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Abstract

The introduction of compressed sensing for increasing imaging speed in MRI has raised 

significant interest among researchers and clinicians, and has initiated a large body of research 

across multiple clinical applications over the last decade. Compressed sensing aims to reconstruct 

unaliased images from fewer measurements than that are traditionally required in MRI by 

exploiting image compressibility or sparsity. Moreover, appropriate combinations of compressed 

sensing with previously introduced fast imaging approaches, such as parallel imaging, have 

demonstrated further improved performance. The advent of compressed sensing marks the prelude 

to a new era of rapid MRI, where the focus of data acquisition has changed from sampling based 

on the nominal number of voxels and/or frames to sampling based on the desired information 

content. This paper presents a brief overview of the application of compressed sensing techniques 

in body MRI, where imaging speed is crucial due to the presence of respiratory motion along with 

stringent constraints on spatial and temporal resolution. The first section provides an overview of 

the basic compressed sensing methodology, including the notion of sparsity, incoherence, and non-

linear reconstruction. The second section reviews state-of-the-art compressed sensing techniques 

that have been demonstrated for various clinical body MRI applications. In the final section, the 

paper discusses current challenges and future opportunities.
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Magnetic Resonance Imaging (MRI) is a powerful imaging modality for noninvasive 

examination of the body. It does not require the use of ionizing radiation and provides 

superior soft-tissue characterization with flexible image-contrast parameters. These 

properties allow good visualization of anatomical structure, physiological function, blood 

flow, and metabolic information, making MRI compelling in a variety of clinical 

applications. However, the incorporation of body MRI into routine clinical practice has been 

relatively slow compared to other imaging modalities such as computed tomography (CT). 

This barrier largely derives from stringent constraints on MR imaging speed, which result in 

relatively long examination times (with correspondingly high cost), limited spatiotemporal 

resolution and volumetric coverage, and sensitivity to respiratory motion.
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Since the introduction of MRI, efforts have been devoted to improving imaging speed, and 

the speed at which MR images can be acquired today has increased dramatically with a 

combination of advances in MR hardware and innovations in both imaging acquisition and 

reconstruction strategies. For example, fast switching magnetic field gradients have 

substantially reduced the time intervals separating adjacent data points. The invention of fast 

imaging strategies, such as Fast Low Angle SHot (FLASH) imaging (1), Fast Spin-Echo 

(FSE) imaging (2), Echo-Planar Imaging (EPI) (3) and many others, has further increased 

imaging efficiency and motivated many new MR applications. Beginning in the late 1990s, a 

variety of so-called parallel-imaging techniques were proposed to accelerate data acquisition 

in MRI using arrays of receiver coils with spatially-varying sensitivities (4–6). Multiple coils 

with different spatial sensitivity profiles can be employed to perform part of the spatial 

encoding process that is conventionally accomplished via magnetic field gradients (7). 

Parallel imaging with multiple coils can reconstruct unaliased images from a subset of k-

space data using sensitivity encoding (SENSE)-type algorithms (5), which operate in image 

space to undo the aliasing, or generalized autocalibrating partially parallel acquisitions 

(GRAPPA)-type algorithms (6,8), which operate in k-space to fill in missing points. The 

advent of parallel imaging has enabled significant advances in MR imaging speed beyond 

previous hardware and pulse sequence limitations, and has also led to development of 

various fast and ultrafast imaging techniques, such as temporal parallel imaging (9,10) and 

spatiotemporal acceleration techniques (11–13) that are often referred to as k-t imaging 

techniques. The underlying principle behind these techniques is the use of spatial and/or 

temporal redundancy of the MR images to accelerate MR image acquisition.

The concept of compressed sensing, which was originally proposed in the early 2000s by 

Donoho (14) and Candès et al (15), and was soon translated to MRI by Lustig et al. (16), 

represents another powerful approach for increasing imaging speed in MRI by exploiting 

image redundancy in a different way. Compressed sensing takes advantage of the fact that an 

image is usually sparse in some appropriate transform basis and enables reconstruction from 

a reduced number of k-space samples if they are taken in an incoherent fashion. Incoherence 

is a key component that aims to break the usual regularity in sampling patterns and enables 

the use of sparsity-based reconstructions. The introduction of compressed sensing to MRI 

has initiated a large body of research across multiple clinical applications, ranging from 

cardiovascular imaging to body imaging to neuroimaging and spectroscopic imaging (17). 

Moreover, appropriate combinations of compressed sensing and parallel imaging have been 

shown to enable further increases in imaging speed beyond what is possible with either 

method alone (8,18–22).

This work aims to summarize the rapidly growing topic of compressed sensing and to 

present a brief review of its clinical applications in body MRI. We begin with an overview of 

compressed sensing basics, describing the requirements for successful implementation of the 

technique. Then, we describe and discuss several state-of-the-art compressed sensing 

techniques that have been developed and demonstrated for different clinical body MRI 

applications. Finally, we conclude by outlining current challenges and future opportunities 

for compressed sensing in body imaging. In order to narrow the scope of this review, many 

promising applications of compressed sensing in cardiovascular imaging are not included.
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Sparse MRI: A Brief Overview

Introduction to Compressed Sensing

The Nyquist-Shannon sampling theorem establishes a sufficient condition at which a signal 

can be reconstructed without ambiguity from a series of measurements. In MRI, a 2D image 

corresponds to a 2D signal, whereas a 3D image and a 2D dynamic image series correspond 

to 3D signals, etc. Unfortunately, fulfilling the Nyquist criterion is often time-consuming 

and data-intensive, and has posed a challenge for data storage and transmission as well as 

sampling-system design in many applications. This logistical and computational challenge 

can be addressed by first mapping a signal to an appropriate basis that provides a sparse 

representation, where the information is contained in only a few high-valued coefficients and 

most of the low-valued coefficients can be discarded with little or no perceptible loss of 

information. This process, known as signal (e.g., image or video) compression, has been 

widely used in the JPEG, JPEG2000, and MPEG standards. The fact that an image or a 

video can be compressed efficiently raises an interesting question: instead of first sampling a 

signal at a high sampling rate and then discarding most of the coefficients, why not directly 

acquire the data in a compressed form at a lower sampling rate? In other words, since 

information content of any given signal is usually lower than the number of coefficients 

required to characterize an arbitrary signal completely, can we integrate the compression 

process directly into the data acquisition, so that one can sample a signal at its information 

rate instead of the Nyquist rate?

The fact that images are compressible has been known for years, but it seemed impossible to 

know in advance which samples to choose without knowledge of the original image. The 

breakthrough came with the notion of incoherence. If one chooses the samples in an 

irregular manner such that they do not replicate image features in the sparse domain and 

resulting undersampling artifacts appear as low-value coefficients, a reconstruction 

algorithm that enforces sparsity is able to recover the sparse representation from fewer 

samples than are required by the nominal Nyquist rate. Figure 1 compares (a) standard 

sensing and post-compression with (b) compressed sensing of an MR image. Standard 

sensing and post-compression methods acquire fully-sampled data and then compress the 

resulting image using a sparsifying transformation. This type of compression does not 

decrease acquisition time. In contrast, compressed sensing methods directly acquire subset 

of measurements in an incoherent way (e.g., random undersampling as will be discussed 

later), and remove undersampling artifacts in the reconstruction step.

The application of compressed sensing has three basic requirements: i) sparsity or transform 

sparsity of the target image, ii) incoherent sampling (here, incoherence is assessed between 

the sampling basis and the sparse basis), and iii) use of a reconstruction algorithm that 

enforces sparsity constrained by data consistency. The following subsections will briefly 

describe the practical implementation of these requirements for MR imaging. More 

comprehensive information on each of these components can be found in the literature 

(16,23,24).
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Sparse MRI

Sparsity—An image is said to be sparse when it can be characterized by only a small 

number of non-zero coefficients, as compared with the total number of voxels. A typical 

example is MR angiography, where background tissue is suppressed and only vessels show 

signal. Thus, an MR angiography image is already sparse in image domain. This, of course, 

does not apply to all MR images. However, given structural correlation in MR images, there 

is usually a mathematical transformation that will produce a sparse representation of the 

image. Transformations that are known from data compression, such as the discrete wavelet 

transform (DWT), the discrete cosine transform (DCT), the fast Fourier transform (FFT), 

finite difference operations, and many others, can be used for this purpose. A high degree of 

sparsity is desired, since it implies that information content can be represented by a small 

sample of data, and this is directly related to the maximal achievable acceleration factor 

(23). For example, higher sparsity is obtained when processing multidimensional images, 

such as dynamic imaging, because the temporal dimension is typically highly compressible. 

This enables higher acceleration for dynamic imaging compared to static imaging.

Figure 2 shows examples of transform sparsity of a static liver image in wavelet space (a) 

and transform sparsity of a dynamic contrast-enhanced (DCE) liver imaging series in x–y-f 

(two spatial dimensions + temporal frequency dimension) space with a FFT performed along 

the temporal dimension (b).

Incoherence—Another requirement for successful application of compressed sensing is 

that undersampling artifacts must be incoherent, i.e. that they must appear as noise-like 

patterns in the sparse domain. This criterion excludes regular undersampling schemes 

commonly used with parallel imaging, because the resulting artifacts manifest as coherent 

replicas of the signal structure, as shown in Figure 3a. Various undersampling strategies have 

been proposed to meet the incoherence requirement. The most popular scheme is Cartesian 

k-space undersampling in a random fashion (16), where some portion of the phase-encoding 

steps are randomly skipped, resulting in incoherent artifacts (Figure 3b). Non-Cartesian 

sampling (e.g., radial sampling) is an attractive alternative due to its highly incoherent 

undersampling behavior (21) (Figure 3c), which will be described in more detail in 

subsequent sections.

Image Reconstruction—A compressed sensing reconstruction enforces sparsity of the 

solution to suppress the incoherent aliasing artifacts, and maximizes data consistency 

between the solution and the available undersampled data. Mathematically, this can be 

achieved by solving the following constrained optimization problem:

[1]

Here, m is the image or image series to be reconstructed, F is the Fourier transform operator 

that maps between k-space and image space, y is the acquired k-space data, T is the 

sparsifying transform and ε is the estimated noise level. Data consistency is enforced via the 
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ℓ2-norm, which quantifies squared absolute error between the acquired measurements and the 

solution estimate. Sparsity is promoted by minimization of the ℓ1-norm, which is defined as 

the sum of the absolute values of all coefficients. Among all solutions that are consistent 

with the acquired data with an error below the noise level, Equation 1 aims to find the 

solution that has the minimum ℓ1-norm in the sparse domain.

The ℓ1-minimization has been widely used in compressed sensing reconstruction because the 

resulting reconstruction optimization (Equation 1) is convex and the optimal solution is then 

guaranteed (25). Nonetheless, ℓ1-norm minimization is not the only choice for sparse signal 

recovery. Reconstruction methods that enforce an ℓp-norm minimization with 0 ≤ p<1 have 

also been proposed. These methods are expected to require fewer measurements than 

reconstructions based on the ℓ1-norm. However, a substantial challenge associated with such 

type of methods is that the resulting optimization is non-convex and thus the convergence to 

the global minimum, which is the optimal solution, is not always guaranteed. Moreover, the 

performance of non-convex methods relies on the selection of an appropriate initial solution.

The constrained optimization problem in Equation 1 is often relaxed to an unconstrained 

optimization problem by using Lagrange multipliers:

[2]

The optimization problem in this form can be solved efficiently with iterative algorithms 

such as gradient descent, conjugate gradient, and many other methods. These iterative 

algorithms start with an aliased image and progressively remove aliasing artifacts. The 

regularization parameter λ controls the trade-off between data consistency (ℓ2-norm) and the 

promotion of sparsity (ℓ 1-norm).

The theory of compressed sensing states that the number of samples required to perform 

accurate reconstructions using ℓ1-norm minimization is about three to five times the number 

of sparse coefficients (15,26). Using a multi-coil array for data reception, the combination of 

compressed sensing and parallel imaging can enable additional acceleration (18,19,22), as 

will be described later in more detail. It has been shown that the number of samples required 

for accurate image reconstruction with combined compressed sensing and parallel imaging 

can be reduced to close to the number of sparse coefficients in an ideal case (19,27).

Selection of Sparsifying Transform—The selection of a sparsifying transform should 

be made based on the target clinical application and either generic mathematical transforms 

or transforms learned from the acquired data can be used. For example, first-order finite 

differences have been employed for accelerated brain imaging due to the assumption that 

brain images are piecewise constant to some degree and exhibit a sparse representation after 

subtraction of adjacent pixels along the spatial dimensions (21). Here, minimization of the ℓ
1-norm of finite differences is known as total variation (TV) constraint. However, for many 

applications, the assumption of a piecewise-constant signal is not valid. As a consequence, 

applying finite differences tends to smooth images and cause image blurring due to the loss 

of high-resolution information. For these applications, a combination of wavelet transform 
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with finite differences has been shown to provide better performance, and has commonly 

been used in accelerated static imaging (16). In addition, the concept of total generalized 

variation (TGV), which has been introduced to model the characteristics of MR images more 

accurately, has shown improved performance over conventional transforms such as first-

order finite differences (28). For dynamic imaging, transforms can be applied along the 

temporal dimension, which improves performance over pure spatial constraint due to a high 

level of temporal correlations (29). Popular temporal sparsifying transforms for accelerated 

dynamic imaging including the temporal FFT (19,30) and first-order temporal finite 

differences (31–33). In addition to the generic transforms described above, many adaptive 

sparsifying transforms have been shown to provide superior performance in compressed 

sensing reconstructions. For example, the Karhunen–Loeve transform (KLT), also known as 

principle component analysis (PCA), is a widely used transform in data compression and has 

been applied for dynamic compressed-sensing MRI (34). Unlike FFT or finite differences, 

KLT/PCA is a data-dependent transform and can achieve higher performance in many 

applications such as parameter mapping (35,36) or flow imaging (37). Moreover, another 

type of adaptive techniques, which is known as dictionary learning (38,39), has also been 

proposed for compressed sensing reconstructions. In dictionary learning, a training process 

is performed such that an optimal sparsifying transform can be adaptively learned from an 

overcomplete set of basis functions to better characterize a particular image with sparser 

representation. In many proposed methods, a dictionary is trained from a set of overlapping 

image patches, so that local image features can be captured and local image sparsity can be 

exploited. For practical implementations, image reconstruction and the training process can 

also be performed simultaneously in a joint iterative reconstruction framework.

Reconstruction Algorithm—The optimization problem in Equation 2 is non-linear due 

to the ℓ1-term. Therefore, a corresponding non-linear reconstruction algorithm must be used 

to find a solution. Many existing algorithms can be chosen for this task, which differ in 

efficiency of convergence and effort of implementation. Popular optimization algorithms for 

compressed sensing MRI with available MATLAB implementations are listed as follows:

1. Non-linear conjugate gradient with backtracking line search (Non-linear-CG): 

http://people.eecs.berkeley.edu/~mlustig/Software.html

2. Iterative shrinkage-thresholding (ISTA) http://people.eecs.berkeley.edu/~mlustig/

Software.html

3. Fast Iterative shrinkage-thresholding (FISTA) https://github.com/ryotat/OPT09/

blob/master/matlab/fistalrl1.m

4. Limited-memory Broyden-Fletcher-Goldfarb-Shanno (l-BFGS): https://

software.sandia.gov/trac/poblano/

5. Alternating directions of multiple multipliers (ADMM): https://web.stanford.edu/

~boyd/papers/admm/

6. Bregman iterative algorithm: http://www.caam.rice.edu/~optimization/L1/

bregman/
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Sparse Body MRI: State-of-the-Art Techniques

This section describes state-of-the-art compressed sensing techniques that have been 

proposed for different body MRI applications. It is divided into three subsections, including 

data acquisition, image reconstruction, and motion compensation.

Data Acquisition

As mentioned in the previous section, compressed sensing requires incoherent 

undersampling to preserve sparsity and produce uncorrelated aliasing artifacts. The 

following subsections discuss different sampling schemes proposed for compressed sensing 

MRI.

Cartesian Sampling—Random undersampling is the usual way to break the regularity of 

Cartesian k-space sampling and to produce noise-like aliasing artifacts. However, not all 

random schemes meet the incoherence requirement. Given that the signal intensity decreases 

from the center of k-space to the periphery, a variable-density random undersampling pattern 

usually results in a high degree of incoherence (dense sampling at the center and increased 

undersampling at the periphery, as shown in Figure 4a). Mathematically, the low frequency 

Fourier basis functions (center of k-space) are highly correlated with the basis functions of 

most sparsifying transformations (40), and thus improved reconstruction performance can be 

obtained with dense sampling of low frequency region. Since undersampling the frequency-

encoding dimension does not reduce acquisition time, only 1D-sparsity and incoherence 

along the phase-encoding (ky) dimension can be exploited in 2D Cartesian imaging. 3D 

imaging offers more possibilities due to the additional slice-encoding dimension (kz), which 

allows undersampling along both ky and kz dimensions (Figure 4b), enabling use of two-

dimensional sparsity and incoherence (23).

Poisson-disc sampling represents an alternative randomization approach that limits the 

distance between adjacent samples (8). It is important to avoid large gaps in k-space, which 

may destabilize the reconstruction when using combination of compressed sensing with 

parallel imaging. Figure 4c shows a 3D Cartesian sampling scheme in which Poisson-disc 

sampling is implemented in the ky–kz plane with a fully sampled small central k-space 

region.

Dynamic imaging provides higher flexibility in the design of sampling trajectories because a 

different incoherent undersampling pattern can be used for each temporal frame, as shown in 

Figure 4d (29,30). This introduces additional temporal incoherence that can be exploited to 

further improve the performance of compressed sensing reconstruction.

Non-Cartesian Sampling—Non-Cartesian sampling (e.g., radial or spiral sampling) is an 

attractive alternative, as the k-space samples are not directly acquired on a Cartesian grid. 

Therefore, even regular undersampling of non-Cartesian trajectories offers inherent 

incoherence. Skipping measurements in radial or spiral sampling effectively undersamples 

all spatial dimensions simultaneously and distributes the overall acceleration accordingly, 

resulting in a lower level of aliasing artifacts (21,33), as previously shown in Figure 3c. It 

has been shown that non-Cartesian MRI is also less sensitive to motion than many Cartesian 
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approaches (41). Furthermore, repeated sampling of the k-space center offers the possibility 

of extracting motion signals (e.g., respiratory motion), which can be used for self-navigation 

or motion compensation (42–44). In addition, non-Cartesian trajectories can be designed 

with angular rotation of adjacent measurements by the golden angle (45) (e.g., 111.246o in 

the case of 2D radial sampling), which offers several attractive properties. For example, each 

acquired measurement provides complementary information to the previous k-space 

coverage, and the measurements never repeat. Golden-angle sampling ensures 

approximately uniform k-space coverage for many useful subsets of acquired data. This 

enables dynamic imaging studies with continuous data acquisition and retrospective 

reconstruction of image series with flexible temporal resolution by grouping a different 

number of consecutive measurements into each temporal frame (33).

For volumetric imaging, radial and spiral trajectories are often combined with Cartesian 

sampling in hybrid sampling schemes, which are known as stack-of-stars (46) or stack-of-

spiral (47) sampling. Figure 5a and 5b show examples of golden-angle stack-of-stars and 

stack-of-spiral sampling patterns. Here, radial or spiral sampling is performed in the kx–ky 

plane while Cartesian sampling is employed along the kz dimension. Compared with full 

non-Cartesian 3D sampling (e.g., “koosh-ball” 3D radial trajectories), such hybrid schemes 

provide better performance for fat saturation, reduced sensitivity to eddy-currents and k-

space discontinuities, and data acquisitions with flexible slice resolution. Furthermore, 

because the k-space trajectory for each slice is identical, Fourier encoding along kz can be 

disentangled with a 1D Fourier transform as an initial processing step, which enables 

reconstruction of different slices in parallel.

Variable-Density Cartesian Sampling with Golden-Angle View Ordering—
Inspired by the beneficial features of golden-angle sampling, several studies have adapted 

the scheme for 3D Cartesian sampling. Here, phase-encoding steps in the ky–kz plane are 

segmented into multiple radial– or spiral-like interleaves, and each interleave is rotated by 

the golden angle from previous one, as shown in Figure 5c. This sampling strategy maintains 

a variable-density pseudorandom distribution of the measurements, allows for flexible 

acceleration (either isotropic or anisotropic), and supports continuous data acquisition. 

Because k-space samples are acquired directly on a Cartesian grid, this approach ensures 

faster and simpler reconstruction than conventional golden-angle radial or spiral sampling. 

However, since the frequency-encoding dimension is fully sampled (as in all Cartesian 

sampling schemes), acceleration performance along this dimension is limited. The 

performance of such sampling patterns also depends on the number of acquired slices, as a 

reduced number of slices decrease the ability to exploit sparsity and incoherence along the 

slice dimension. Examples of this sampling approach include Variable-Density sampling and 

Radial view ordering (VDRad) (48), CIRcular Cartesian UnderSampling (CIRCUS) (49), 

Golden angle Cartesian acquisition with Spiral Profile ordering (G-CASPR) (50), GOlden-

angle CArtesian Randomized Time-resolved (GOCART) sampling (51) and spiral 

phyllotaxis sampling on Cartesian grid (52).
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Image Reconstruction

Combination of Compressed Sensing and Parallel Imaging—Compressed sensing 

can be performed separately for each individual coil element. However, as image sparsity 

and coil sensitivity encoding are complementary sources of information, these two 

approaches can be synergistically combined (8,19,20). On one hand, the additional spatial 

encoding capabilities of multiple receiver coils in parallel imaging allow exploitation of joint 

sparsity in multi-coil images with reduced levels of incoherent aliasing artifact, resulting in 

higher achievable acceleration rates. On the other hand, compressed sensing can serve as a 

regularizer for the inverse problem in parallel imaging to prevent spurious noise 

amplification (53).

The combination with parallel imaging can be performed in a SENSE-like framework 

known as SPARSE-SENSE (20) for static imaging and k-t SPARSE-SENSE (19) for 

dynamic imaging. The SPARSE-SENSE reconstruction is formulated by incorporating coil 

sensitivities into Equation 2:

[3]

Here, C are the coil sensitivity maps, usually calculated from additional reference data, and 

T is the sparsifying transform applied in the spatial dimension. The reconstructed image m , 

in this case, is a single image that represents the combination from all coils. k-t SPARSE-

SENSE shares the same reconstruction framework except that m is the dynamic image series 

to be reconstructed, and T is applied along the temporal dimension to exploit temporal 

correlations. Golden-angle RAdial Sparse Parallel (GRASP) MRI (33) is an extension of the 

k-t SPARSE-SENSE framework for golden-angle radial sampling. The synergistic 

combination of compressed sensing, parallel imaging, and golden-angle radial sampling has 

been shown to provide promising combinations of temporal resolution, spatial resolution, 

and volumetric coverage for dynamic MRI studies without the need for breath-holding. 

Furthermore, GRASP represents a new paradigm for clinical workflow, enabling continuous 

data acquisition and retrospective reconstruction with flexible temporal information such as 

temporal resolution, temporal location, and number of temporal frames.

As an alternative to the SPARSE-SENSE framework, auto-calibrating parallel imaging 

approaches such as SPIRiT (8) can also be combined with compressed sensing, in an 

approach commonly known as L1-SPIRiT (8,54). The corresponding reconstruction problem 

is formulated as

[4]

Here, m is the reconstructed multi-coil image (concatenated and uncombined), and G is the 

SPIRiT kernel computed from calibration data, which is usually obtained from a small fully-

sampled region around the k-space center. L1-SPIRIT enforces coil-by-coil data consistency 
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(left-hand term), kernel consistency (center-term) and joint sparsity on the multi-coil image 

(right-hand term). The joint sparsity term ( Joint ℓ1 (·) ) is a combined ℓ2-ℓ1 norm, where the 

ℓ2-norm works along the coil dimension and the ℓ1-norm operates along the voxel dimension, 

as defined in the following equation:

[5]

where c is the coil index and r is the spatial index. An additional regularization parameter α 
is needed to control the balance between data consistency and calibration consistency.

Compressed sensing has also been combined with a recently introduced parallel imaging 

technique called ESPIRiT (55), which is an auto-calibrating approach that links GRAPPA 

and SPIRiT to SENSE-based reconstruction techniques. ESPIRiT estimates coil-sensitivity 

maps through an eigenvalue decomposition of the data from a compact calibration region in 

k-space, and the sensitivity maps are subsequently used in a SENSE-based reconstruction 

algorithm. Since this approach enforces relaxed sensitivity constraints in a SENSE 

framework without the need to explicitly calculate the coil sensitivities from additional 

reference data, it can potentially avoid errors that may occur in conventional SENSE 

reconstruction, such as aliased coil sensitivities caused by a small field of view (FOV). The 

combination of ESPIRiT and compressed sensing is known as L1-ESPIRiT (55). The 

reconstruction framework is similar to Equation 3 except for the algorithm that estimates the 

coil sensitivity maps C.

Advanced Sparsity Constraints

This section describes novel constraints that extend the idea of sparsity to different data 

structures.

Locally Low-Rank Constraint—Dynamic image series can be sorted as a Casorati 

matrix, where each temporal frame corresponds to a column. Given the extensive spatial and 

temporal correlations, the space-time Casorati matrix is usually of low rank, which means 

that the number of linearly independent rows/columns is lower than the total number of 

rows/columns. This low-rank property can be exploited in compressed sensing (56,57) and it 

is related to the Karhunen–Loeve transform/PCA described earlier. The corresponding 

reconstruction problem, known as low-rank matrix completion (58), can be formulated as 

optimization problem:

[6]

Unlike in Equation 2, sparsity is enforced here via minimization of the nuclear norm (||m||) 

of the image, which is defined as sum of the singular values of an image matrix. When the 

low-rank property is enforced on the entire images, the method is referred to as a globally 

low-rank approach. Recent work suggests that the performance of compressed sensing can 
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be further improved by using locally low-rank constraints to exploit spatiotemporal 

correlations within different small regions separately (59–62). This is achieved by solving 

the following optimization problem:

[7]

Here Bn is an operator that selects an image block and N is the total number of image blocks 

with a size ranging from 8x8 to 16x16 (61). The underlying principle of this approach is that 

the dynamics of adjacent image pixels are often similar, and therefore the redundancy is 

higher within local image regions than in the entire image.

Low-Rank Plus Sparse Matrix Decomposition—Low-rank plus sparse matrix 

decomposition (L+S) (63) is another compressed-sensing reconstruction technique that goes 

beyond the original idea of enforcing sparsity in a transform domain. The L+S model 

reconstructs dynamic images as the superposition of a background low-rank component with 

sparse innovations on that background. The reconstruction is performed by solving the 

following optimization problem:

[8]

L+S decomposition effectively combines the ideas of compressed sensing and low-rank 

matrix completion, providing improved performance compared to individual application of 

the techniques. It can also be combined with the idea of locally low-rank constraints. 

Moreover, the L+S reconstruction allows for automatic background suppression without the 

need for subtraction of a reference image, as the S component will be reconstructed without 

the background, which makes it particularly useful for applications such as MR angiography.

Motion Compensation

Respiratory motion is one of the most common sources of artifacts in body MRI and remains 

a major challenge for clinical exams. Although successful suspension of breathing during 

MR scans can prevent artifacts, breath-hold capabilities are subject-dependent and can be 

significantly limited in many patients. Furthermore, typical breath-hold durations (10–15 

seconds) limit the achievable spatial resolution and volumetric coverage. Therefore, free-

breathing MRI techniques are desirable. The most popular approach is to use either 

navigator signals or respiratory bellows to follow the respiratory motion and to acquire data 

only at a specific respiratory state (e.g., end-expiration). However, gated data acquisition 

reduces the imaging efficiency significantly, prolongs the total examination time, and is 

incompatible with applications such as DCE-MRI, where the passage of a contrast agent 

needs to be captured quickly and in real-time. This section describes several alternatives that 

have been proposed to overcome the abovementioned problems in free-breathing body MRI 

exams.
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Soft-Gating—The soft-gating method has recently been introduced as a simple but 

effective way to reduce respiratory motion blurring in MRI (61,64,65). Based on a navigator 

signal, which can be obtained either from external devices or from acquired k-space data, a 

motion-weighting function is generated. This function is then incorporated into the data 

consistency term to enforce a weighted data consistency. Image reconstruction with soft-

gating can be adapted from Equation 2 as follows:

[9]

Here, W is a matrix containing motion weights in a range between 0 and 1. Measurements 

with weight 1 are considered consistent with the respiratory phase to be reconstructed (e.g., 

end-expiration) and will therefore have higher impact on the solution. On the contrary, a 

weight close to 0 means that the corresponding data are motion-corrupted and therefore their 

impact on the reconstruction will be reduced. Compared with standard gating approaches, 

which simply discard motion-corrupted measurements, soft-gating achieves improved scan 

efficiency by including all acquired data into the reconstruction in a weighted fashion. 

Figure 6a shows an example of k-space weighting using a respiratory motion signal.

Motion Correction—Another strategy to correct for respiratory motion is to integrate 

image registration into the reconstruction process, such that images reconstructed in 

different motion states can be combined into a final result in a single motion state. This 

approach has been demonstrated for respiratory-motion correction in many cardiovascular 

applications (44,66–68), where the movement of the heart during respiration is quite rigid. 

Application to abdominal imaging is more challenging due to the larger deformation of the 

abdominal organs. Therefore, a robust deformable registration technique is needed to 

account for the non-rigid body motion (69–71). The non-rigid motion can also be 

approximated as localized linear translations, and a method called localized autofocusing 

has been proposed for respiratory motion correction by applying the appropriate linear-phase 

correction in k-space (72). This imaging technique has been demonstrated in free-breathing 

pediatric imaging in sedated patients where respiration patterns are largely predictable (64). 

Some approaches, such as motion-guided L+S reconstruction (73), are able to learn the 

motion fields to guide the image reconstruction, not only correcting for motion but also 

providing access to motion information. However, motion-correction schemes require use of 

specific motion models in the corresponding warping and unwarping operations for each 

iteration of the reconstruction procedure, and therefore are highly dependent on the 

respiration pattern. Thus, registration may not always suffice to account for the complex 

movement of organs during respiration, particularly for patients with deep and/or irregular 

breathing pattern.

Image Reconstruction with Extra Motion Dimensions—Recently, a novel approach 

has been described that handles respiratory motion by performing golden-angle radial data 

acquisition with compressed sensing reconstruction of one or more extra motion-state 

dimensions (74). A respiratory motion signal, which can be obtained from acquired k-space 

data, is used to sort the continuously acquired golden-angle radial dataset into multiple 
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motion states to generate an extra respiratory motion dimension. A compressed sensing 

reconstruction is then performed on the sorted dataset to exploit the correlations generated 

along the respiratory dimension:

[10]

Here, m is the dataset with the extra dimensions to be reconstructed, and T1 is the 

sparsifying transformation performed along the new respiratory dimension. If the dataset has 

more than one dynamic dimension (e.g., cardiac, contrast enhancement, or multiple echoes), 

additional sparsifying transformations (T2 ) can be added. Because this approach extends the 

previously described GRASP reconstruction with extra dimensions, it is referred to as XD-

GRASP (eXtra-Dimensional GRASP).

Figure 6b shows the k-space data-sorting procedure based on a respiratory motion signal in 

XD-GRASP. The data sorting is usually performed such that the number of k-space points at 

each motion state is the same, to ensure the same acceleration rate at each motion state.

Data Acquisition and Image Reconstruction Software for Sparse Body MRI

Some of the techniques described in this section are available for free download, including:

1. Sparse MRI: http://people.eecs.berkeley.edu/~mlustig/Software.html

2. k-t SPARSE-SENSE: http://cai2r.net/resources/software/k-t-sparse-sense-matlab-

code

3. L1-SPIRiT: http://people.eecs.berkeley.edu/~mlustig/Software.html

4. L1-ESPIRiT: http://people.eecs.berkeley.edu/~mlustig/Software.html

5. GRASP: http://cai2r.net/resources/software/grasp-matlab-code

6. XD-GRASP: http://cai2r.net/resources/software/xd-grasp-matlab-code

7. L+S: http://cai2r.net/resources/software/ls-reconstruction-matlab-code

8. Locally low-rank sparse MRI: http://web.stanford.edu/~tzhang08/software.html

9. VDRad sampling: http://mrsrl.stanford.edu/~jycheng/software.html

10. Poisson disc sampling: https://people.eecs.berkeley.edu/~mlustig/Software.html

11. Autofocusing: http://mrsrl.stanford.edu/~jycheng/software.html

Sparse Body MRI: Clinical Applications

The sparse imaging techniques described in the previous section have been applied for a 

number of clinical applications in body MRI, in order to increase imaging speed and 

improve performance (61,64,75–86). These studies include accelerated 3D abdominal MRI, 

free-breathing DCE-MRI, abdominal 4D flow imaging. Table 1 summarizes studies that 

have been conducted in a clinical setting and this section describes representative examples 

selected from Table 1.
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Accelerated 3D Abdominal MRI

Abdominal imaging is one area with a need for scan speed due to the presence of respiratory 

motion. The combination of compressed sensing with free-breathing techniques, in 

particular, has been a popular research topic addressed by many groups. In the study of 

Cheng et al (64), an imaging technique was proposed for free-breathing pediatric abdominal 

MR exams. The VDRad sampling scheme was applied for continuous data acquisition, and a 

butterfly navigator (72) was implemented for respiratory motion detection. Motion 

compensation was performed through a combination of soft-gating and localized 

autofocusing, and the L1-ESPIRiT algorithm was applied to reconstruct the undersampled 

dataset. As shown in Figure 7, L1-ESPIRiT with either soft-gating or autofocusing achieved 

better image quality of the hepatic arteries than L1-ESPIRiT without motion compensation 

(yellow dashed arrows). A combination of soft-gating and autofocusing enabled further 

improvement in delineation of the liver dome (white arrow) and the hepatic vessels (yellow 

dashed arrows) comparing to L1-ESPIRiT with soft-gating or autofocusing alone, and also 

achieved better delineation of the hepatic arteries than the respiratory triggered reference.

In the study of Chandarana et al (75), accelerated 3D MR Cholangiopancreatography 

(MRCP) images were obtained within a single breath-hold, approximately 20-fold faster 

than conventional respiratory-triggered acquisition. MRCP is well suited for CS 

reconstruction as images are inherently sparse, because the strong T2-weighting suppresses 

background tissue, and biliary and pancreatic ducts that have fluid signal are visualized. In 

the proposed method, a variable-density Poisson-disc sampling scheme was employed for 

data acquisition and images were reconstructed with SPARSE-SENSE. The results were 

compared to free-breathing respiratory-triggered MRCP, which is the conventional imaging 

technique used in clinical exams. Figure 8 shows comparison of maximum intensity 

projection (MIP) images between breath-held SPARSE-MRCP and respiratory-triggered 

MRCP in two patients. In patient 1, breath-held SPARSE-MRCP achieved better image 

quality than free-breathing respiratory-triggered MRCP, which showed significant motion 

blurring due to poor respiratory triggering. In patient 2, breath-held SPARSE-MRCP 

demonstrated image quality comparable to that of the respiratory-triggered MRCP.

Free-Breathing Dynamic Contrast-Enhanced MRI

DCE-MRI is an integral part of routine abdominopelvic MRI examinations and is essential 

for identifying and characterizing lesions and tumors. Since tumor have a different contrast-

enhancement pattern than normal tissues, images need to be acquired at multiple time 

following the injection of the contrast agent. Therefore, rapid imaging is necessary to 

capture the temporal changes after injection of the contrast agent. In current clinical exams, 

a separate 3D image set at each enhancement phase is obtained during one breath-hold, and 

the acquisitions are usually accelerated using commercially available parallel imaging 

approaches. DCE-MRI is an ideal candidate for compressed sensing because of extensive 

spatiotemporal correlations and smooth signal changes during contrast enhancement. Several 

sparse body imaging techniques have been developed and applied to speed up data 

acquisition in DCE-MRI. The acquisitions for these techniques usually use a golden-angle 

ordering scheme, so that k-space data can be acquired continuously without the need to 
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predefine temporal frames or temporal resolution. Images at different contrast phases can 

then be retrospectively reconstructed to answer specific clinical questions.

In the study of Zhang et al (61), a technique was developed for free-breathing contrast-

enhanced pediatric MRI. The VDRad sampling pattern with butterfly navigator was used for 

continuous data acquisitions. Respiratory motion compensation was performed through soft-

gating, and the L1-ESPIRiT algorithm was used for image reconstruction with a locally low-

rank sparsity constraint. Conventional respiratory triggered was chosen as a reference for 

comparison. Figure 9a shows L1-ESPIRiT reconstruction with no motion weighting (left) 

and with soft respiratory gating (right). As indicated by the arrows, soft-gating improves the 

delineation of the liver edge and the hepatic vessels. Figure 9b shows zoomed and cropped 

image of the spleen and kidney at different contrast enhancement phases with a spatial 

resolution of 1.1x1.1 mm2. The progressive enhancement from cortical to medullary region 

of the kidney, as well as the perfusion pattern of the spleen can be seen in the images.

In the study of Chandarana et al (78), the GRASP technique was used for free-breathing 

DCE-MRI of the liver (33) and the results were compared to conventional breath-held VIBE 

(Volumetric Interpolated Breath-hold Examination) acquisitions. A temporal TV constraint 

was employed to minimize the first-order differences between consecutive temporal frames 

along the contrast-enhancement dimension. Due to low sensitivity to respiratory motion with 

radial sampling, good image quality could be achieved without need for additional motion 

compensation. Golden-angle stack-of-stars sampling, as implemented in GRASP, enabled 

continuous data acquisition and reconstruction with flexible temporal resolution for different 

clinical studies. As shown in Figure 10, GRASP achieves comparable image quality to 

breath-held scans in both arterial and venous phases.

The same authors later extended the GRASP technique into XD-GRASP for improved 

reliability of free-breathing DCE-MRI of the abdomen (74,79). A TV constraint was 

enforced along both the contrast-enhancement dimension and the newly created respiratory-

motion dimension. The XD-GRASP technique was compared to the original GRASP 

approach, showing improved image quality with higher image sharpness, better vessel-tissue 

contrast and greater delineation of a suspected lesion, as illustrated in Figure 11.

Flow Imaging

Flow imaging is a promising technique for assessment of abdominal vessel hemodynamics, 

and it can be used for the diagnosis of liver pathologies such as cirrhosis (87). In MRI 

studies, phase-contrast (PC) imaging is usually applied to evaluate the blood flow. However, 

data acquisition for PC imaging is relatively time-consuming because one phase-reference 

image and up to three additional velocity-encoded images must be acquired to obtain the 

flow information. In PC imaging, the background signal is static and the temporal signal 

variation only occurs in blood vessel regions. As a consequence, the resulting images exhibit 

a high level of sparsity in an appropriate transform domain, enabling high acceleration 

factors using compressed sensing.

Dyvorne et al proposed an accelerated imaging technique for 4D flow imaging within a 

single breath hold (85). Golden-angle stack-of-spiral sampling was employed for data 
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acquisition and images were reconstructed using the k-t SPARSE-SENSE framework. The 

results were compared to free-breathing Cartesian 4D flow imaging with respiratory 

navigator gating. Figure 12 shows images obtained with Cartesian (A–D, I) and spiral (E–H, 

J) 4D flow techniques. Magnitude images are shown in A and E and phase-difference 

images are shown in B–D and F–H. VX, VY, and VZ correspond to velocity measured with 

motion-encoding gradients in right-left, anterior-posterior, and foot-head directions, 

respectively. I and J are 3D angiograms showing segmented views of portal, splenic, and 

superior mesenteric veins with comparable quality and conspicuity.

Sparse Body MRI: Challenges and Opportunities

Challenges and Potential Solutions

There are several challenges for the application of compressed sensing techniques in routine 

clinical practice. A major limitation is the relatively long computation time currently 

required for non-linear iterative reconstruction processes. Large data sizes, which occur, for 

example, in dynamic imaging, impose additional computational burdens and require 

adequate hardware support and dedicated software implementations. One potential solution 

to improve reconstruction speed is to implement the reconstruction algorithms on graphical 

processing units (GPUs), which can provide high performance for computation of highly-

parallel transforms such as FFT, wavelets, and the gridding operation for non-Cartesian 

sampling. This has already been demonstrated for iterative reconstruction methods such as 

L1-SPIRiT (88–90), where online reconstructions in clinically feasible runtimes can be 

achieved. Given the latest advances in GPU devices, GPU-based computations are expected 

to play an important role in the translation of compressed sensing methods into clinical 

routine. In addition to parallel implementation of algorithms, coil compression (76,91) and 

numerical optimization algorithms with faster convergence can also contribute to achieving 

shorter reconstruction time. Cloud-based computing offers additional possibilities, which 

has already been demonstrated for reconstruction and post-processing of cardiac exams (92). 

Despite all these hardware and software implementations, the calculation speed can still be 

insufficient for directly reconstructing images online at the scanner. To address this problem 

and to enable wider use of compressed sensing reconstructions in clinical routine, software 

tools have been developed to transfer data to dedicated workstations and send the 

reconstructed images back to PACS (picture archiving and communication systems). This 

allows reconstruction of images offline on external high-performance computing servers 

without interrupting clinical MR workflow. Existing software tools for this purpose include 

the Gadgetron framework (93) (https://github.com/gadgetron) and the Yarra framework (94) 

(https://yarra.rocks), which are available online for free download.

A second obstacle for clinical implementation is the requirement to select appropriate 

regularization parameters (e.g., λ in Equation 2), which control the balance between data 

consistency and promotion of sparsity in the cost function. An excessively high 

regularization parameter value can lead to excessive removal of low-value coefficients in the 

sparse domain, resulting in image blurring or loss of small image features. On the other 

hand, an excessively low regularization parameter value will lead to incomplete removal of 

incoherent artifacts, which in turn degrades image quality for clinical diagnosis. Although, 
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in theory, parameter values can be selected based on the noise level of the samples, values 

are often chosen empirically by trained readers. Specifically, parameters can be determined 

by repeating the same reconstruction for one or multiple sample datasets with a range of 

different values. The value that achieves the highest image quality is then selected and 

applied to the reconstruction of other datasets for the same clinical application. However, 

although many studies have shown that such a selection scheme is adequate for qualitative 

assessment of reconstructed images, large-scale patient studies are necessary to fully 

evaluate clinical utility, reliability and reproducibility for quantitative evaluation in these 

cases. Alternatively, approaches such as the L-curve method (95) may be used to automate 

the selection of regularization parameters in an optimization problem

In addition to the high computational effort and the challenge of selecting proper 

regularization parameters, the lack of a suitable metric for image quality assessment 

constitutes another practical challenge for compressed sensing techniques. Conventional 

metrics, such as the signal-to-noise ratio (SNR), are not adequate due to the non-linear 

nature of compressed sensing reconstruction, and these metrics generally do not capture 

typical failure modes. For example, a “clean” image with very high SNR can be generated 

simply by increasing the regularization parameter to a large value, but the result would be 

unrealistic, as small details would be removed and image contrast perturbed. Currently, a 

common approach to assess image quality is qualitative evaluation of the reconstructed 

images by experienced radiologists who evaluate the diagnostic image quality in a blinded-

reader fashion. However, further studies to evaluate specific artifact behavior in different 

clinical applications are needed, and an automated method to measure image quality and to 

characterize lesions, in particular, would be highly desirable.

Emerging Image Reconstruction Strategies

Many of the previously mentioned reconstruction techniques have been tested in clinical 

applications, and some are being translated into routine clinical body MR exams. Recently, a 

number of new sparse MRI methods have been presented. Although most of them have only 

been tested in research settings so far, they have great potential to change clinical body 

imaging in the future. One promising example is the incorporation of a specific signal model 

into the reconstruction problem, in which parameter maps can be estimated directly from the 

acquired k-space data. For example, separated water and fat maps can be directly estimated 

from the acquired k-space data in chemical shift imaging (96–99). Perfusion maps with 

parameters such as Ktrans and Ve, can be estimated directly by including perfusion tracer-

kinetic models into the reconstruction process (100). Moreover, motion models, either rigid 

or non-rigid, can also be integrated to guide the image reconstruction and to determine 

motion fields for certain applications (73). Other examples include T1 and T2 encoding 

(101), diffusion encoding (102), and flow encoding (103). These models are expected to 

improve the sparsity conditions and the performance of sparsity-enforcing reconstructions.

Although non-Cartesian sampling has shown benefits in several MRI applications, it also 

poses several challenges compared to Cartesian sampling, including sensitivity to off-

resonances, gradient delays, and non-ideal gradient-amplifier responses. These system 

imperfections may result in image distortion or blurring if not corrected properly. However, 
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they can be corrected with separate gradient calibration or trajectory measurements 

(104,105) Furthermore, correction of these errors can also be included directly into the 

reconstruction of non-Cartesian images, which makes separate calibration scans unnecessary 

(106). Such approach can theoretically also be combined with compressed sensing and/or 

parallel imaging, making it promising for future use.

Another direction is to combine motion-correction algorithms with the XD-GRASP 

framework. For example, Rank et al recently proposed a four-dimensional joint motion-

compensated high dimensional total variation (4D joint MoCo-HDTV) algorithm (70), 

which alternates between motion-compensated image reconstruction and respiratory motion 

estimation at multiple spatial resolution levels. The reconstruction is performed 

progressively starting from a low spatial resolution series, based on the assumption that the 

low-resolution images with less undersampling artifacts enable better estimation of the 

motion. The algorithm has been tested for radial MR data of the upper abdomen with very 

high acceleration rates.

An Outlook for the Future

There has been a rapid growth of compressed sensing MRI techniques in the past decade. 

Although implementations are mainly limited to research applications, these early studies 

have demonstrated the feasibility of new applications with previously inaccessible imaging 

performance. The translation of these methods into routine clinical practice is expected and 

some subset of these methods will be available as commercial products from vendors.

Although many imaging techniques described in this paper have been implemented initially 

for T1-weighted body imaging, typical clinical body MR protocols also include T2-weighted 

and diffusion-weighted acquisitions, and research to incorporate these weightings is 

underway. Another promising research direction involves combination of MR fingerprinting 

(MRF) (107) concepts with some of the continuous imaging approaches outlined previously, 

to enable comprehensive model-based reconstructions for the quantitative characterization of 

the tissues and tumors.

Such considerations make it clear that the application of sparsity in MRI can go beyond pure 

acceleration of image acquisition. Rapid imaging can be combined with continuous data 

acquisition both to enhance information content and to simplify the imaging paradigm. The 

use of the golden-angle ordering scheme with sparse imaging techniques is one example that 

promises more than mere acceleration of existing imaging protocols. It could represent a 

shift of the day-today clinical workflow from conventional time-consuming and tailored 

acquisitions towards rapid and continuous volumetric acquisitions with flexible 

reconstruction that can be adapted retrospectively for diverse clinical or research needs 

(108).

Summary

Compressed sensing represents a major step forward in the development of rapid MRI 

techniques, with its capabilities being investigated in numerous applications. The methods 

and applications surveyed in this paper represent significant progress toward clinical 
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implementations for body imaging. In the future, sparsity-based techniques have the 

potential to shift the body MR imaging exam from its current time-consuming and 

cumbersome form to a new paradigm of continuous and comprehensive data acquisition 

with flexible image reconstruction. This shift will transform the experience as well as the 

information content of everyday clinical imaging, for clinicians, radiographers, and patients 

alike.
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Figure 1. 
Comparison of standard image compression (a) and compressed sensing (b). Image 

compression first acquires a fully-sampled image and then compresses it in the second step. 

Compressed sensing, on the other hand, builds the compression into the encoding process, 

thus acquiring only a subset of the encoding steps in a random pattern. The image is 

subsequently reconstructed from undersampled data with a suitable nonlinear algorithm. F: 

Fourier transform; T: sparsifying transform; CS: compressed sensing.
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Figure 2. 
MR images can be considered sparse in an appropriate transform domain. A liver image has 

as parse representation (i.e. a representation with a small number of high-value coefficients) 

in the wavelet space (a), and a dynamic contrast-enhanced image series has a sparse 

representation in the x-y-f (two spatial dimensions + temporal frequency dimension) space, 

with a FFT (fast Fourier transform) performed along the temporal dimension (b).
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Figure 3. 
(a) Regular undersampling generates coherent replicas of the signal structure; (b) Random 

undersampling generates incoherent artifacts that appear like added noise; (c) radial 

sampling permits undersampling along both spatial dimensions and thus enables a higher 

level of incoherence.
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Figure 4. 
(a) 2D Cartesian undersampling pattern, where undersampling is only performed along the 

phaseencoding dimension (ky); (b) 3D Cartesian undersampling pattern, where 

undersampling can be performed along two spatial dimensions (ky and kz); (c) 3D Cartesian 

undersampling pattern based on the Poisson-disc distribution, which limits the distances 

between samples across the entire k-space, with full sampling in a small central region; (d) 

2D dynamic Cartesian undersampling pattern, where a different sampling pattern can be 

employed in each temporal frame to provide additional temporal incoherence. White lines or 

points indicate acquired data.
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Figure 5. 
Various 3D golden-angle sampling schemes. (a) Stack-of-stars scheme, in which radial 

sampling is implemented in the kx–ky plane and Cartesian sampling is implemented in the 

kz plane; (b) Stack-of-spiral scheme, in which spiral sampling is implemented in the kx–ky 

plane and Cartesian sampling is implemented in the kz plane; (c) 3D Cartesian sampling, in 

which the k-space sampling in the ky–kz plane is segmented into multiple interleaves rotated 

by a golden-angle.
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Figure 6. 
Comparison of soft-gating with XD-GRASP sorting. Soft-gating (a) reduces motion blurring 

by binning the acquired k-space and then weighting them according to their motion state in 

the reconstruction process. XD-GRASP (b) sorts the acquired k-space data into multiple 

separated motion states and creates an additional motion dimension. Compressed sensing is 

performed to exploit correlations along the new dimension.
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Figure 7. 
L1-ESPIRiT with either soft-gating or autofocusing achieved better image quality of the 

portal vein than L1-ESPIRiT without motion compensation (yellow dashed arrows). A 

combination of soft-gating and autofocusing enabled further improvement in delineation of 

the liver dome (white arrow) and the hepatic vessels (yellow dashed arrows) compared to 

L1-ESPIRiT with soft-gating or autofocusing alone, and also achieved better delineation of 

the hepatic vessels than the respiratory triggered reference. (Images were obtained from the 

Figure 4 in Cheng JY et al. J Magn Reson Imaging. 2015 2015 Aug;42(2):407–20 and were 

reproduced with permission from the authors and the journal.)
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Figure 8. 
Comparison of maximum intensity projection (MIP) images between breath-held SPARSE-

MRCP (MR Cholangiopancreatography) and respiratory-triggered MRCP in two patients. In 

patient 1, breath-held SPARSE-MRCP achieved better image quality (despite approximately 

17-fold acceleration) than freebreathin respiratory-triggered MRCP, which showed 

significant residual motion blurring due to poor respiratory triggering. In patient 2, breath-

held SPARSE-MRCP demonstrated image quality comparable to that of the respiratory-

triggered MRCP. (Images were modified from the Figure 2 and Figure 4 in Chandarana H et 

al. Radiology. 2016 Aug;280(2):585–94 and were reproduced with permission from the 

authors and the journal.)
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Figure 9. 
(a) L1-ESPIRiT reconstruction with no motion weighting (left) and with soft respiratory 

gating (right). Soft-gating improves the delineation of the liver edge (dashed arrows) and the 

hepatic vessels (solid arrows). (b) Zoomed and cropped image of the spleen and kidney at 

different contrast enhancement phases with a spatial resolution of 1.1x1.1 mm2. The time of 

acquisition is shown on top of each contrast phase. Images show the progressive 

enhancement from cortical to medullary region of the kidney, as well as the perfusion 

pattern of the spleen. (Images were obtained from the Figure 2c and Figure 5a in Zhang T et 

al. J Magn Reson Imaging. 2015 Feb;41(2):460–73 and were reproduced with permission 

from the authors and the journal.)
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Figure 10. 
Comparison of conventional breath-hold VIBE (left) with free-breathing GRASP (right) in 

the arterial phase (top row) and the venous phase (bottom row). GRASP achieved image 

quality comparable to that of the breath-hold references in healthy volunteers who have 

excellent breath-holding capacity. (Images were obtained from the Figure 4 and Figure 5 in 

Chandarana H et al. Invest Radiol. 2013 Jan;48(1):10–6 and were reproduced with 

permission from the authors and the journal.)
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Figure 11. 
Comparison of GRASP without motion compensation to XD-GRASP with reconstruction of 

an extra respiratory motion for three image slices. XD-GRASP achieved improved vessel-

tissue contrast and vessel sharpness (white arrows in slice 1 and slice 2), and better 

delineation of hepatocellular carcinoma previously treated with chemoembolization (white 

arrow in slice 3).
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Figure 12. 
Representative results obtained with Cartesian (A–D, I) and spiral (E–H, J) 4D flow imaging 

techniques. Magnitude images are shown in A and E and phase-difference images are shown 

in B–D and F–H. VX, VY, and VZ correspond to velocity measured with motion-encoding 

gradients in right-left, anteriorposterior, and foot-head directions, respectively. I and J are 3D 

angiograms showing segmented view of portal, splenic, and superior mesenteric veins with 

comparable quality and conspicuity. Dark lines proximal to spleen on Cartesian series 

(yellow arrow) show cross-beam navigator used for respiratory gating in Cartesian 

acquisition. (Images were obtained from the Figure 2 in Dyvorne H et al. Radiology 2015 

Apr;275(1):245–54 and were reproduced with permission from the authors and the journal.)
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