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The constructive biology and the synthetic biology approach to creating artificial life involve the bottom-up assembly of biological or nonbiological
materials. Such approaches have received considerable attention in research on the boundary between living and nonliving matter and have
been used to construct artificial cells over the past two decades. In particular, Giant Vesicles (GVs) have often been used as artificial cell
membranes. In this paper, we describe the preparation of GVs encapsulating highly packed microspheres as a model of cells containing highly
condensed biomolecules. The GVs were prepared by means of a simple water-in-oil emulsion centrifugation method. Specifically, a homogenizer
was used to emulsify an aqueous solution containing the materials to be encapsulated and an oil containing dissolved phospholipids, and the
resulting emulsion was layered carefully on the surface of another aqueous solution. The layered system was then centrifuged to generate the
GVs. This powerful method was used to encapsulate materials ranging from small molecules to microspheres.

Video Link

The video component of this article can be found at https://www.jove.com/video/55282/

Introduction

The constructive, or synthetic, biology approach is a fascinating avenue for exploring the boundary between living and nonliving matter. Because
the cell is the minimum unit required for life as we currently understand it, various researchers have attempted to construct artificial cells from
simple, well-understood chemicals so that phenomena that occur within such artificial cells can be studied, with the ultimate goal of elucidating
the origins of life and studying the fundamental functions of living cells"®3. In particular, vesicles®, which are spherical microcompartments made
of amphiphilic molecules and can encapsulate biological molecules such as proteins5'6 and DNA”®*: , have often been used as models of
biological membranes.

Vesicles can be classified as small (defined as having a diameter of <100 nm), large (diameter <1 ym), or giant (diameter >1 ym). Giant
vesicles (GVs) have been studied extensively because they are similar to living cells in size, shape, and structure. Owing to the size of GVs,
morphological changes in GV membranes can easily be observed in real time under an optical microscope.

Several methods for preparing GVs have been reported”, including the hydration method12’13, the freeze-thaw method”, the electroformation

method15’16, and the fluidic device method '8, However, encapsulating proteins and other macromolecules in GVs at high concentrations by
means of these methods is difficult. In particular, it is extremely challenging to encapsulate biological materials in sufficient quantity (20-30 vol
%) to mimic the crowded environment inside cells'®?. To form GVs instantly, Weitz and coworkers established a water-in-oil (w/0) emulsion
centrifugation method?"?. This method has five important features. First, because GVs prepared by this method have low Iamellarity23’24, their
membranes are so thin that they can be deformed easily. GV membrane deformation induced by FtsZ (a bacterial cell division protein), tubulin,
and other macromolecules has been studied®?%%"?® and we observed polyhedron-like deformation of GV membranes induced by encapsulation
of microsphereszg’?’o. Second,membrane proteins can be inserted into the vesicular membrane by this method, albeit with difficulty31. For
example, the Yomo group used this method to study the in vitro synthesis and pore-forming activity of the membrane protein a-hemolysin32.
Third, it is possible to generate asymmetric GVs in which the lipid components of the inner and outer leaflets are different®®. For example,
Whittenton et al. generated asymmetric GVs with cationic lipids in the inner leaflet to encaspsulate negatively charged polynucleotides, and
with neutral lipids on the outer leaflet to decrease toxicity and nonspecific cellular uptake3 . Fourth, the concentration and volume fraction of
substances inside the GVs can be relatively high28’34. Fifth, multiple types of materials can be encapsulated?’s. For example, Nishimura et al.
encaS%sulated an in vitro transcription-translation system into GVs and used the system to express green fluorescent protein (GFP) within the
GVs™. These five features make w/o emulsion centrifugation an indispensable method for generating cell-mimicking GVs.
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In previous work, GVs generated by centrifugation were collected by means of a syringe equipped with a long 16 G stainless steel needle
containing some of the final aqueous solution?. In the hands of inexperienced technicians, this collection method could easily result in
contamination of the GV with some of the oil. In this study, we used the w/o emulsion centrifugation protocol developed by the Yomo group23'37,
in which precipitated GVs are collected through a hole opened at the bottom of the centrifuge tube in which they are prepared. We prepared GVs
encapsulating 1.0 pm microspheres, which are similar in size to intracellular organelles. The use of microspheres allowed us to estimate their
concentration by calculating their volume fraction. Establishment of a method for preparation of GVs in which materials are densely packed is an
important step for creating artificial cells. To confirm the utility of our protocol for various types of inner materials, we also demonstrated that GFP
and a small water-soluble fluorescent molecule (uranine) could be encapsulated in the GVs.

1. Preparation of GVs by the W/O Emulsion Centrifugation Method

1. Prepare a stock solution of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC, 25 mM) and a stock solution of Texas Red 1,2-
dihexadecanoyl-sn-glycero-3-phosphoethanolamine, triethylammonium salt (Texas Red DHPE, 0.20 mM) in chloroform and store the stock
solutions at -20 °C.

2. Prepare an oil solution.

1. Form a lipid film on the inside surface of a 5 ml glass vial by evaporating a mixture of the DOPC stock solution (51.0 pl and the Texas
Red DHPE stock solution (19.2 pl) under flowing nitrogen gas.

2. Incubate the film under reduced pressure overnight and then add 1.0 ml of liquid paraffin (0.86-0.89 g/cm3) to the vial. Wrap the vial in
aluminum foil and incubate it at 80 °C O/N at rest. The final concentrations of DOPC and Texas Red DHPE are 1.3 and 3.8 x 107> mM,
respectively, and the DOPC:Texas Red DHPE molar ratio is 100:0.3.

3. Prepare the inner aqueous dispersion.
1. Ina 1.5 ml lidded microtube, mix 237.5 pl of a dispersion of 1.0 ym nonfluorescent microspheres (2.5 vol%) and 12.5 pl of a dispersion
of 1.0 ym fluorescent microspheres (2.5 vol%); this corresponds to a 95:5 (v/v) ratio of nonfluorescent to fluorescent microspheres.
2. Add 64 mg of sucrose followed by 125 pl of Tris-buffered solution (TBS, 1 M) and 875 pl of deionized water. The final volume fraction of
microspheres is 0.5 vol%, and the final concentrations of Tris-HCI (pH 7.5) and sucrose are 0.1 and 0.15 M, respectively.
3. Vortex the microtube for 30 sec and then sonicate it for 10 min.

4. Prepare the outer aqueous solution.
1. After preparation of 10 ml of a Tris-buffered solution (0.1 M Tris-HCI [pH 7.5], 0.15 M glucose) in the same procedure as inner aqueous
media, place 1 ml of the solution in a 1.5 ml lidded microtube. Vortex the microtube for 30 sec and then sonicate it for 10 min.

5. Prepare a w/o emulsion containing microspheres.
1. Mix 1 ml of the oil solution (liquid paraffin containing DOPC and Texas Red DHPE) with 300 pl of the inner aqueous solution in a 1.5 ml
microtube.
2. Emulsify the two components in the microtube by using a mechanical homogenizer (an agitator with blades that rotate at high speed)
operated at 10,000 rpm for 2 min at RT.

6. Precipitate the GVs.
1. Gently layer 300 ul of the w/o emulsion on the upper surface of 1 ml of the outer aqueous solution at 4 °C in a 1.5 ml lidded microtube.
Chill the microtube for 10 min at 4 °C.

7. Collect the GVs.
1. Immediately after chilling the microtube, centrifuge it at 18,000 x g for 30 min. Obtain the precipitated GVs by piercing the bottom of the
microtube with a pushpin and collecting one droplet in a sterilized 1.5 ml microtube.
2. Dilute the precipitated GV droplet 10-100 fold by volume with the outer aqueous solution if the obtained GVs are obtained in quantities
large enough to make observation difficult.

2. Microscopy Observation of GVs

1. Prepare microscopy specimen.
1. Place an adhesive incubation chamber for in situ polymerase chain reaction and hybridization (chamber size 9 mm x 9 mm x 0.3 mm
thick) on top of a microscope cover glass.
2. Using a micropipette, deposit 25 pl of the diluted precipitated GVs on the specimen area and immediately place another cover glass
(approximately 0.15 mm thick) on top of the incubation chamber.

2. Record differential interference contrast microscopy images of the GVs.
1. Record microscopy images of the vesicles with a microscope (10X, 20X, and 40X objectives) equipped with a 12V100WHAL-L halogen
lamp.

3. Conduct fluorescence microscopy observations.
1. Insert U-FBNA and U-FMCHE fluorescence mirror units into the microscope. Fit the units with 470-495 nm and 565-585 nm excitation
filters, respectively, and with emission filters that transmit 510-550 nm and 600-690 nm light, respectively.
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Representative Results

The w/o emulsion centrifugation method is illustrated photographically and schematically in Figure 1. The schematic image in Figure 1 suggests
that the most important determinant of the success of this method is that the specific gravity of the inner aqueous solution must be larger than
that of the outer aqueous solution, so that the GVs will precipitate during centrifugation. In addition, the formation of a lipid monolayer at the w/

o interface requires that the system be chilled for 10 min after the emulsion is layered on the outer aqueous solution. Because the GVs form

by transfer of emulsion droplets across the w/o interface, the osmotic pressures in the inner and outer aqueous layers must be the same. As a
control experiment, we also prepared GVs containing no microspheres by means of the process shown in Figure 1 and step 1.3, except that the
inner aqueous solution was prepared without microspheres.

Collection of the precipitated GVs after centrifugation is shown in Figure 2. In addition to the semitransparent phase at the very bottom of the
microtube, we also observed a white, turbid intermediate phase in the outer aqueous solution (Figure 2a). This intermediate phase was rich in
aggregations of microspheres and oil, whereas the bottom phase contained the GVs. Therefore, after piercing the bottom of the microtube with a
pushpin (Figure 2b), we collected only the first drop (Figure 2c¢), which contained massive amounts of GVs. It is important to make sure that no
more than two drops are collected; any additional drops may contain aggregations of microspheres and lipids, which will result in a lower density
of GVs. The obtained vesicular dispersion often contained encapsulated materials outside of the GVs because the GVs often rupture during
centrifugation. To obtain only GVs, a sorting method such as dialysis, gel filtration, or fluorescence-activated cell sorting should be chosen, owing
to the sizes of the encapsulating materials. If necessary for the purpose for which the precipitated GVs are to be used, they can be diluted with
the outer aqueous solution. In some cases, the intermediate phase extended to the bottom of the tube, suggesting that any vesicles that formed
were held together by the oil.

We obtained differential interference microscopy and fluorescence microscopy images of the GVs without microspheres (Figure 3a, 3b) and
with microspheres (Figure 3c-3f). Consistent with previous report523’37, GVs with low lamellarity were formed by our protocol. Lipids conjugated
with Texas Red DHPE, which emits red fluorescence, were used so that vesicle formation could be directly confirmed by visualization of the thin
membrane. Of the 160 GVs that we obtained, 55 encapsulated microspheres and 105 were empty, giving a ratio of encapsulation of 34%.

We determined the volume fraction (¢, vol %) of microspheres in the GVs by means of the following method. Because each GV contains
dozens to several hundred microspheres, counting all the microspheres under an optical microscope is challenging. Therefore, we mixed the
nonfluorescent 1.0 ym microspheres with a small amount of fluorescent microspheres, which were manually counted under the fluorescence
microscope. The total number (N) of encapsulated microspheres was calculated by multiplying the number (n) of manually counted fluorescent
microspheres by 20 (based on the original 95:5 [v/v] ratio of nonfluorescent to fluorescent microspheres). The value of ¢ was then estimated
as Nv100/V, where v is the volume of the microspheres and V is the volume of the individual GV. Note that estimation of N from n gives rise

to counting errors, and these errors must be taken into account when calculating ¢. The value of ¢ was estimated from N, which was directly
calculated as 20n, and this in turn resulted in the probability that ¢ accurately represents the true value is <50%. In fact, N fluctuates to some
extent around 20n, so we need to consider it as 20(n i), where i is the error in n. We estimated i in order that a probability of n +i could be more
than 50% obtained on the basis of a Poisson distribution. We estimated i, which in turn allowed us to calculate 20(n + i) and values of ¢ that
included counting errors for GVs with diameters of 10 and 15 um (Table 1). According to this procedure, the volume fraction of microspheres in
the GV shown in Figure 3c was estimated to be 11 +3 vol %. The precision of the calculated volume fraction was 10-30%.

Our results indicate that we successfully encapsulated 1 ym microspheres in GVs at a high volume fraction. We were also able to encapsulate
other materials into 100 mol % DOPC GVs using the same outer aqueous solution and the same protocol (Figure 4). Specifically, GVs
containing 0.1 ym microspheres were prepared from a Tris-buffered solution containing 0.1 M Tris-HCI (pH 7.5), 0.15 M sucrose, and 0.5 vol
% fluorescent microspheres by means of the protocol described for GVs containing 1.0-um microspheres (Figure 4a). Following the protocol
described above, DOPC GVs containing GFP (0.1 M Tris-HCI [pH 7.5], 0.15 M sucrose, and 100 pg/mL GFP; Figure 4b) and GVs containing
uranine (0.1 M Tris-HCI [pH 7.5], 0.15 M sucrose, and 30 uM uranine; Figure 4c) were also prepared.

n N ¢ (10-um diameter) @ (15-um diameter)

3 60 + 20 6.0+£2.0 1.8+0.6

4 80 +20 8.0+2.0 2406

5 100 + 20 102 3.0+£06

6 120 + 30 12t4 36+1.2

10 200 + 32 203 5.9+0.9

20 400 £ 45 405 12+2

30 600 + 55 - 18+2

2 Errors were determined as described in the text; n = number of manually counted microspheres; N = total number of encapsulated microspheres.

Table 1: Numbers and Volume Fractions (¢, vol%) of Microspheres®. ® Errors were determined as described in the text; n = number of
manually counted microspheres; N = total number of encapsulated microspheres.
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Figure 1: Flow Chart and Schematic Depiction of W/O Emulsion Centrifugation Method. (a) Oil solution consisting of DOPC and Texas
Red DHPE (100:0.3 molar ratio) in liquid paraffin. (b) Inner aqueous dispersion consisting of sucrose and microspheres in Tris-HCI buffer. (c)
Outer aqueous solution consisting of glucose in Tris-HCI buffer. (d) Mixture of 1 ml of oil solution and 300 pl of inner aqueous dispersion. (e)
Emulsification with a homogenizer (10,000 rpm, 2 min). (f) The w/o emulsion. (g) Layering of 300 pl of the emulsion on 1 ml of the outer aqueous
solution. (h) Precipitated GVs just after centrifugation. (i) Schematic depiction of the principle of the w/o emulsion centrifugation method. The
black arrow indicates the direction of centrifugal acceleration. Please click here to view a larger version of this figure.
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(b)

Figure 2: Piercing of the Microtube. (a) Precipitated GVs just after centrifugation (also depicted in Figure 1h). The red ellipse indicates the
droplet of the precipitated GV dispersion. (b) Piercing of the microtube with a pushpin. The pellet containing the GVs was obtained by piercing
the microtube near the bottom with a pushpin and collecting droplets from the hole. (c) Droplet of the precipitated GVs (indicated by the yellow
arrow) dispersion diluted with the outer aqueous solution. Please click here to view a larger version of this figure.
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Figure 3: Microscopy Images of GVs. (a) Differential interference contrast microscopy image of a GV without microspheres. The diameter of
GV was about 10 ym. Scale bar = 10 um (b) Fluorescence microscopy image of a GV without microspheres. The red fluorescence was emitted
by Texas Red DHPE. (c) Differential interference contrast microscopy image of a GV containing microspheres. (d) Fluorescence microscopy
image of 1.0 um microspheres (YG carboxylate microspheres) inside a GV. The number of counted fluorescent microspheres (n) was 6. We
estimated the errors (i = 2) based on Poisson distribution. Then we estimated total number of inner microspheres (N = 20 (n +i)) was 120 +40.

It was calculated that the GV contained 1.0 um microspheres at a volume fraction (¢ = Nv100/V) of approximately 11 + 3 vol%, where v is the
volume of the microspheres and V is the volume of the GVs. (e) Fluorescence microscopy image of a GV membrane. The red fluorescence was
emitted by Texas Red DHPE. (f) Merged image of the images in panels d and e. Please click here to view a larger version of this figure.
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Figure 4: Differential Interference Contrast and Fluorescence Microscopy Images of GVs with Different Encapsulated Materials.
Differential interference contrast microscopy (top) and fluorescence microscopy (bottom) images of GVs containing (a) 0.1 pm microspheres, (b)
GFP, and (c) uranine. Scale bars = 10 ym. Please click here to view a larger version of this figure.

The specific gravities of the inner aqueous dispersion medium and the outer agqueous solution must be chosen carefully. For the w/o emulsion to
precipitate into the outer aqueous solution during centrifugation, the specific gravity of the inner aqueous dispersion medium must be larger than
that of the outer aqueous solution. We tried to prepare GVs using inner and outer solutions without sugars, but we obtained no GVs under these
conditions, because the inner aqueous solution did not have enough mass to cross the interference between the two phases. If there is a large
osmotic pressure difference between the two solutions, GVs that precipitate into the outer aqueous solution may shrink or rupture. Therefore, the
osmotic pressure inside and outside the GVs must be equal. To accomplish this, we used sucrose as a solute in the inner atiueous dispersion
and glucose as a solute in the outer aqueous solution; both sugars were at the same concentration. Both salt?? and suga have been
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used for such purposes, but sugar is usually employed because it is less toxic and more soluble than salt. However, if too much sugar is added,
the GVs may come into contact with the bottom of the cover glass and collapse. There are several strategies for avoiding this. One strategy

is to reduce the specific gravity difference between the inner and outer aqueous solutions so that the GVs precipitate under mild conditions;
specifically, the supernatant of the precipitated GV dispersion can be exchanged with a solution that is identical to the inner aqueous solution

to reduce the possibility of vesicular rupture by adhesion to the cover glass as a result of buoyancy. Another strategy is to precoat both of cover
glasses with a thin lipid film?®.

Proper preparation and incubation of the emulsion are important. We used liquid paraffin to prepare the oil solution. Mineral oil?®3,

dodecane21'33, and squalane33'39 are also often used as solvent oils. Because these materials vary in specific gravity, viscosity, and surface
tension, different numbers of vesicles form even when the same centrifugation conditions are used>>. To obtain the vesicles with the target
properties, it is essential to optimize the specific gravities and viscosities of the inner and outer aqueous solutions as well as the centrifugal
acceleration.For preparation of the oil phase, incubation must occur at high temperature and in a dry environment such as an incubator or

a dehydrator. In this study, we heated the liquid paraffin to 80 °C to completely dissolve the lipid molecules.In addition, the emulsion should
be prepared only as needed and should be immediately subjected to centrifugation because it is unstable just after it is prepared and the

w/o droplets readily fuse to one another. The emulsion can be prepared in large quantities by sonication, vortexing, or tapping. However,
using a homogenizer allows for rapid preparation of large amounts of emulsion and easier emulsification in oil with a high viscosity. It is also
important that the emulsion be layered on the outer aqueous solution gently and rapidly and then chilled at 4 °C. To shorten the time between
emulsification and centrifugation, the oil-outer aqueous solution system can be prechilled before the emulsion is layered on it, and the whole
system can then be centrifuged immediately.If the white turbidity appears faster or slower than usual, the mechanical homogenizer must be
thoroughly rinsed to remove cleaning detergents. In addition, before emulsification, the oil solution, inner aqueous solution, and emulsifier must
be returned to room temperature.

Proper centrifugal acceleration is also important. By centrifuging at 18,000 x g, we were able to prepare GVs with a single interior material
encapsulated at a high concentration. When the encapsulation of multiple materials is required, it is better to reduce the centrifugal acceleration.
For example, an actin assembly system encapsulating seven compounds was achieved with centrifugation at less than 350 x 93 . In cases

in which centrifugation is undesirable, GVs can be obtained by adjusting the sugar concentration or by precipitating the emulsion under the
influence of its own mass®44’

The method reported herein has two major limitations. One is that oil molecules (paraffin, in this case) can be solubilized in the GV membrane,
as has been pointed out by the Weitz group21. When insertion of a membrane protein into the GV membrane is desired, the effects of co-existing
oil molecules on the protein must be considered. The other limitation is the variation of volume fraction. In this study, we estimated that the
volume fractions of microspheres in the GVs ranged from 4-30 vol%,; the volume fractions were not identical to the volume fraction of the inner
aqueous solution used for GV preparation. Although we were able to encapsulate microspheres in the GVs at a volume fraction high enough for
microscopy observation, this method is not suitable for the preparation of GVs with a uniform volume fraction distribution. It has been reported
that the distribution of microsphere volume fractions changes during centrifugation34.

The w/o emulsion centrifugation method is commonly used for the formation of GVs containing encapsulated materials. However, few reports
have described the preparation of GVs encapsulating microscale materials>**2. Recently, molecular robots containing an encapsulated DNA
device or a molecular device have been constructed™**. GVs with compartments are the first choice for these kinds of applications; therefore,
techniques, such as ours, that could be used for encapsulating magnetic microspheres and microspheres with diverse surface functionalization
can be expected to be useful*.
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