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Abstract

Biomathematical models offer a powerful method of clarifying complex temporal interactions and 

the relationships among multiple variables in a system. We present a coupled in silico 
biomathematical model of articular cartilage degeneration in response to impact and/or aberrant 

loading such as would be associated with injury to an articular joint. The model incorporates 

fundamental biological and mechanical information obtained from explant and small animal 

studies to predict post-traumatic osteoarthritis (PTOA) progression, with an eye toward eventual 

application in human patients. In this sense, we refer to the mathematics as a “conduit of 

translation”. The new in silico framework presented in this paper involves a biomathematical 

model for the cellular and biochemical response to strains computed using finite element analysis. 

The model predicts qualitative responses presently, utilizing system parameter values largely taken 

from the literature. To contribute to accurate predictions, models need to be accurately 

parameterized with values that are based on solid science. We discuss a parameter identification 

protocol that will enable us to make increasingly accurate predictions of PTOA progression using 

additional data from smaller scale explant and small animal assays as they become available. By 

distilling the data from the explant and animal assays into parameters for biomathematical models, 

mathematics can translate experimental data to clinically relevant knowledge.
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Introduction

“We are buried beneath the weight of information, which is being confused with 
knowledge” – Tom Waits

The generation of massive amounts of data, in orthopaedic research as in any field of 

inquiry, brings into contrast the distinction between information and knowledge. In the case 

of post-traumatic osteoarthritis (PTOA), a wealth of valuable data comes from smaller-scale 

in vitro assays and small animal models1–7; however, the challenge is to translate this 

information into clinically relevant knowledge. Chu and Andriacchi have called for a 

systems-level approach to this challenge8. We argue here that new mathematical descriptions 

of the cellular and biochemical processes, added to the existing body of biomechanical 

models, is the answer to this call. Here, we present some specifics of a mathematical and 

computational approach designed to translate information gained from cell biology and 

animal modeling into strategies for the treatment and prevention of PTOA. In addition to its 

role in translation, in silico models have the added benefits of lower expense, greater 

diversity of models, and shorter times to results, when compared to experimental studies.

Our group’s focus to date has been on modeling the balancing act between pro- and anti-

inflammatory cytokines in injured articular cartilage, an approach based on a wound healing 

perspective9. Thus far we have modeled single mechanical insults such as occur in articular 

fractures and other joint injuries. Here we incorporate the contributions of chronic insults, 

which can occur with residual incongruity, a common sequela of joint fracture. 

Biomechanical models and computational simulations have a long, rich history in helping to 

understand the mechanics of bone and cartilage10–16. Incorporation of cell biology and 

biochemistry into these rigorous systems requires what we refer to as “biomathematical” 

models and simulations that are just beginning to be developed for PTOA17–21. Here, we 

propose that the chain of events leading from acute joint injury to PTOA, including 

mechanical stress and specific cellular pathways, can ultimately be described in sets of 

equations that represent known biomechanics and cellular responses to mechanical stress. 

Defining such multiscale relationships may help to predict thresholds for induction of 

disease after injury or the effectiveness of drugs and other treatments under real-world 

conditions.

Our specific approach to providing a “conduit for translation” relies upon calibration of in 
silico mathematical models by smaller-scale in vitro assays and the animal model data 

available. The preclinical information therein can thus be converted into predictions of 

human disease. These models, and hence the relevance of smaller-scale assays, can then be 

validated by large mammal or human data, allowing iterative refinement of the models 

themselves. By continuing to incorporate an ever increasing understanding of constituent 

processes, these mechanistic models bypass the need to infer outcomes from data often 

obtained in a somewhat different setting. For example, the ability to predict the weather 
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worldwide with ever increasing accuracy, but not earthquakes, may be due to the relatively 

greater foundational understanding of the underlying physics of weather patterns in the 

context of topography, seasons, jet stream, etc., encapsulated in mechanistic mathematical 

models not available for earthquakes22.

Thus, as an example of this conduit of translation we have built a mathematical model for 

cartilage response to injury from overloading. Here, as in our group’s prior work17–21, 

cartilage cell populations are separated into three model compartments, based on cells being 

“healthy”, “sick”, or “dead”. Within these compartments, cells are further subdivided based 

on signaling state or being necrotic or apoptotic. This approach originally relied upon delay 

differential equations, and later a mathematical construct called “age structure”, to represent 

the delays in the various signaling processes over time. Going forward, instead of 

representing the role of mechanical stress implicitly through certain functional forms in our 

biomathematical model, we are using finite element analysis (FEA) to incorporate 

biomechanical criteria explicitly21. The project presented here was designed to qualitatively 

predict the cartilage tissue’s reaction to systemic overload, in the context of inflammation 

and oxidative stress, with our simulations covering a period of 14 days post-injury. We 

showed previously that impact injuries to osteochondral explants cause chondrocyte necrosis 

and alarmin release, which provokes a local pro-inflammatory response23,24. This was 

mimicked in cell culture experiments using freeze-thawed chondrocyte lysates. We have 

shown in animal models that impact injuries to joint surfaces lead reliably to OA5,7.

Methods

The model in this paper belongs to a lineage of increasingly faithful representations of the 

underlying biological mechanisms, and increasingly rigorous calibrations to data. By 

translating explant and other small-scale assays to clinically relevant understanding, we have 

undertaken a mechanistic, rather than phenomenological, approach. Thus, the terms in the 

model equations represent specific mechanisms (e.g., the diffusion or production of a certain 

cytokine), and the parameters in the model have concrete meaning and units (e.g., a specific 

diffusion coefficient or production rate constant). This is in contrast to phenomenological 

models, where terms represent interactions between model components (e.g., the influence 

of one cell type on another), and the parameters have a more abstract meaning and are 

usually dimensionless (e.g., the basic reproductive number, R0, in epidemiology models). 

Parameterization (i.e., the calibration of the model by determining the parameters) is often 

the deciding factor in which kind of model to choose. Phenomenological models can be 

useful when detailed measurements of the underlying mechanisms are not available or of 

interest. However, in this case we have chosen to take advantage of a wealth of data from the 

research laboratories of the University of Iowa Department of Orthopedics and 

Rehabilitation to begin to construct mechanistic mathematic models of joint injury.

We recognize that the current state of knowledge does not allow a fully mechanistic 

determination of all the parameters in our model. To help us move towards a truly 

mechanistic model, in this paper we introduce a tiered classification scheme for our 

parameters. Tier I parameters must be estimated to match the desired output and are in 

greatest need of empirical determination. To partially address this weakness, we have 

Ayati et al. Page 3

J Orthop Res. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



examined the sensitivity of the simulation results to changes in Tier I parameters to rule out 

significant qualitative changes in the results from these parameters. Tier II parameters come 

from assays where the measurements are indirectly related to the mechanism the parameter 

represents. Tier III parameters are determined from direct assays of the mechanism the 

parameter represents. Tier IV parameters differ from Tier III parameters only in that their 

determination assays have been reproduced and as a result there is enough reliable data to 

produce a probability distribution of the parameter value. Our long term goal is to have all 

parameters reach Tier IV. The process of reaching this goal, iterating between experiment 

and simulation, is one means in which we view mathematics as a conduit of translation.

Model Equations

The model equations are based on the schematic in Figure 1. The model consists broadly of 

three populations of chondrocyte states: healthy, sick, and dead. We also track the 

extracellular matrix density. We consider three broad classes of cytokines: pro-inflammatory 

cytokines such as TNF-α and IL-6; anti-inflammatory cytokines such as erythropoietin 

(EPO); and damage-associated molecular patterns (DAMPs). For the cytokines, we represent 

the broader class of pro-inflammatory cytokines (PIC) by the variable F, the anti-

inflammatory cytokines by the variable P, and the concentration of DAMPs by the variable 

M. The equations for the chondrocyte state variables, as well as the concentration of 

extracellular matrix, U, are shown in Figure S-1. The model is based on conventional wound 

healing scenarios where expression of TNF-α and IL-6 is the initial response, which is 

followed by EPO. This sequence was confirmed in the osteochondral explant impact 

model19,20. Both TNF-α and IL-6 are well-known to be involved in the development of 

PTOA25.

For the cell state variables, within the healthy state we subdivide chondrocytes into those not 

yet signaled by DAMPs, those signaled by DAMPs and in the process of becoming 

catabolic, and those starting to produce EPO, denoted by CU, CT, and CE, respectively. 

Equations for the healthy cell populations are shown in Figure S-1. The state variables CU, 

CT, and CE use functional forms with specific meaning and importance. Equation (4) in 

Figure S-3 is the means by which we are able to use age-structure to model delays. Equation 

(5) in Figure S-3 links aspects of the biomechanics (strain) to the biomathematical model for 

the cytokine dynamics and cellular responses. The sick cell populations are divided into 

“catabolic” cells that synthesize inflammatory cytokines, and erythropoietin receptor 

(EPOR)-active cells that express a receptor for EPO and can switch back to the healthy state 

CU when signaled by EPO. These are denoted by the variables ST and SA, respectively. The 

equations for the sick cell populations are shown in Figure S-4. The dead cells are divided 

into apoptotic and necrotic cell populations, denoted by DA and DN, respectively. Among 

the dead cells, we only track DN explicitly. Apoptotic cells are assumed to be removed from 

the system. The equations governing DN are shown in Figure S-5.

The model equations are solved numerically on a computer. We use Abaqus FEA software 

(Dassault Systèmes, Paris, France) to simulate the external loading on an articular cartilage 

explant. As with the biomathematical model, we assume radial symmetry of the cylindrical 

explant (radius = 2.5 cm, height = 1 cm), so that the axisymmetric computational domain is 
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a rectangle. A pressure of 0.4 MPa is applied on top of the rectangle to simulate constant 

external loading from a cylindrical indenter (radius = 5.5 mm). The resulting vertical 

displacements are computed at over 250,000 nodes, with the axial strains calculated and 

entered into the model as the parameter ε in function Γ (see Eqn. 5 in Figure S-2). Once we 

have the steady-state strain computations from Abaqus, we solve the age- and space-

structured equations using our own software and methods. The methods have a rigorous 

mathematical foundation26–29, and have been used in a range of applications such as Proteus 
mirabilis swarm colony formation30–32, avascular tumor invasion33, biofilm growth and 

senescence34,35, dormancy in bacteria36,37, and articular cartilage lesion formation related to 

the work in this manuscript19–21.

All parameters and their chosen default values are shown in Table S-1. Several of the 

parameters were estimated from the literature4,17–20,38. Thirteen of the model parameters 

were estimated from previous computational work and were perturbed as part of a sensitivity 

analysis. The parameters and the ranges over which they were perturbed are shown in Table 

S-2. The way the sensitivity analysis was done was by changing the desired parameter, 

keeping all other parameters at their default values, running the software, and recording the 

resulting variable values. The relative difference between the variable values of the changed 

parameter run versus the default parameter run was calculated using the formula: relative 

difference = (perturbed parameter value – default value)/default value. The “values” were 

the average variable value over all spatial points at the final time step, integrating over age 

for the age-dependent variables.

Convergence Analysis

The default parameter run was compared to three refined discretization runs to verify the 

adequacy of our spatial mesh resolution, the age intervals, and the time steps. The first 

refinement successively halved the spatial intervals, the second successively halved the age 

intervals, and the third successively halved the time tolerance (essentially halving the time 

step interval). The relative errors for the variables CU, ST, and P (EPO) (cellular densities 

and chemical concentrations) were estimated by the formula: Relative error = (refined value 

− default value)/default value, where “value” was the value for the given variable at each 

spatial points at the final time step (14 days). For the age-dependent variable ST, we 

integrated over the age interval. For the time step and age interval refinement runs, the 

maximum relative errors were 0.0002 and 0.0005, respectively. For the spatial interval 

refinement run, the highest relative error was 0.007.

Results

At the current stage of parameterization, our predictions are qualitative and meant to match a 

generic response to modest overloading, as seen in Figure 2 and in more detail in Figures 

S-6 to S-11. As the parameterizations become more exact, we anticipate more exact 

simulation results. At this stage, the more significant results are in the sensitivity of model 

output to changes in a parameter. Sensitivity to a parameter either identifies an area for 

model refinement (if the sensitivity is an artifact of the mathematics), or an area for 
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therapeutic intervention (if the sensitivity observed is due to an underlying biological, 

biomechanical, or biochemical mechanism).

Sensitivity Analysis

A study of the response of the system to changes in the parameters has the potential to 

provide a sense of the reasonableness of the parameter choices, especially for our Tier I 

(estimated) parameters; and using parameter sensitivity, due to underlying physiological 

processes, to identify potential areas of therapeutic intervention. Sensitivity analysis of our 

parameters, in their current state of determination, mainly gives us the former: a check on 

the reasonableness of our estimations. As more and more parameters become determined 

experimentally, and the sensitivity of a given parameter is observed both in silico and in 
vitro, sensitivity analyses would increasingly gain value in how they help translate the 

results of the small scale assays to identify targets for therapeutic intervention. Sensitivity 

analyses, and Uncertainty Quantification (UQ) more generally, are the rough analogs, for 

modeling and simulation, of statistical analyses for experimental assays39.

The results of the sensitivity analysis can be seen in Table 1. The most sensitive parameters 

(within the range of the chosen values) were β13 and λM, where β13 determines the rate at 

which unsignaled cells (CU) become pre-catabolic cells (CT) and λM controls the effect of 

DAMPs on that transition. The importance of these two parameters for the behavior of the 

system, especially in the initial stages, is evident. Several parameters changed the system 

behavior significantly at certain values: λF = 0.1 (controls the impact of PIC on the system), 

β11 = 50 (controls the rate at which pre-catabolic CT cells transition to catabolic ST cells), κ1 

= 0.037, and κ2 = 1. The parameters κ1 and κ2 define the rate of transitions of CE to CT and 

ST to SA cell states, respectively. Since low λF increases the impact of PIC on the system, 

the resulting large increase in “sick” cells and harmful chemicals is not surprising. Lowering 

β11 leads to fewer catabolic cells, hence lower concentrations of PIC. Lower values for κ1 

and κ2 decrease the rate of cellular recovery (“sick” to unsignaled), hence the higher values 

for “sick” cells and harmful chemicals, as seen in Table 1. Table 1 does not include 

sensitivity of CU and DN cells. The ECM is not included either because most parameter 

perturbations did not lead to significant ECM damage. The only parameter values that 

resulted in damage to the ECM were λM = 0.1 and λF = 0.1, the relative decrease in ECM 

density being 0.2%.

Discussion

While the behavior of our model is heuristically reasonable in that model predictions 

qualitatively match observations in larger animal models and humans, a rigorous validation 

of these results is not yet possible. When we have a higher fidelity parameter set, we will 

move ahead with the challenge of validation. Once the biomathematical model is validated, 

we can move on to our ultimate goal of patient-specific treatment and prevention. The 

mechanistic models, calibrated by the smaller-scale assays, will need to be augmented with 

patient-specific information such as injury severity, time since injury, the age of the patient, 

the presence of diabetes or other relevant comorbidities, and the specific joint in question.
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A more extensive exploration of the computational results against clinical results, an 

important eventual milestone, will require additional complementary data. In this regard, we 

note that future model predictions of chondrocyte health following an intra-articular fracture 

(IAF) will be informed by evidence we have gathered in clinical studies over the past 

decade1,6,15,40–45. Results from those studies have clarified the pathomechanical etiology of 

PTOA using patent-specific computational modeling methods. This has led to a better 

understanding of the role of both the acute fracture severity and the chronic contact stress 

exposure following surgical fracture reduction in determining the fate of the joint tissues.

Complementary explant and animal studies have clarified the direct influence of these 

mechanical factors on chondrocyte health and survival3,5,46. Strong evidence also indicates 

preferential chondrocyte death associated with IAF along fracture edges at the articular 

surface47. The acute fracture metrics can be calculated from pre-op CT scan data using 

methods developed in the UI Orthopedic Biomechanics Laboratory1,43,44. Fracture 

mechanics theory is used to compute the fracture energy by appropriately weighting 

fracture-liberated (inter-fragmentary) surface area by local bone density information, 

available from the CT Hounsfield Unit intensities. The articular fracture edge length can be 

computed once inter-fragmentary surfaces have been identified in the CT data, by 

classifying different surfaces of bone fragments involving the articular surface to define the 

articular fracture edge as the boundary between the subchondral bone “surface” and inter-

fragmentary surfaces45. Patient-specific computational stress analysis methods provide a 

direct measure of the chronic contact stress exposures6,41.

One of the greatest challenges for continuation of this project is applying this mathematic 

approach in space at each scale. Advancing and refining the FEA computations will allow 

for more accurate descriptions of the mechanical environment a given cell might be under; 

however, the architecture of cartilage including tissue zones and chondrocyte groupings 

must also be replicated within the model. These additions are challenging, but possible. We 

have also refined our understanding of redox processes in this context to the point where we 

consider them to only be an intracellular player, given the distances between individual 

chondrocytes. While nitric oxide may diffuse between cells, it seems highly unlikely other 

ROS can make the trip.

As presented, the greatest strength of our model system has been positing a time course for 

cytokine release and cell responses. Our data suggest that after 14 days, the tissue response 

appears to be largely determined and the damage to the ECM is irreversible. Therefore, the 

time frame for successful treatment approaches is short and injuries that may have induced 

cartilage surface incongruities have to be examined as early as possible, at most within a 

week. Observing this trend through subsequent iterations of our model may suggest 

improvements that can be made to current surgical techniques or, particularly, drug 

development and the timeliness of drug application.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic of the mathematical model
The boxes indicate chondrocyte states, solid arrows indicate cell state transitions, dashed 

arrows indicate promotion of a transition, and dashed barriers indicate suppression of a 

transition. The affecting cytokine is indicated along the arrow. The variables CU, CT, and CE 

denote the three healthy-cell populations, resp.: those not yet signaled by DAMPs, those 

signaled by DAMPS and in the process of becoming catabolic, and those starting to produce 

EPO. The variables ST and SA denote the two sick-cell populations, resp.: “catabolic” cells 

that synthesize inflammatory cytokines and ROS, and EPOR-active cells that express a 

receptor for EPO and can switch back to the healthy state CU when signaled by EPO. 

Apoptotic and necrotic cell populations are denoted by DA and DN, resp.
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Figure 2. Contour plot of the healthy unsignaled cells (CU)
The density of the CU cells reduces more rapidly at the top of the simulated cartilage explant 

and the effect of the external loading diminishes at the bottom layers. The horizontal axis is 

radius of the cylindrical explant, and the vertical axis is depth.

Ayati et al. Page 12

J Orthop Res. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ayati et al. Page 13

Table 1

The relative effect of the perturbed parameters on the variable values

Variable Mod. Pos. High Pos. Extr. Pos. Mod. Neg. High Neg.

CT β13 = 15;
κ1 = 1

β13 = 20 λF = 0.1
λM = 0.9

β13 = 1, 5
λM = 0.1

CE β13 = 15 β13 = 20 β13 = 5
κ1 = 5

λF = 0.1

β13 = 1
κ1 = 1

λM = 0.1

ST κ1 = 1
κ2 = 5

β13 = 15 β13 = 20
κ2 = 1

λF = 0.1
λM = 0.3

β11 = 50
β13 = 5
κ2 = 20
λM = 0.7

β13 = 1
λM = 0.1, 0.9

SA β11 = 150 β13 = 15
κ1 = 1

λF = 0.3

β13 = 20
λF = 0.1

λM = 0.1, 0.3

λF = 0.9 β11 = 50
β13 = 1, 5
κ2 = 1

λM = 0.7, 0.9

M β13 = 15
κ2 = 1

β13 = 20
λF = 0.3

λF = 0.1
λM = 0.1, 0.3

β13 = 5
λM = 0.9

β13 = 1

F β11 = 150
κ1 = 1
κ2 = 5

β13 = 15 β13 = 20
κ2 = 1

λF = 0.1
λM = 0.1, 0.3

β11 = 50
λM = 0.7

β13 = 1, 5
λM = 0.9

P β13 = 15 β13 = 20 β13 = 5
κ1 = 5

λF = 0.1

β13 = 1
κ1 = 1

λM = 0.1

Mod. Pos. = moderately positive (30 – 50% relative increase), High Pos. = highly positive (50 – 100% relative increase), Extr. Pos = extremely 
positive (>100% relative increase), Mod. Neg. = moderately negative (30–50% relative decrease), High Neg. = highly negative (50–100% relative 
decrease). The table includes the parameter and the value at which the difference can be observed in the model outcome.
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