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Summary

It is now well recognized that the effectiveness and potential risk of a treatment often vary by 

patient subgroups. Although trial-and-error and one-size-fits-all approaches to treatment selection 

remains a common practice, much recent focus has been placed on individualized treatment 

selection based on patient information (La Thangue and Kerr, 2011; Ong et al., 2012). Genetic and 

molecular markers are becoming increasingly available to guide treatment selection for various 

diseases including HIV and breast cancer (Mallal et al., 2008; Zujewski and Kamin, 2008). In 

recent years, many statistical procedures for developing individualized treatment rules (ITRs) have 

been proposed. However, less focus has been given to efficient selection of predictive biomarkers 

for treatment selection. The standard Wald test for interactions between treatment and the set of 

markers of interest may not work well when the marker effects are non-linear. Furthermore, 

interaction based test is scale dependent and may fail to capture markers useful for predicting 

individualized treatment differences. In this paper, we propose to overcome these difficulties by 

developing a kernel machine (KM) score test that can efficiently identify markers predictive of 

treatment difference. Simulation studies show that our proposed KM based score test is more 

powerful than the Wald test when there is non-linear effect among the predictors and when the 

outcome is binary with non-linear link functions. Furthermore, when there is high-correlation 

among predictors and when the number of predictors is not small, our method also over-performs 

Wald test. The proposed method is illustrated with two randomized clinical trials.
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1. Introduction

The effectiveness and potential risk of a treatment often vary by patient subgroups (Duffy 

and Crown, 2008; La Thangue and Kerr, 2011). For instance, ER negative breast cancer 

patients benefit substantially from chemotherapy while ER positive patients do not benefit as 

compared to receiving tamoxifen alone (IBCSG, 2002). A gene-expression profile appears to 
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be highly predictive of whether chemotherapy is beneficial for treating breast cancer patients 

and is now being further investigated by the TAILORx study (Zujewski and Kamin, 2008). 

The adverse risk of Abacavir for treating HIV infected patients is strongly associated with 

the presence of the HLA-B*5701 allele and thus Abacavir was recommended only for 

patients not carrying this allele (Mallal et al., 2008). Recently, the US Preventive Services 

Task Force issued new guidelines recommending against routine mammography screening 

for women under 50 (Nelson et al., 2009). On the other hand, such guidelines may not be 

appropriate for populations at increased risk and refinement of such recommendations 

warrants further research.

Many factors including genetics predisposition and environmental influences may play a 

role in a patient’s treatment response. Incorporating information on clinical, biological and 

genomic markers into personalized prediction of treatment response holds great potential for 

identifying subgroups of patients who are most likely to benefit or are at high risk for 

toxicity from a particular therapy. Interventions can then be targeted to well-defined groups 

that are likely to benefit and at low risk of adverse event. In recent years, a wide range of 

statistical methods have been proposed for developing individualized treatment rules (ITRs) 

based on a set of baseline predictors (Qian and Murphy, 2011; Cai et al., 2011; Foster et al., 

2011; Zhao et al., 2012; Zhang et al., 2012; Zhao et al., 2013). When the number of 

predictors for deriving ITRs is not small, it is important to only include informative markers 

since including a large number of unrelated markers may tamper the accuracy of the 

resulting ITR and lead to unnecessary cost associated with measuring the markers. Variable 

selection procedures have also been developed for both prediction and decision making 

(Gunter et al., 2011; Lu et al., 2013; Imai et al., 2013). However, in the high dimensional 

setting, variable selection procedures may not work well in identifying informative markers 

since many of such procedures are not consistent in variable selection and it is generally 

difficult to identify an appropriate tuning parameter to ensure selection consistency. For such 

settings, it would be desirable to perform testing on candidate markers and only develop 

ITRs using markers that are deemed predictive of treatment response.

Standard testing procedures for ITRs consider models that include interactions between the 

treatment group and the variables of interest and perform a Wald-type test on the interaction 

term. Rosenblum and van der Laan (2009) showed that even when the model is misspecified, 

the Wald test still obtains the correct size, if sandwich variance estimators are used. Despite 

the robustness property, such an approach suffers from two major limitations. First, the 

interaction term may not entirely capture markers’ ability in predicting subject specific 

treatment effect (TE). When TE of interest is the treatment difference and the outcome Y is 

binary, the conditional TE given baseline predictor X, P(Y = 1 | T = 1, X) − P (Y = 1 | T = 0, 

X), may depend on both the main effect and the interaction. For example, when 

 and g(·) is a distribution function, the conditional 

TE  is a function of both the main effect γ0 and the 

interaction effect γ1. Second, the standard Wald test restricts attention to linear marker 

effects. When the markers affect the outcome non-linearly or interactively, the Wald test may 

have little power in detecting the signal. In this paper, we propose a kernel machine (KM) 

based score test for identifying markers predictive of TE. The proposed KM testing 
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procedure can effectively incorporate non-linear effects and capture predictors that are 

predictive of treatment difference. We focus on the treatment difference scale because the 

value function of an ITR, , in improving expected population outcome is 

directly captured by the treatment difference: 

. The proposed testing 

procedures can be used to select important groups of baseline predictors that are predictive 

of treatment response. When a large number of potential predictors are available, biological 

or clinical knowledge can be used to group these predictors into meaningful subsets and the 

proposed testing procedures can be used to identify informative subsets. These subsets can 

then be used to form ITRs using existing methods such as those proposed in Zhao et al. 

(2012) and Zhang et al. (2012).

The rest of the paper is organized as follows. We introduce the KM test for ITR in section 

2.1 and describe the resampling procedure for approximating the null distribution in section 

2.2. Additional considerations including tuning parameter selection, dimension reduction via 

kernel principal component analysis (PCA), omnibus test incorporating kernel selection are 

given in section 2.3. In section 3.1, we present simulation results suggesting that the 

proposed procedures out-performs the traditional Wald test in various settings. The proposed 

procedures are applied to two randomized clinical trials in 3.2 and 3.3. We conclude with 

some remarks in section 4.

2. Treatment Selection Model

2.1 Score Statistic for Identifying Important Baseline Predictors for Treatment Selection

Suppose data for analysis comes from a randomized clinical trial (RCT), and consist of 

independent and identically distributed random variables  where 

Y is the disease outcome, T is a binary treatment indicator (1 for new treatment and 0 for 

standard treatment), and X represents baseline predictors. Let Y(1) and Y(0) be the 

counterfactual outcomes under the new and standard treatment, respectively.

To determine whether X is useful for guiding treatment selection, we quantify the TE for 

subjects with X based on the conditional treatment difference

where μk(X) = E(Y(k)|X). Thus X is not informative for treatment selection if μ1(X) − μ0(X) 

is a constant. Thus, we aim to develop efficient testing procedures for the null hypothesis

(1)

where the constant Δ0 = E{μ1(X) − μ0(X)} = μ1 − μ0 and μk = E(Y(k)). Under H0,
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and thus we propose to test (1) by constructing a test statistic summarizing the overall 

magnitude of Rψ. To this end, we first obtain an empirical estimate of Rψ based on the 

observed RCT data. Specifically, by employing an inverse probability weighting (IPW) 

(Rotnitzky and Robins, 2005) estimator for the counterfactuals, we estimate Rψ as

(2)

where , , 

,

(3)

In order to test whether (2) is close to 0, the standard score-type test bstatistic takes the form 

of  and is approximately , where  is the covariance matrix estimate of 

 and q is the dimension of ψ(X). However, such a test may suffer from power loss when 

ψ(X) are correlated and/or q is not small. In addition, the  distribution may not 

approximate the null distribution of  well especially when the covariance 

matrix is near singular. We instead summarize the overall effect of X based on the L2 norm 

of (2) and propose the test statistic:

(4)

This type of score test serves as a powerful alternative to the standard score test and can be 

viewed as a variance component test under various settings (Wu et al., 2010; Cai et al., 

2011).

The choice of the basis functions ψ(·) has a significant impact on the power of the resulting 

test. If the basis functions efficiently capture the non-linear characteristic of the data, one 

may achieve great power gain comparing to using the original data. However, in practice, it 

is often difficult to explicitly specify ψ(·) to optimize power since prior knowledge of the 

underlying functional form is generally not available. We propose to overcome this difficulty 

by implicitly specifying the basis functions using the Reproducible Kernel Hilbert Space 

(RKHS). Let  be a RKHS generated by a given positive definite kernel function k(·, ·; ρ), 

and ρ is some tuning parameter associated with the kernel function (Cristianini and Shawe-

Taylor, 2000), where the kernel function k(x1, x2; ρ) measures the similarity between x1 and 

x2 and different choices of k lead to different RKHS. Some of the popular kernel functions 
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include the gaussian kernel  which can capture 

complex smooth non-linear effects; the linear kernel  which 

corresponds to h(x) being linear in x; and the quadratic kernel 

which allows for 2-way interactive effects. By Mercer’s Theorem (Cristianini and Shawe-

Taylor, 2000), any  has a primal representation with respect to the eigensystem of 

k. Specifically, under the probability measure of x, k has eigenvalues  with 

 and eigenfunctions  such that 

, where  may be infinity and λl > 0 for any l < ∞. The 

basis functions, , span the RKHS . These basis 

functions can potentially be used in (2). The kernel functions may depend on the tuning 

parameter ρ. For the ease of presentation, we suppress ρ from k in remaining presentations 

although procedures for incorporating different choices of ρ in testing will be detailed in 

Section 2.3.

The basis functions {ψl(·)} inherently depend on the unknown distribution of x, ℙ(x′) = P (x 
≤ x′), since ϕl(x′) is the solution to the integral equation ∫k(x*, x′)ϕl(x′)ℙ(dx′) = λlϕl(x*). 

Thus, the basis functions are not directly available for inference. To estimate {ψl(·)}, we 

apply a singular value decomposition to the observed kernel matrix :

a1⩾… ⩾ an ⩾ 0 are the eigenvalues of  and  are the corresponding 

eigenvectors. It has been shown that  is effectively estimating the basis functions evaluated 

at the sample points, Ψ = [ψj(Xi)]n×n (Koltchinskii and Giné, 2000; Braun et al., 2005). 

Replacing Ψ in (4) by , our KM score test statistic for ITR takes the form

(5)

We next detail procedures for approximating the null distribution of the statistic .

2.2 Approximating the Null Distribution by Resampling Procedure

To approximate the distribution of (5) under H0, we show in the Web Appendix that

(6)

and (1), where  is defined in (2) in the Web Appendix
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(7)

πk = P (T = k), and ℱ(x) = P (X ≤ x). We further show in the Web Appendix that 

converges weakly to zero-mean Gaussian process G(x) and hence

The limiting null distribution of  takes a complex form, making explicit estimation 

infeasible. We propose to approximate the null distribution of  via perturbation 

resampling, which has been used successfully in the literature to approximate the 

distribution of a wide range of regular estimators (Cai et al., 2005; Tian et al., 2007). 

Specifically, for a large number B, we generate independent standard normal random 

variables, , independent of the observed data. For b = 1, 

…, B, let the bth perturbed realization of  be

and . Subsequently, we obtain the perturbed counterpart of 

as

(8)

where  and ⊙ denotes element-wise product. The null 

distribution of  can be approximated by the empirical distribution of . 

For an observed , the p-value can be estimated as .

2.3 Additional Consideration: Scale Parameters, Kernel PCA and Kernel Selection

Kernels with Scale Parameters—Some kernels, such as the Gaussian kernel, involves a 

scale parameter ρ which has a great impact on the complexity of the resulting  and hence 

the power of the test. Unfortunately, the parameter ρ is not identifiable under H0. To 

combine information from multiple choices of ρ, we take a similar approach as in Davies 

(1977) and consider the minimum p-value as the composite test statistic. Specifically, let 

{ρm, m = 1, …, M} be the list of candidate scale parameters. Let  and 

 denote the observed and perturbed test statistic corresponding 

to kernel k(·, ·, ρm), respectively, where the same set of perturbation variables 
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 are used across all M scale parameters. Let 

denote the empirical survival distribution of . Then we define minimum 

p-value across testing with M scale parameters as , where 

. Although  is expected to be approximately uniform under H0, the 

minimum p-value statistic  is no longer uniformly distributed. Nevertheless, the null 

distribution of  can be easily approximated using the perturbed realizations 

. Specifically, the empirical distribution of  can be 

used to approximate the null distribution of , where  and 

.

Kernel PCA—When the kernel space  is high dimensional, testing and estimation 

procedures based on such a space may not be efficient due to the high degrees of freedom 

(Braun et al., 2005). In addition, the null distribution of the test statistic tends to be more 

difficult to approximate in finite sample, leading to slightly inaccurate type I error (Cai et al., 

2011). One approach to improving the power and maintaining proper size is to effectively 

reduce the dimensionality. When the eigenvalues of k decay quickly,  can be well 

approximated by the RKHS spanned by a truncated kernel 

, for some rn such that . The 

error  can be bounded by , where  is the kernel 

matrix constructed from kernel  (Braun et al., 2005, Theorem 3.7). In many practical 

situations with fast decaying eigenvalues for k, rn is typically fairly small and we can 

effectively approximate  by a finite dimensional space. Although  is generally not 

attainable directly in practice, we may use kernel PCA to approximate  as

Replacing  by  in (5), we obtain the kernel PCA approximated test b statistic

(9)

Obviously,  reduces to  when rn = n.

Range of ρ—It is also important to choose the appropriate range of {ρm, m = 1, …, M}, 

since the range will affect the size and power of the procedures. We use a data adaptive 

approach to select the range by taking into account the eigenvalues decay rate of the kernel 

for a given ρ, α(ρ), where we assume that λj(ρ) = O{j−α(ρ)}. We estimate the decay rate as 

the slope from fitting a robust linear regression log{aj(ρ)} = α log(j) + ε with j = 1, …, rn. 

The range of ρ is chosen such that the corresponding estimated α(ρ) is between 1.2 and 2 
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and the vector {ρm, m = 1, …, M} is equally spaced on the logarithm scale within this range. 

When we select how many components to use in the singular value decomposition of , we 

choose rn as the smallest r such that the estimated proportion of variation explained by the 

first r eigenfunctions, defined as , is at least 0.99.

Omnibus Test with Kernel Selection—The choice of kernel k plays a critical role in 

the testing performance. It is generally difficult to decide a priori the optimal kernel to use 

for a particular dataset, since the underlying structure of the data is typically unknown. We 

propose an omnibus test that selects the kernel with the smallest p-value and account for the 

additional variability due to kernel selection through the perturbation procedure. 

Specifically, all candidate kernels, for example linear, Gaussian, and quadratic, will be 

applied to the dataset and the same resampling procedure as stated in section 2.2 will be 

carried out using the same set of perturbation variables . 

Let  denote the p-values from testing with  candidate kernels. Then 

we select kernel as the one with the smallest p-value. The final p-value for the omnibus test 

that accounts for kernel selection is obtained as , where  is the 

empirical survival distribution of  and  is the 

perturbed counterpart of  under H0 constructed similarly as .

3. Numerical Studies

3.1 Simulation Study

We performed extensive simulation studies to compare the performances of our KM 

procedures to the Wald test with sandwich variance estimator, and the nonparametric test for 

treatment effect heterogeneity (Crump et al., 2008) (Crump). The Crump test, developed 

only for continuous Y, takes a similar form as the Wald test but uses a nonparametric power 

series estimation to estimate regression functions. The number of terms in the series is 

decided by cross-validation. We carried out our procedure with three kernels (i) linear (kL), 

(ii) quadratic (kQ) and, (iii) gaussian kernel (kG), as well as the omnibus test that 

incorporates kernel selection. For conciseness, we only present results from the kernel PCA 

procedure where we select the first rn eigenvectors that account for 99% of total variation. 

We studied both continuous and binary Y. The predictor Xp×1 was generated from 

multivariate normal with mean zero, variance 4 and correlation ℘, where we let p = 5 and 

20, and ℘ = 0.2 and 0.5. We considered a total sample size of n = 500, 1000 and generate 

treatment indicator T from Bernoulli(0.5). To make fair comparisons, all procedures were 

applied to the entire vector X. Results are summarized for target type I error of 0.05.

For continuous outcome, we generate Y from Y = −35 + T + h0(X) + h1(X)T + X1X2ε, 

where ε follows a standard normal. Three different settings were considered for the predictor 

effect functions h0(X) and h1(X): (i) Null with h0(X) = h1(X) = 0; (ii) Linear effects with 

h0(X) = X3/2 and h1(X) = (X1 + X2 + X5)/3; and (iii) Non-linear effects h0(X) = X3/2 and 

. For binary outcome, we generated Y from a 

logistic model logit {p(Y = 1|X, T)} = 0.3T + h0(X) + h1(X)T. Three settings were 
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considered for h0(X) and h1(X): (i) Null with h0(X) = h1(X) = 0; (ii) Linear effects with 

h0(X) = X3/2 and h1(X) = (X1 + X2 + X5)/5; and (iii) Non-linear effects h0(X) = X1 and 

, where Φ is the distribution function of 

standard normal.

In Table 1, we present results for continuous Y. Under H0, the empirical size of all 

procedures are reasonably close to the nominal level of 0.05, except for the Crump method 

which has somewhat inflated type I error, especially when n = 500. The proposed test with 

kQ tend to be be slightly conservative when p = 20 and ℘ = 0.2 due to the high 

dimensionality of the associated RKHS. Under the alternative with linear effects, our 

procedure with linear kernel has similar performance as the Wald test when the correlation 

among predictors is small and p = 5. However, as p and the correlation among predictors 

increase, our proposed procedure with kL outperforms the Wald test. For example, when ℘ = 

0.5 and p = 20, the power at n = 500 and 1000 is {0.357, 0.562} for Wald test and {0.474, 

0.706} for our proposed method with kL. The power loss in the Wald can in part be 

attributed to the use of a p degree of freedom (DF) when the effective DF in the presence of 

high correlation could be much lower than p. On the contrary, our proposed test leverages 

the correlation, resulting a lower effective DF. When the effects are linear, our proposed test 

with kQ suffers some power loss when n = 500 but has comparable power when n = 1000. 

On the other hand, our KM score test with kG out performs all other tests even when the 

effects are linear. This is not surprising since when ρ is large, the  approximates the 

linear space (Cai et al., 2011) while allowing ρ to vary enables us to choose different basis 

functions to more efficiently capture the effects. The Crump method has power similar to or 

slightly higher than the Wald test across different p and ℘, but is slightly lower than our 

proposed procedures especially when ℘ = 0.5. When the underlying effects are non-linear, 

both the Wald test and the KM score test with kL perform poorly with low power, as 

expected, and the Crump method has similar performance as these two procedures. The KM 

score tests with both kQ and kG have substantially higher power across all settings. It is 

interesting to note that although the underlying effects are quadratic, the KM test with kG 

has comparable or higher power when p is small. For the larger p of 20, the test with kQ 

substantially outperforms kG. One possible explanation is that the RKHS with kG may not 

be an efficient approximation to capture h1(X) − h0(X) when compared to that based on kQ. 

Across all scenarios, the omnibus test behaves close to the score test with the optimal kernel, 

which demonstrates the effectiveness of our kernel selection and perturbation procedure.

The results for binary outcome are presented in Table 2. All procedures maintain the type I 

error reasonably well although in this setting the Wald test has a slightly conservative size 

when p = 20. Unlike the setting with continuous outcome, our test is no longer expected to 

perform similarly to the Wald test even when the effects are linear since the two tests are 

capturing different aspects of the TE. When p = 5, the proposed test and the Wald test 

perform similarly. However, when p = 20, the KM score test with kL substantially 

outperform the Wald test. For example, when p = 20, ℘ = 0.5 and n = 500, the empirical 

power is 0.608 for the KM score test and only 0.229 for the Wald test. In this setting, the 

KM test with kQ and kG also perform quite comparably to the test with linear kernel, 

demonstrating the robustness of the test with non-linear kernels. When the underlying effects 
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are non-linear, the KM test with kQ generally perform better than the tests assuming linear 

effects. Since the non-linear signals are mostly quadratic, the KM test with kQ is generally 

more powerful than those from kG although the procedures have similar performances when 

p = 5. Again, the power of the omnibus test is close to that of the test with optimal kernel for 

all scenarios.

3.2 Example: Predictors Useful for Individualized Treatment of HIV Infected Patients

We apply our methods along with the aforementioned existing methods to data from AIDS 

Clinical Trials Group Protocal 175 (ACTG175), which is a double-blind study that evaluated 

treatment with either a single nucleoside or two nucleosides in adults infected with human 

immunodeficiency virus type 1 (HIV-1) (Hammer et al., 1996). The dataset contains 2139 

HIV-infected subjects, where subjects were randomized to four different treatment groups: 

zidovudine (ZDV) monotherapy, ZDV+didanosine (ddI), ZDV+zalcitabine and ddI 

monotherapy. Following the primary goal of the original study, we compare ZDV 

monotherapy (T = 0) to combination therapies (T = 1) and aim to identify baseline predictors 

that are associated with differential TE. We considered the long term immune response, 

defined as 96 (± 5) week CD4 counts, CD496, as the continuous outcome which was also 

used in Tsiatis et al. (2008). To test for predictors for ITR, we included 12 baseline 

covariates separated into 3 groups: (i) demographic information including age, weight, race 

and gender; (ii) risk factors including hemophilia status, homosexual activity, antiretroviral 

history, symptomatic status and history of intravenous drug use; and (iii) functional markers 

including Karnofsky score, baseline CD4 and baseline CD8 count. The goal is to test 

whether any group of covariates significantly affects the absolute risk reduction by different 

treatments, so the variables in the significant group can be used to guide treatment selection 

in the future. The results for the response being the continuous CD496 as defined are shown 

in Table 3(a). Our proposed method detected functional markers as being significantly 

predictive of treatment response with p-value about 0.01 and the demographic variables as 

being marginally significant with p-value 0.07 when the gaussian kernel is employed. On the 

other hand, the Wald test identified none of the predictor groups as significant. The omnibus 

procedure results in p-values close to the smallest p-value among the score tests with 

different kernels, while the Crump method achieves similar p-values to the Wald test.

3.3 Example: Predictors Useful for Treatment of Patients with Advanced Chronic Heart 
Failure

We also illustrate the proposed procedures using the Beta-Blocker Evaluation of Survival 

Trial (BEST), which is a randomized clinical trial to investigate if Bucindolol, a beta-

blocker, would benefit patients with advanced chronic heart failure (CHF) (Beta-Blocker 

Evaluation of Survival Trial Investigators, 2001). The 2-year BEST study had 2708 

participants randomized at 1:1 ratio to receive either Bucindolol or Placebo. We considered 

the Physician’s Global Assessment (PGA) as the primary response. The PGA takes seven 

ordinal levels (1–3: different levels of worsening, 4:no change, 5–7: different levels of 

improvement) and we defined a binary outcome Y if the PGA ⩾ 4, reflecting some 

improvement. For baseline predictors, we considered four groups with grouping information 

provided in the original study database: (i) Ischemic CHF Etiology (ICE; 6 covariates), 

including prior myocardio infarction, stenosis, coronary artery disease etiology and so on; 
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(ii) Physical Exam (PE; 14 covariates), including heart rate, blood pressure, weight, height 

etc; (iii) Hematology Lab Test (HLT; 4 covariates): hematocrit, hemoglobin, platelet, and 

white blood count; (iv) Chemistry Lab Test (CLT; 19 covariates), including Clucose, 

Sodium, Calcium etc; and (v) Cardiac History (CH; 9 covariates), including Duration of 

CHF, Peripheral Vascular disease etc. The goal is to test whether any of these groups are 

significantly associated with treatment difference with respect to the binary outcome Y 
reflecting improvement in PGA.

Results given in Table 3(b) suggest that Physical Exam results are significantly associated 

with treatment difference with p-value 0.01 from the KM score test with kG. Results of the 

KM test with kL and kQ are consistent with p-values 0.04 and 0.09, respectively. There is 

also suggestive evidence that Ischemic and CHF etiology may be associated with treatment 

response with a marginally significant p-value from the KM test with kQ although the test is 

not significant for other kernels. Again, the Wald test failed to reject for any of the predictor 

groups.

4. Discussion

In this paper, we proposed a KM based score test to identify informative baseline predictors 

that can be useful for individualized treatment selection. Our method is robust due to the 

model-free construction of the statistic. Our proposed KM test is also generally more 

powerful than the existing Wald test. Numerical studies suggest that our proposed 

procedures could substantially outperform the Wald test, especially when testing for a 

moderate number of predictors that are correlated with each other and/or when the 

underlying effects are non-linear. Different kernel functions may be preferable for different 

types of signals. We also propose an omnibus test that combines information from multiple 

kernels. Simulation results suggest that the omnibus test performs well in selecting an 

optimal kernel for testing. When x consists of a mixture of discrete (xD) and continuous (xC) 

components with , one may employ different kernels for xD and xC such as 

k(x1, x2) = kC(xC1, xC2)+kD(xD1, xD2), where kC and kD are different kernels. One may also 

account for heterogeneity in the covariate distribution by simply normalizing them to have 

equal variance and employ the same kernel. Examples of various kernels for different types 

of variables can be found in Hofmann et al. (2008).

The proposed procedure does not necessitate the estimation of the “main effects” of X on Y, 

which increases the robustness of our procedure since no model assumptions are required. 

On the other hand, inclusion of “main effects” properly may further increase the power of 

the test. Specifically, one may consider modifying  as 

, for some  obtained 

via certain working models. Here,  can be viewed as estimated “main effects” for 

continuous outcomes and proper choices of  may improve the power of the test. The 

power gain is achieved by leveraging the independence between treatment assignment and 

baseline covariates, similar to those augmentation procedures proposed in Tian et al. (2012) 
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and Zhang et al. (2008). Optimal choices of  to maximize the power gain warrant further 

research.

The proposed KM framework for testing can also be extended to estimate heterogenous 

treatment effects of interest with a given set of X. If we assume the treatment effect is a 

linear function of the bases: , then we may estimate the model 

parameter β as , the solution to  where 

. Subsequently, one may use  as basis for constructing ITRs. 

The performance of such an approach warrants further research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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