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Arctic sea ice, Eurasia snow, and extreme winter
haze in China
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The East China Plains (ECP) region experienced the worst haze pollution on record for January in 2013. We show that
the unprecedented haze event is due to the extremely poor ventilation conditions, which had not been seen in the
preceding three decades. Statistical analysis suggests that the extremely poor ventilation conditions are linked to Arctic
sea ice loss in the preceding autumn and extensive boreal snowfall in the earlier winter. We identify the regional
circulation mode that leads to extremely poor ventilation over the ECP region. Climate model simulations indicate that
boreal cryospheric forcing enhances the regional circulation mode of poor ventilation in the ECP region and provides
conducive conditions for extreme haze such as that of 2013. Consequently, extreme haze events in winter will likely
occur at a higher frequency in China as a result of the changing boreal cryosphere, posing difficult challenges for
winter haze mitigation but providing a strong incentive for greenhouse gas emission reduction.
INTRODUCTION
A consequence of rapid economic growth in China is a deterioration of
air quality. An air pollution record was set in January 2013, with un-
precedented large-scale haze lasting almost an entiremonth. During this
so-called “airpocalypse”period, ~70%of the 74major cities exceeded the
daily PM2.5 (particulate matter with a diameter of 2.5 mm or less; see
table S1 for a list of all acronyms) ambient air quality standard of China
(75 mg m−3), with the maximum daily PM2.5 reaching 766 mg m

−3 and
the monthly mean concentration reaching as high as 130 mg m−3 (1).
Exposure to such high PM concentrations endangers public health with
increasing risks of cardiovascular and respiratory morbidity (2, 3).

Because no sudden rapid emission surge of natural or anthropo-
genic emissions in that month over eastern China was reported, stag-
nantmeteorological conditions favoring the high aerosol formation (4)
and accumulation (5, 6) appeared to be amajor factor contributing to the
extreme haze. Although recent studies indicated a decadal weakening
trend of the East Asian wintermonsoon (EAWM) (7) and consequently
decreasing wind speed (8) and increasing aerosol concentrations (9), the
underlying climate factors modulating short-term weather changes rele-
vant to regional air quality are still not understood.

This study aims to place the occurrence of the January 2013 extreme
haze in the context of historical ventilation conditions in the last 35 years.
The region of East China Plains (ECPs; 112°E to 122°E, 30°N to 41°N;
Fig. 1A) is the focus of this study. The region hosts a large portion of
the Chinese population and suffers from severe air pollution problems.
It resembles a horseshoe-shaped basin, where the ventilation of air pol-
lutants relies on large-scale weather systems (10). Pollutant ventilation
can be either horizontal or vertical. Using the NCEP (National Centers
for Environmental Prediction)/NCAR (National Center for Atmospheric
Research) reanalysis data (11), we first compute a normalized near-
surface wind speed index (WSI) for horizontal ventilation and a po-
tential air temperature gradient index (ATGI) for vertical ventilation and
then construct a synthetic meteorological index—pollution potential
index (PPI)—to better quantify the synergistic effect of ventilation on
regional air pollution in January. We then explore the relationship be-
tween PPI and regional climate variability through comprehensive sta-
tistical approaches including maximum covariance analysis (MCA) (12)
and principal components analysis (PCA) (12). Using these analyses as a
guide, we investigate how anomalous synoptic patterns under the back-
ground of changing climate contribute to poor ventilation and extreme
haze in China. We also conduct sensitivity simulations using the state-
of-the-science Community Earth System Model (CESM) and examine
the modeling results from the fifth phase of the Coupled Model Inter-
comparison Project (CMIP5) (13) to validate the statistical findings.
RESULTS
Poor ventilation and extreme haze in China
In January 2013, the ECP region was characterized by large negative
surface wind speed anomalies (weakened horizontal dispersion; Fig.
1C) and positive potential air temperature gradient anomalies (more
stable atmosphere with weakened vertical convection; Fig. 1D). Al-
though precipitation is also an important factor to remove PM through
wet scavenging, previous studies indicated less significant dependence
of PM concentrations on precipitation in winter (14), which was cor-
roborated in our analysis. As expected, the regionally averaged ven-
tilation indices (WSI and ATGI) are correlated with historical haze
observations including PM10 over the ECP region, PM2.5 in Beijing,
visibility inverse (ViI) (15), and satellite column aerosol optical depth
(AOD) data (table S2) (16). To simplify the multivariate statistical
analysis, we construct a synthetic meteorological index, PPI, as a cor-
relation weighted average of WSI and ATGI (hereafter, WSI, ATGI,
and PPI are regionally averaged over the ECP region if not noted
otherwise; see Materials and Methods for details). The PM10 data sug-
gest roughly equal weighting of horizontal ventilation (WSI) and ver-
tical ventilation (ATGI) indices in PPI. The new proxy (PPI) correlates
better with ground observations such as PM10 (r = 0.92), PM2.5 (r =
0.79), and ViI (r = 0.62) than satellite AOD data (r = 0.43 to 0.50; Fig.
1B and table S2), indicating that PPI is more representative for near-
surface air quality than column aerosol loading. In a historical per-
spective, both calculated PPI and observed ViI show that the January
2013 extreme haze is unprecedented in the last 30 years (Fig. 1B).

The role of climate variability
To investigate the association of climate variability to the PPI extreme,
we apply the PCA (12) to PPI, multiple atmospheric variables includ-
ing the Arctic Oscillation index (17) and EAWM indices (18–20), and
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three forcing factors, Arctic sea ice concentration (SIC; Fig. 1A) (21) in
the preceding autumn, boreal Eurasia snow cover extent (SCE; Fig.
1A) (22) in early winter, and El Niño/Southern Oscillation (ENSO)
(23), for the past three decades (1980 to 2015; see Materials and
Methods and table S3 for details). The long-term records of PPI
and climate variables are necessary for climate-related analysis. We
note that the construction of PPI is not directly related to any atmo-
spheric variable or forcing factor used here. Unlike the other years, all
related PCs contribute positively to the 2013 extreme, and the large
contributors PC5 and PC6 are correlated with SCE and SIC, respec-
tively (fig. S1 and table S4). As in the case of PPI, we construct a nor-
malized cryospheric forcing index (CFI), which is an average of
correlation weighted SIC and SCE (see Materials and Methods for
details). As such, we have one representative variable for cryospheric
forcing discussion. CFI can explain 42% of the total PPI variance
(table S2). In 2013, the large CFI extreme corresponds well to the
PPI extreme (Fig. 1B).

To examine the atmospheric processes linking cryospheric changes
to PPI, we apply the MCA (12), which is totally independent from the
PCA, to analyze the association of mid-latitude to high-latitude syn-
optic weather patterns [the 850-hPa geopotential height (Z850) field of
the reanalysis data] with PPI (see Materials and Methods for details).
We note that the formulation of PPI is not directly related to the Z850
field, that the region of interest for the gridded PPI field (Fig. 2C) is of
a smaller domain than that for the Z850 field (Fig. 2B), and that the
MCA modes remain the same if the 2013 data are excluded from the
analysis. The most dominant coupling modes of the Z850 and PPI fields
account for >30% of the total covariance. The highest Z850 and PPI
mode intensity also corresponds to the extreme PPI value in 2013
(Fig. 2A). The spatial pattern of the first MCA Z850 mode (Fig. 2B)
resembles the circulation anomaly in 2013 (Fig. 2D). Similarly, the
Zou et al., Sci. Adv. 2017;3 : e1602751 15 March 2017
spatial pattern of the first MCA PPI mode resembles the PPI dis-
tribution in 2013 (Fig. 2C). Furthermore, the time series of the first
MCA PPI mode intensity is highly correlated with the average PPI
over the ECP region (r = 0.93). Therefore, the extreme condition of
2013 can be understood using the more general MCA modes; that is,
the poor ventilation condition over the ECP region represented by the
first MCA PPI mode is driven by the regional circulation pattern rep-
resented by the first MCA Z850 mode. In contrast to the climatology
characterized by large pressure gradients between the continent and
the oceans (Fig. 2B), the first MCA Z850 mode shows a reversed
northeast-southwest pressure gradient with anticyclonic anomalies
in the Arctic and northeast Asia and a cyclonic anomaly over central
Siberia, leading to weakened monsoon wind and enhanced PPI over
the ECP region.

The 2013 event is therefore a manifestation of the first MCA mode
characterized by poor ventilation over the ECP region. It is plausible
that cryospheric forcing due to Arctic sea ice and Eurasian snowfall
identified in the PCA enhances the first MCA Z850 mode, leading
to high PPI and hence heavy haze over the ECP region. To test this
hypothesis, we designed sensitivity simulations using the state-of-the-
science CESM (version 1.2.1). We conducted a 30-year control
(CTRL) run with prescribed climatological Arctic sea ice and sea sur-
face temperature (SST) (21) and three sensitivity experiments with 30
ensemble members each: the first sensitivity simulation set (SENS1)
with climatological SIC and SST data replaced by Arctic SIC and
SST data in August to November as observed in 2012; the second sen-
sitivity simulation set (SENS2) with prescribed Eurasia snow water
equivalent (SWE) data (24) in October and November as observed
in 2012; and the third sensitivity simulation set (SENS3) with the ob-
served SIC, SST, and SWE data, in the same manner as in SENS1 and
SENS2 (see Materials and Methods and fig. S2).
Fig. 1. PM pollution and ventilation conditions over East Asia. (A) 2013 monthly Moderate Resolution Imaging Spectroradiometer (MODIS) AOD (unitless) at 550 nm
onboard Aqua satellite; (B) time series of aerosol observations, PPI, and CFI; their correlation coefficients (r values) with PPI are shown in parentheses; (C) 2013 distributions
of normalized surface WSI (unitless); (D) 2013 distributions of normalized potential ATGI (unitless). In (C) and (D), black dots (crosses) denote the 99% (95%) significance
level based on the bootstrapping method. The red rectangular box in (A) and the black box in (C) and (D) show the ECP region. All results are for January.
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The response of the PPI cumulative distribution function (CDF) to
cryospheric forcing in the model is compared to the reanalysis data
(Fig. 3). Relative to the CTRL simulations and reanalysis data, Arctic
sea ice and Eurasian snow forcing clearly shift PPI toward positive
Zou et al., Sci. Adv. 2017;3 : e1602751 15 March 2017
values (Fig. 3A). The fraction of positive PPI increases from 49% in re-
analysis data and 52% in CTRL simulations to 58% in SENS1 with sea
ice forcing, 62% in SENS2 with snow forcing, and 66% in SENS3 with
both sea ice and snow forcing. Consequently, the ensemble averaged
value of PPI in winter increases from 0 in CTRL to 0.06 (P = 0.34) in
SENS1 and 0.20 in both SENS2 (P = 0.005) and SENS3 (P = 0.003). To
investigate the extreme cases more relevant to the 2013 event, we
examined the distribution of sensitivity simulation extreme ensemble
members, defined as the PPI values of which greater than the 95th
percentile value of the CTRL ensemble (PPI95

th

CTRL). The number of SENS1
extreme members is similar to that of CTRL, whereas the number of
SENS2 and SENS3 extreme members increases by 80 and 100%, respec-
tively. Eurasian snow forcing (in SENS2 and SENS3) appears to have a
larger effect on the extreme PPI values, particularly over the ECP region,
thanArctic sea ice forcing (SENS1) (Fig. 3, B toD), in agreement with the
observations (table S2).

The intensity distributions of the first MCA modes of Z850 and
PPI (Fig. 2) in the ensemble simulations are symmetrical in the CTRL
run because of internal model variability (fig. S3). These modes clearly
shift to higher intensities, toward the 2013 anomaly when Arctic sea
ice and Eurasian snow forcing are added, confirming that the cryo-
spheric forcing provides conducive conditions for extreme haze over
the ECP region. These modes respond more to Arctic sea ice forcing
than to Eurasian snow forcing (fig. S3), likely reflecting in part the
difference between climate model simulations and reanalysis data.

Future projections from CMIP5
Observation-based PCA and MCA and CESM simulations in our
study indicate the contributions of decreasing Arctic sea ice (25, 26)
Fig. 2. Influence of the regional circulation on PPI. (A) The first MCA mode intensity (circles; unitless) of January PPI and Z850; color shading (unitless) denotes PPI
values from 1981 to 2015; (B) the spatial pattern of the first Z850 MCA mode (color shading; unitless) and Z850 climatology (contour lines; in meters); (C) the spatial
pattern of the first PPI MCA mode (color shading; unitless) and PPI fields (contour lines; unitless) in 2013; (D) the 2013 Z850 anomalies (color shading; in meters) and
Z850 climatology (contour lines; in meters). In (D), black dots denote the 95% significance level based on the bootstrapping method; green rectangles denote the
regions of subplots (B) and (C); H and L indicate the location of the Siberian High and the Aleutian Low, respectively. All results are for January.
Fig. 3. PPI responses to cryosphere forcing in the CESM sensitivity simula-
tions. (A) The CDF of PPI over the ECP region in the reanalysis data and CESM
sensitivity simulations. The red solid vertical line is at the PPI value of 0; (B) the
spatial distribution of ensemble averaged PPI fields of the extreme members
(≥PPI95thCTRL) in SENS1; (C) same as (B) but in SENS2; (D) same as (B) but in SENS3. In
(B) to (D), black dots denote the 99% significance level based on the bootstrapping
method.
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and increasing Eurasian winter snowfall (27) to poor ventilation over
the ECP region. As such, the capability of climate models is challenged
in reproducing historical observations and projecting future changes
of winter ventilation and air pollution over eastern China. We analyzed
the modeling results from the CMIP5 project (13) using CESM1-
CAM5 (the Community Atmosphere Model version 5) and CCSM4
(the Community Climate SystemModel version 4) models. Although
the SIC hindcast agrees well with the observations (Fig. 4A), the in-
crease of cryospheric forcing is underestimated in the climate models
(Fig. 4C), which is largely attributed to the model’s failure to repro-
duce the observed increase of early winter boreal snow (Fig. 4B). The
maximum simulated correlation coefficient between simulated PPI
and CFI barely reaches that between observed PPI and SIC (|r| =
0.43; Fig. 4E), which is much lower than the observed value of 0.65
in the last 35 years. The reason is that both the observations and
CESM sensitivity simulations suggest that increasing snowfalls tend
to increase PPI (Fig. 3 and table S2). However, the CMIP5-simulated
early winter SCE over Eurasia shows a consistently decreasing trend
(Fig. 4B), in contrast to the observed increasing trend (27), leading to
a failure of the CMIP5 models to project high PPI values in response
Zou et al., Sci. Adv. 2017;3 : e1602751 15 March 2017
to the rapid increases of SCE and CFI (Fig. 4D). Consequently, these
climate projections underestimate the climate penalty and the benefit
of climate change mitigation on wintertime air quality over eastern
China.
DISCUSSION
The winter cold extremes and heavy snowfalls in northern high lati-
tudes are partially attributable to Arctic sea ice loss (28–30). In 2012,
most boreal regions experienced a chilly early winter with anomalous-
ly heavy snowfalls after a record-breaking decline of Arctic sea ice in
September 2012. The surface temperature anomalies are particularly
apparent in northern Eurasia, with strong warming over the Arctic
and cooling over boreal Eurasia in the subsequent months, and model
sensitivity results suggest that its formation is attributable to both Arc-
tic sea ice and Eurasia snow forcing (fig. S4). Previous studies suggest
that stratosphere-troposphere coupling is critical in climate responses
over mid-latitude regions to polar forcing (31, 32). Arctic sea ice and
Eurasia snow forcing strengthen the vertical propagation of Rossby
waves from the troposphere to the stratosphere and weaken the strato-
spheric polar vortex, leading to a lower tropospheric response resem-
bling our dominant MCA mode of the geopotential height field (Fig.
2B) (32, 33). The CESM simulations (figs. S4 and S5) are also
consistent with this mechanism.

If the decrease of Arctic sea ice and the increase of Eurasian snow-
fall continue, we expect more frequent occurrences of extremely poor
ventilation conditions in winter over eastern China, which will reduce
the efficacy of the emission control currently being implemented (34)
but will provide a strong incentive for more stringent air pollutant and
greenhouse gas emission reduction in China. Beijing won the bid to
host the 2022 Winter Olympics Games. A repeat of the January 2013
weather condition will pose a much bigger challenge for regional emis-
sion control than the 2008 Summer Olympics Games because PM can
be readily removed by rain events in summer and a faster summer
ventilation rate also reduces the pollution contribution from regional
accumulation compared to that in winter.
MATERIALS AND METHODS
Observational data sets
The air pollution data for this study consist of four sources: (i) ground
in situ PM10 monthly concentrations (2005 to 2015) retrieved from
the daily air pollution index of five major cities [Zibo, Jining, Kaifeng,
Pingdingshan, and Jinzhou (chosen because of the longest time series
in these cities)] in the ECP region collected from the Ministry of
Environmental Protection of the People’s Republic of China (http://
datacenter.mep.gov.cn/index), (ii) ground in situ PM2.5 concentrations
in Beijing (2009 to 2015) collected from the Mission China air quality
monitoring program of the U.S. Department of State (www.stateair.
net/web/post/1/1.html), (iii) the relative humidity–corrected meteoro-
logical Vil (1981 to 2013) (15) at the 45 plain ground sites (<300 m
altitude) over the ECP region calculated from the Global Surface
Summary of the Day (GSOD) database (version 8) provided by the
National Climatic Data Center (NCDC), and (iv) the monthly AOD
(2001 to 2015) at 550 nm derived from MODIS onboard the Aqua
and Terra satellites (16). All these data sets, which are the currently
available aerosol observations with the longest time series for the ECP
region, have been widely used to study aerosol pollution in China
(35–38).
Fig. 4. Time series of cryospheric forcing factors, PPI, and the correlations of
PPI with cryospheric forcing based on the observations, reanalysis data, and
CMIP5 projections. (A) Comparisons of SIC observations and ensemble averaged
CESM1(CAM5) (three ensemble members) and CCSM4 (six ensemble members)
CMIP5 simulations (unitless; color shading denotes ±1 SD); (B) same as (A) but for
SCE; (C) same as (A) but for CFI; (D) same as (A) but for PPI; (E) correlation coefficients
of PPI with SCE, SIC, and CFI based on the 35-year observations and reanalysis data
[symbols; unitless; the absolute value of the PPI-SIC correlation coefficient (magenta
square) is shown for comparison purpose] and 35-year moving correlation coeffi-
cients between simulated PPI and CFI of CMIP5 ensembles (lines; unitless; the data
are plotted at the last year of each 35-year period).
4 of 8

http://datacenter.mep.gov.cn/index
http://datacenter.mep.gov.cn/index
http://www.stateair.net/web/post/1/1.html
http://www.stateair.net/web/post/1/1.html


SC I ENCE ADVANCES | R E S EARCH ART I C L E
We examined two reanalysis data sets to evaluate ventilation con-
ditions over the ECP region in January for the past three decades (fig.
S5). The first onewas theNCEP/NCAR reanalysis data (11) used in this
study, and the second one, for cross-validation, was the ERA-Interim
data (39) from the European Centre forMedium-RangeWeather Fore-
casts. On the basis of the 1981 to 2015 reanalysis data, we computed
ventilation indices with the following equation

WSIji ¼ ðWSji �WSjmeanÞ=WSjstd ð1Þ

whereWSIji is the normalizedWSI (unitless) for the jth grid point of the
ECP region in the ith year, WSji is the monthly mean wind speed (in
meters per second) at 1000 hPa for the jth grid point in the ith year
derived from zonal and meridional winds of the reanalysis data,
WSjmean is the climatological monthly wind speed (in meters per sec-
ond) for the jth grid point averaged from1981 to 2010, andWSjstd is the
SD of wind speed (in meters per second) for the jth grid point from
1981 to 2010. Gridded atmospheric temperature gradient anomalies
were normalized in the same manner based on the monthly potential
temperature gradient between the fields at 925 and 1000 hPa.We then
obtainedWSI and ATGI for the ECP region by spatial averaging. It is
necessary to have one ventilation index for the ECP region to simplify
the interpretation of the multivariate statistical analysis results; thus,
we calculated PPI as a synthetic meteorological index for each grid
point to obtain the spatial distribution and then averaged it over the
ECP region to obtain monthly time series using a weighted average of
WSI and ATGI

PPI ¼ r1 �WSIþ r2 � ATGI
jr1j þ jr2j ð2Þ

where r1 and r2 are the Pearson correlation coefficients of WSI (r1 =
−0.73) and ATGI (r2 = 0.70), respectively, with in situ PM10 observa-
tions (table S2). The diagnostic ventilation indices (WSI, ATGI, and
PPI) derived from the two reanalysis data sets agree well with each
other, and the correlation between the two PPIs is 0.80 (fig. S5).

To investigate the association of climate factors to the ventilation
condition, we collected multiple climate variables for the past three
decades (1980 to 2015) in table S3. The first three meteorological in-
dices were calculated based on the NCEP/NCAR reanalysis data (11)
to describe the characteristics of the EAWM system (18–20). The next
two climate indices, Arctic Oscillation (internal atmospheric variabil-
ity) (17) and ENSO (23), were collected from the Climate Prediction
Center of the National Oceanic and Atmospheric Administration
(NOAA). The last two cryospheric forcing factors were SIC (Fig. 1A)
in the preceding autumn from the Met Office Hadley Centre (HadISST)
(21) and boreal Eurasia SCE (Fig. 1A) in early winter from the Global
Snow Lab at Rutgers University (22). The cryospheric indices, SIC and
SCE, were normalized in the same manner as WSI and ATGI. We first
averaged Arctic SICs within the Arctic Circle (66.6°N; Fig. 1A) in the
preceding autumn and early winter seasons (August to November) and
Eurasian SCE over the boreal region (60°E to 150°E, 40°N to 75°N;
Fig. 1A) in early winter (October and November) for each year (1980
to 2014). We then normalized both variables with respect to their
climatology (1981 to 2010) to obtain SIC and SCE

Indexi ¼ ðXi � XmeanÞ=Xstd ð3Þ
Zou et al., Sci. Adv. 2017;3 : e1602751 15 March 2017
where Xi is the ith year’s cryospheric variable such as Arctic SIC or
Eurasian SCE, Xmean is the climatological average, Xstd is the SD for
the same period, and Indexi is the normalized index in the ith year.

Statistical analysis
Statistical significance tests were used extensively throughout this
study. We applied the moving block bootstrap method (12) to ex-
amine whether the January wind speed, the temperature gradient,
and the Z850 daily data of 2013 are statistically different from the
30-year (1981 to 2010) climatological January data in Figs. 1 and 2.
The moving block bootstrap method removes biases introduced by
autocorrelation of the data of time length L or shorter (12). We first
collected the daily NCEP/NCAR reanalysis data (11) and then regen-
erated the moving block bootstrap samples for each grid point with a
block length of L = 5 days and a sampling size of n = 5000. The null
hypothesis was that the 2013 data and the 30-year data were statis-
tically from the same probability distribution with equal means. For
those grid points with P values less than 0.01 (or 0.05), we rejected the
null hypothesis and concluded that the values in 2013 over these areas
were significantly different from the climatology at the 99% (or 95%)
significance level. The same method was also applied to examine the
significance of surface temperature anomalies in December 2012 in
daily reanalysis data of fig. S4.

We used the standard bootstrapping method (12) to estimate the
significance of correlation coefficients in table S2, PPI sensitivity re-
sponses in Fig. 3, and modeling surface air temperature responses
in fig. S4 because all the time series used here were the monthly mean
data of each year. For example, we estimated the correlation coeffi-
cients and their significance levels in table S2 on the basis of the em-
pirical distribution of n = 5000 bootstraps.

We applied the MCA (12) to the PPI and Z850 fields to identify
dominant circulation patterns affecting PPI over the ECP region. The
MCA method performs a singular value decomposition of the co-
variance matrix of two variables to generate the coupled modes for
the two variables separated in space and time dimensions. The tem-
poralmatrices are shown in Fig. 2A, and the spatialmatrices are shown
in Fig. 2 (B andC). The covariance of the two variables wasmaximized
in the first mode. In our case, the first coupled MCAmodes explained
33% of the covariance between the Z850 and PPI fields, 23% of the
Z850 variance, and 35% of the PPI variance. These MCA modes and
results remained consistent in a sensitivity test in which the 2013 data
were excluded.

We examined the relationship between PPI and all the climate in-
dices for the last 35 years listed in table S3 using the PCA. PCA is a
dimension reduction method (12) to identify the major factors con-
tributing to the variation of the variable of interest, which is PPI in this
study. All the climate data (table S3) used in the PCA were first detrended.
We added these data into a 35 × 7 matrix and computed the PCs. For
attribution analysis, we applied the PC regression (PCR) method (40)
to regress the detrended PPI against the PCs and examined their re-
gression coefficients

YðtÞ ¼ ∑7

j¼1bjZjðtÞ ð4Þ

where Zj(t) is the jth PC as a function of time, bj( j = 1, …, 7) is the
corresponding regression coefficient, and Y(t) is the ECP regionally
averaged PPI as a function of time.

Table S5 shows the regression coefficients and their P values for the
F statistic of the hypotheses test to determine whether the corresponding
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coefficient is equal to zero or not. We followed the PC selection rule by
Fekedulegn et al. (40) and found three major PCs (PC2, PC5, and PC6)
that contributed significantly to PPI (P ≤ 0.05). Using the results from
the PCR analysis, we found that these three PCs accounted for 53% of
the PPI variance, whereas the inclusion of all PCs accounted for 57% of
the variance.

The correlation coefficients of PCs with the detrended PPI in
table S4 show similar results, that is, that PC2, PC5, and PC6 are
the most significant PCs. The correlation coefficients of PCs with
climate indices are also shown. Of particular interest to this study were
the high correlations of SCE with PC5 (r = 0.83) and of SIC with PC6
(r = −0.80).

Note that the PCAwas only applied to climate indices. The relation-
ship between climate PC and detrended PPI was established using the
PCR analysis. Therefore, the PCs explaining a large portion of the var-
iance of climate indices were not necessarily correlated with PPI. For
example, PC1 contributed most to the total variance of the matrix of
climate indices, but it did not make significant contribution to the var-
iance of detrended PPI. Interested readers are referred to a previous
study (41) as an example of using the PCA to understand the effects
of climate change on regional air quality.

We highlighted the PCA results in fig. S1. PC6, related to Arctic
sea ice forcing, was themost important, contributing 29% to the 2013
PPI extreme over the ECP region, and explained 12% of the total var-
iance in detrended PPI. PC5, related to Eurasian snow forcing and the
Siberian High variability, was the second most important, contributing
13% to the 2013 PPI extreme, and explained 34% of the total variance.
PC2, related to ENSO,was the thirdmost important, contributing 8% to
the 2013 PPI extreme, and explained 28% of the total variance. We
added the PPI linear trend back to the contributions in fig. S1B. The
PCA-reconstructed PPI explainedmost of the variations of the original
PPI time series as well as the extreme in 2013, thereby placing the 2013
extreme in the context of the changes in the last 35 years. From 1981 to
2015, it was only in 2013 that the contributions of all three PCs are
relatively large and, more importantly, all positive.

The two cryospheric forcing factors correlated strongly with PC5
and PC6, which had larger contributions to the 2013 extreme than
the other PCs. To facilitate the subsequent analyses, we combined
the two cryospheric forcing factors into a single normalized index,
CFI, by weighted averaging SIC and SCE in a manner similar to the
PPI formulation

CFI ¼ r1 � SICþ r2 � SCE
jr1j þ jr2j ð5Þ

where r1 and r2 are the correlation coefficients of SIC (r1 = −0.43) and
SCE (r2 = 0.64) with PPI, respectively.

Modeling experiments
The CESM (version 1.2.1) is a fully coupled global climate model
maintained by the Climate and Global Dynamics Laboratory at the
NCAR. We designed four experiments to investigate the impacts of
cryospheric forcing on PPI over the ECP region using the component
set of the CAM5 and the Community Land Model version 4.0 at a
horizontal resolution of 1.9° × 2.5°. In the CTRL experiment, we con-
ducted a 30-year simulation (with another 1-year simulation as spin-
up) with prescribed climatological (averaged from 1981 to 2010) Arctic
SIC (fig. S2) and SST from the Met Office Hadley Centre (HadISST)
Zou et al., Sci. Adv. 2017;3 : e1602751 15 March 2017
(21). In sensitivity simulations, we used January of each modeling
year from the CTRL simulation as initial conditions for the cor-
responding sensitivity ensemble member and conducted a 14-month
simulation with different cryospheric forcing. We analyzed the con-
tinuous December-January-February (DJF) data at the end of each
sensitivity simulation to examine the seasonal impact of the cryo-
spheric forcing. In the first sensitivity experiment (SENS1), we replaced
the climatological SIC and SST data from August to November, which
were used in the CTRL experiment, with observed cyclical (August 2012
to November 2012) HadISST data (21) over the Arctic region (fig. S2)
following the method of Peings and Magnusdottir (42). In the second
sensitivity experiment (SENS2), we introduced early winter snow
forcing over boreal regions (60°E to 150°E, 40°N to 75°N; Fig. 1A
and fig. S2) by perturbing October and November snowing rates of each
ensemble simulation based on the observed SWE relative anomaly (24)
in 2012 with the same climatological SIC/SST in the CTRL scenario.
Therefore, we considered the snow forcing including the surface albedo
effect and the insulation-related effect (for example, thermal conductiv-
ity and latent heat flux due to snow depth changes) in SENS2, both
of which could cause significant local temperature response (43). The
perturbation on modeling snow rates was performed using the follow-
ing formulation

Snow1 ¼ Snow0*ð1:0þ swefracÞ ð6Þ

where Snow0 is the default modeling snow rate without perturbations,
Snow1 is the perturbed snow rate, and swefrac is the observation-
based SWE fractional anomaly by comparing the 2012 anomalous
SWE with the climatology (averaged from 1999 to 2010 because of
limited data set availability; swefrac ≥ − 100 %; fig. S2). In the third
sensitivity experiment (SENS3), we added both Arctic sea ice and bo-
real snow perturbations into the ensemble simulations to investigate
their synergistic effects.

After numerical simulations, we calculated WSI, ATGI, and PPI
over the ECP region for each scenario using the same method as that
for reanalysis data. The CAM5 model uses a hybrid sigma-pressure
vertical coordinate; thus, we extracted the modeling outputs at the
nearest pressure levels to the reanalysis data in the calculation. The
30-year CTRL results were used as the climatological condition against
which sensitivity results were compared. To evaluate the seasonal
impact of cryospheric forcing, we had n = 90 ensemble members
(DJF) for each sensitivity simulation in Fig. 3 and fig. S4.

To obtain the intensity of the dominant MCA modes in simu-
lated Z850 and PPI fields, we projected the modeling fields onto the
spatial patterns of the first MCA modes identified in the reanalysis
data (Fig. 2, B and C) and estimated the MCA mode intensity of each
ensemble member. The density distributions of the first pairwise MCA
modes in fig. S3 were estimated by the two-dimensional kernel density
estimation (kde2d) function included in the math package of R. By
comparing density distributions of the sensitivity experiments to the
control experiment, we evaluated the response sensitivities of both
geopotential height and PPI fields to the specific cryospheric forcing.

Finally, we examined the ensemble results of the CESM1-CAM5
model (with three ensemble members) as well as its subset CCSM4
(with six ensemble members) in the CMIP5 project (13) based on
their historical simulations (1980 to 2005) and future projections
(2006 to 2100) under a medium mitigation scenario (RCP4.5) (table
S6). We chose these two models because of their similarity with the
model that we used in our sensitivity experiments. All the indices,
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including the cryospheric forcing in early seasons and PPI in January,
were estimated in the same manner as described before. We then
compared the correlation coefficients between the simulated cryo-
spheric forcing and PPI with those based on reanalysis data to evaluate
the modeling capability to reproduce the observed relationships. The
differences between CMIP5 simulations and observations are dis-
cussed in Results.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/3/3/e1602751/DC1
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fig. S2. Cryosphere forcing specifications used in the CESM numerical experiments.
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numerical experiments.
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