peated for a total of 1000 iterations to quantify the variability in latitude,
longitude, and depth for each event. The final error estimates for each
event were determined from the 95% CIs of each respective parameter.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/3/3/e1601946/DC1
fig. S1. Additional details regarding the detected 2016 Borrego Springs aftershocks.
fig. S2. Cross section along profile A–A′.
fig. S3. Map of seismic stations used.
data set S1. Seismicity catalog of all detections (unrelocated).
data set S2. Seismicity catalog of hypoDD relocated detections.
movie S1. Animation of the relocated seismicity in 3D.
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