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Abstract

Disease alters tissue microstructure, which in turn affects the macroscopic mechanical properties 

of tissue. In elasticity imaging, the macroscopic response is measured and is used to infer the 

spatial distribution of the elastic constitutive parameters. When an empirical constitutive model is 

used these parameters cannot be linked to the microstructure. However, when the constitutive 

model is derived from a microstructural representation of the material, it allows for the possibility 

of inferring the local averages of the spatial distribution of the microstructural parameters. This 

idea forms the basis of this study. In particular, we first derive a constitutive model by 

homogenizing the mechanical response of a network of elastic, tortuous fibers. Thereafter, we use 

this model in an inverse problem to determine the spatial distribution of the microstructural 

parameters. We solve the inverse problem as a constrained minimization problem, and develop 

efficient methods for solving it. We apply these methods to displacement fields obtained by 

deforming gelatin-agar co-gels, and determine the spatial distribution of agar concentration and 

fiber tortuosity, thereby demonstrating that it is possible to image local averages of microstructural 
parameters from macroscopic measurements of deformation.
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1 Introduction

Several diseases lead to changes in tissue microstructure. For example, the progression of an 

invasive phenotype in breast cancer is accompanied by an increase in the concentration of 
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collagen [Kass et al., 2007]; and in later stages, by a significant reduction in the tortuosity of 

the collagen fibers [Provenzano et al., 2006]. Similarly, cirrhosis in the liver is accompanied 

by an increase in the concentration of collagen [Wells, 2013]. Changes in microstructural 

organization of the type described above, in turn lead to changes in the macroscopic 

mechanical properties of tissue. For instance, an increase in collagen concentration within 

certain regions of the breast and the liver, typically leads to a higher elastic modulus in these 

regions. The reduction in the tortuosity of collagen fibers in malignant breast tumors leads to 

an enhanced nonlinear elastic response of the tissue within these tumors [Goenezen et al., 

2012].

These macroscopic changes in the mechanical properties of tissue can be measured using a 

group of techniques that are collectively referred to as elasticity imaging [Ophir et al., 1991, 

Parker et al., 2005, Barbone and Oberai, 2010]. In elasticity imaging, images of the 

mechanical properties of tissue are generated by making use of conventional imaging 

techniques such as ultrasound, magnetic resonance imaging or optical coherence 

tomography. The basic process involves imaging the tissue as it deforms (in response to an 

internal or an external excitation) using a conventional imaging technique, and then using 

the sequence of images thus obtained to determine the displacement field within the tissue. 

Once this field is known, it may be used in conjunction with the equations of balance of 

linear momentum and an appropriate mechanical model (constitutive law) in order to 

determine the spatial distribution of the mechanical properties of tissue. Elasticity imaging 

has now been used to diagnose different types of diseases. In particular, high linear and 

nonlinear elastic parameter values in breast tumors have been used to distinguish malignant 

lesions from benign lesions [Berg et al., 2012, Goenezen et al., 2012] and a high value of the 

the linear elastic modulus of liver has been used to diagnose liver fibrosis [Talwalkar et al., 

2007, Huwart et al., 2008].

While the applications of elasticity imaging described above are exciting and carry a lot of 

promise, they have thus far used phenomenologically derived constitutive models. In most 

applications, a linear elastic and isotropic constitutive model has been used, and in a few 

cases with finite deformation an exponential-type stress strain law has been used. A natural 

extension of these ideas is to consider constitutive relations that are derived from a 

microstructural model for the tissue [Lanir, 1979, Lanir, 1983, Cacho et al., 2007, Billiar and 

Sacks, 2000a, Billiar and Sacks, 2000b]. With these models elasticity imaging could be used 

to determine the spatial distribution of parameters that are directly linked to the 

microstructure. As a result it will offer a more direct evaluation of the health of the tissue. It 

might also be used to understand the microstructural reorganization that takes place during 

disease progression. This extension of elasticity imaging to a technique that can be used to 
image microstructural parameters is the main topic of this paper.

As a model for the microstructure, we consider a network of fibers where each fiber is 

parameterized by its linear stiffness and its tortuosity. Similar models have been utilized by 

several authors in the past [Lanir, 1979, Lanir, 1983, Cacho et al., 2007, Billiar and Sacks, 

2000a, Billiar and Sacks, 2000b]. Thereafter we use a simple homogenization approach to 

determine the macroscopic mechanical behavior, that is the constitutive model, of a material 

that is comprised of a network of these fibers. In determining this response we do not solve a 
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microscopic problem; rather we assume that the microscopic deformation is equal to the 

applied macroscopic stretch, which is the so-called affine assumption. We account for the 

violation of this assumption by introducing a correction factor (determined from [Shahsavari 

and Picu, 2012]) in the macroscopic response. Once the macroscopic constitutive model is 

developed, we use it in the formulation of the inverse problem of interest, which reads as 

follows: Given the displacement field in the specimen, determine the spatial distribution of 
the material parameters, and hence the microstructural mechanical parameters, within the 
specimen. We apply this approach to specimens made from gelatin-agarose co-gels, and 

determine the spatial distribution of two microstructural parameters: agar concentration, and 

effective fiber tortuosity from displacement estimates. For both properties we compare our 

predictions with independent benchmarks and note that we are able to estimate these 

parameters quite accurately.

The format of the remainder of this paper is as follows: In Section 2 we derive our 

microstructure-based constitutive model. In Section 3, we define the strong and the weak 

form of the forward problem corresponding to this model. In Section 4, we define the 

corresponding inverse problem as a constrained minimization problem, and describe an 

efficient method for solving this problem. In Section 5, we consider a synthetic (computer-

generated data) inverse problem to test our numerical method. In Section 6, we apply our 

approach to determine the spatial distribution of microstructural parameters of gelatin-agar 

co-gels. We end with conclusions in Section 7.

2 Microstructure-based Constitutive Model

2.1 Model for an individual wavy fiber

In order to model the mechanics of a tortuous fiber, it is assumed that it is wavy in its 

unloaded state, and is characterized by its stiffness κ, and the nonlinear parameter γ, which 

is a measure of fiber tortuosity τ0. The tortuosity is defined as the ratio of path-length, L, to 

the end-to-end length, L0, as shown in Figure 1. The force-stretch relation for a single fiber 

with orientation θ = [θ, ϕ] is given by

(1)

where, λθ is the stretch of the fiber. We note that the exponential form of this expression is 

motivated by previous work [Billiar and Sacks, 2000a, Billiar and Sacks, 2000b]. However, 

within the exponential we use the stretch, and not its square. This allows us to obtain a 

simple relation between the nonlinear parameter and the tortuosity of the fiber. The role of κ 
and γ in determining the mechanical response of the fiber is described in Appendix A.

Let us consider a wavy fiber with tortuosity τ0 that is subject to a force. The stiffness of the 

fiber at different values of stretch is quantified by the slope of the force-stretch curve. We 

expect this stiffness to vary as a function of the stretch. In particular, when the value of the 

applied stretch approaches the value of the tortuosity we expect the stiffness of the fiber to 

increase substantially. We may use this behavior as a means to infer the tortuosity of fiber. In 
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particular, we say the tortuosity of the fiber may be estimated by the value of stretch at 

which the stiffness of the fiber is two times its stiffness at zero strain. For the specific force-

stretch relation that we have assumed (1), this yields,

(2)

From equation (2), we observe that tortuosity τ0 is approximately equal to one plus the 

inverse of nonlinear parameter γ. Thus a fiber with a large value of tortuosity will have a 

smaller value for the nonlinear parameter. We note that the choice of the ratio (selected to be 

2 in the relation above) is arbitrary. In effect, we could have chosen any number C > 1. In 

that case the analysis above would have yielded

(3)

Even in this case we note that γ is an inverse measure of the tortuosity of the fiber.

In the next subsection, we will evaluate the strain energy of a homogenized material as the 

sum of the strain energy of individual fibers. For this we first estimate the strain energy 

associated with a single fiber,

(4)

where

(5)

2.2 Modeling fibrous materials

In this section we derive an expression for the total strain energy density function for 

materials that are comprised of a collection of fibers of the type described in the previous 

section. At every point in the material we assume the existence of density function n̂(θ), 

such that the product n̂(θ)dθ represents the number of fibers per unit volume with 

orientation in the interval (θ, θ + dθ) × (ϕ, ϕ + dϕ).

The total strain energy density function for the composite material with the fibers is obtained 

by integrating the strain energy density for fibers over all possible orientations. This yields,
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(6)

For an isotropic distribution of fibers the density function n̂(θ) is independent of θ, and is 

given by , where n is the number density of fibers per unit volume. In this case, the 

total strain energy density function reduces to [Gasser et al., 2006, Miehe et al., 2002, 

Garikipati et al., 2008, Alastrué et al., 2009]

(7)

The λθ appears in (7) is the stretch for a fiber with a given orientation θ. It is different for 

each fiber, and in general its value must be evaluated by applying a macroscopic stretch to a 

representative volume element, and then evaluating the individual stretch of each fiber. An 

approximation to this value is obtained by making the so-called affine assumption [Lanir, 

1979]. Here the stretch for each fiber is approximated as the macroscopic stretch projected 

along the orientation of the fiber, that is

(8)

where N(θ, ϕ) = [cos θ, sin θ cos ϕ, sin θ sin ϕ] is the unit vector along the fiber orientation, 

C is the right Cauchy-Green strain tensor associated with the macroscopic stretch.

Several studies have assumed affine deformation for collagen fibers [Billiar and Sacks, 

2000a, Zulliger et al., 2004]. It is a convenient assumption since it circumvents solving a 

microscopic problem in order to determine the response of fibers oriented along arbitrary 

directions. However, recent studies have suggested that the deformation of a typical network 

might be actually be non-affine [Head et al., 2003a, Head et al., 2003b, Wilhelm and Frey, 

2003]. For instance, in an experimental investigation of porcine aortic valve leaflets and 

bovine pericardium, Billiar [Billiar and Sacks, 1997] reported that fiber networks undergo 

non-affine deformation. In [Liu et al., 2007] the authors found that cross-linked actin 

networks are dominated by non-affine deformation at shear strains between 10 % and 30 %. 

In [Shahsavari and Picu, 2012] it was observed that non-affine deformations are promoted in 

networks with lower concentration of fibers, and by fibers for which bending energy is more 

significant than axial strain energy.

When the deformation of the network is assumed to be affine, the stretch of individual fibers, 

as given by (8), is independent of the concentration of the fibers. Consequently from (7) it is 

clear that the total strain energy density of the network (and the effective modulus) scales 

linearly with fiber concentration. However, when the deformation is non-affine, this is not 

the case [Huisman and Lubensky, 2011, Broedersz et al., 2012, Shahsavari and Picu, 2012]. 

In that case a different scaling is obtained. In particular, in [Shahsavari and Picu, 2012], it is 
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shown that the effective network modulus is equal to the network modulus times a 

“correction” factor given by

(9)

where α is a dimensionless constant,  is the radius of gyration, that is the ratio of 

fiber bending and axial stiffness (I and A are the moment of inertia and the cross-sectional 

area of fiber, respectively). The non-dimensional parameter  controls the 

departure from affine deformation for the network. For large values of this parameter, the 

deformation is affine, and β → 0, while for small values it is non-affine, and β → 7. In the 

intermediate range β lies between 0 and 7, that is β ∈ (0, 7).

Returning to our expression for the total strain energy density of the composite, we make the 

assumption that the deformation is affine, that is, utilize (8). Further, we introduce the 

correction factor described in (9) to account for the fact that the affine assumption may be 

inappropriate for certain networks. This leads us to the following expression for the strain 

energy density,

(10)

Remarks

1. For an incompressible material with strain energy density function given by the 

above equation, under the assumption of infinitesimal strain (denoted by ε11) and 

uniaxial stress, the Cauchy stress is given by (see Appendix B),

(11)

Motivated by this we define

(12)

to be the linear elastic modulus for the composite material. We note that for a 

linear elastic constitutive model this modulus, which represents the slope of the 

uniaxial stress-strain curve, is referred to as the Young’s modulus. Motivated by 

that convention we also refer to is as the Young’s modulus in this manuscript. 

Therefore the final expression for the strain energy density is given by
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(13)

This expression contains two material parameters, γ and E that are related to the 

microstructural parameters associated with the fiber through the relations (2) and 

(12), respectively.

2. In this manuscript we are interested in agar-gelatin co-gels. For these networks 

the parameter  is relatively small so that we can anticipate non-affine 

behavior, that is β ≠ 0. However, this parameter is not small enough to attain the 

asymptote β = 7. Experimental measurements of the effective elastic modulus for 

these networks indicate that it varies with the square of the concentration [Hall et 

al., 1997, Ferry, 1968]. Given this, from (12) we conclude that for these materials 

β = 1 and the Young’s modulus is related to the microstructural parameters 

through,

(14)

3. In order to compute the total strain energy density function (or stress) at a 

quadrature point in a finite element implementation, the integral in equation (13) 

is approximated numerically. Since it represents an integral over the surface of a 

sphere of unit radius, this surface is discretized into M triangular elements each 

with area A(i). The mid-point rule is used to evaluate the value of the orientation 

vector for the fibers contained within the solid angle subtended by each triangle. 

In the numerical examples presented in this paper, M = 808. This number was 

selected by performing a mesh convergence study. For other strategies on 

performing this integration, including higher-order methods, the reader is 

referred to [Alastrué et al., 2009, Bažant and Oh, 1986]. Thus the discretized 

form of the total strain energy density function can be written as,

(15)

We assume that fibers in the network are not able to sustain compressive loads. 

In equation (15), this is expressed by including contributions only from those 

fibers for which λθ ≥ 1.

4. To investigate the predictive capability of our model, the macroscopic 

constitutive response of a material under uniaxial tension is shown in Figure 2. 

The two samples considered have the same Young’s modulus E = 1; however 

they have fibers with different tortuosity, as represented by the different values of 
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γ. We observe that the sample with fibers with smaller tortuosity shows an early 

onset of nonlinear behavior. This is due to the microstructural differences in the 

two samples. When we perform a uniaxial tension on a fibrous material, it offers 

little resistance until a point where embedded fibers become uncoiled, following 

which they start to carry a significant load causing the stress-strain curve to rise 

sharply. The fibers with smaller values of tortuosity are recruited at a small value 

of overall strain and thus that sample displays an early onset of nonlinear 

behavior.

5. We note that once a wavy fiber is uncoiled, and it undergoes an increase in 

stiffness, it may display behavior that is not represented by our model, which 

assumes that its stiffness keeps increases exponentially. Other types of responses 

that have been observed beyond this limit include constant stiffness, or a 

softening due to damage and failure [Shen et al., 2011, Cacho et al., 2007]. This 

limits the suitability of our microstructural model to levels of microstructural 

strain where we do not expect any damage. We would like to however point out 

that the averaging procedure described above, and the inverse problem approach 

that is described in the following section, is agnostic to this limitation. In 

particular, the averaging procedure and the inverse problem approach can be 

applied in conjunction with other microstructural models that demonstrate more 

accurate large strain response.

3 The forward problem

In this section we describe a forward elasticity problem for a material whose strain energy 

density is described by (13). We first pose this problem in three dimensions and then 

simplify it to the case of two-dimensional plane stress. This latter case is particularly 

relevant to elasticity imaging using ultrasound and optical techniques, where displacement 

data is often obtained in a two-dimensional imaging plane.

3.1 Three dimensions

In three dimensions for an incompressible medium, the strong form of the equilibrium 

equation can be written in the reference configuration Ω0, as

(16)

(17)

(18)
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(19)

In above equations, F is the deformation gradient, J is its determinant, S is the second Piola-

Kirchhoff stress tensor, U is the displacement field, G is the displacement boundary data, H 
is the applied traction data, and N̂ is a unit outward normal vector. Further, ΓG denotes the 

part of boundary where the displacements are prescribed (essential BCs), ΓH denotes the 

portion of the boundary where the tractions are prescribed (natural BCs), and Γ0 denotes the 

entire boundary of Ω0. For simplicity we assume that any boundary is either an essential or a 

natural boundary, that is  and ΓG ∩ ΓH = ∅.

The equation for the second Piola-Kirchhoff stress tensor is given by

(20)

where p is the pressure. Using the expression for the strain energy density given by equation 

(13) in the above we arrive at

(21)

3.2 Plane stress

Under plane stress assumption, the displacements are independent of the out-of-plane 

coordinate, and all out-of-plane stress components vanish. Using these assumptions in (21), 

one may eliminate the pressure to arrive at the following relation for Sαβ, which is valid for 

α, β = 1, 2,

(22)

where I2 is the second principal invariant of the two-dimensional right Cauchy-Green tensor. 

We note that even though macroscopic problem is one of plane-stress, and hence two-

dimensional, we assume that the microstructure is still three-dimensional. Consequently the 

integration above is over two angular coordinates. The equations of equilibrium (16) and the 

boundary conditions (18) – (19) remain unchanged, with the caveat that they hold in the in-

plane coordinates. The equation representing conservation of mass, that is the 

incompressibility constraint (17), is not enforced explicitly since the out-of-plane 

deformation adjusts to accommodate it.

The forward problem is given by: Given the material parameters E and γ and the boundary 
data G and H, determine the displacement field in Ω0 such that equations of equilibrium 
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(16), and the boundary conditions (18) – (19) are satisfied, where the stress tensor is given 
by (22).

3.3 Variational formulation

In this paper we are interested in solving the inverse problem associated with the forward 

plane stress problem described in the previous section. In order to do that we will set up an 

interative scheme, which will require the solution of the forward problem, and the associated 

adjoint problem at every iteration. We will solve these using the finite element method based 

on the weak, or the variational, form of the forward problem. This form may be derived from 

a weighted-residual form of the forward problem, or it may be obtained by minimizing the 

overall potential energy. In either case, under the plane-stress hypothesis, it is given by: Find 
the displacement field U ∈  such that,

(23)

where

(24)

(25)

The function spaces , and  are defined as

(26)

(27)

Both  and  spaces are subsets of H1, the Sobolev space of square integrable functions 

with square integrable derivatives. Functions that are contained in  satisfy the Dirichlet 

boundary condition, while functions in  satisfy its homogeneous counterpart.

4 The inverse problem

The inverse problem can be solved as a constrained minimization problem [Gokhale et al., 

2008], where the goal is to find the spatial distribution of material properties (E, γ) that 

minimizes the difference between the measured Ũn and the predicted displacement fields Un, 
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where the superscript n denotes the nth measurement. Each of the predicted displacement 

fields is required to satisfy the forward elasticity problem described in the previous section.

The objective function is given by

(28)

In the equation above the first term represents the displacement matching term that measures 

the difference between the measured and the predicted displacement fields in the L2 norm. 

The measured fields are typically obtained by observing the tissue (or the soft material) 

deform using a conventional imaging modality (like ultrasound, optical coherence 

tomography, x-ray tomography etc.) and then performing image-cross correlation on 

successive images in order to determine the incremental displacement field. This 

incremental field is mapped back to the reference configuration, and then summed in order 

to obtain the total deformation field.

The predicted displacement fields Un are constrained to satisfy the equations of equilibrium, 

and are obtained by solving the forward problem corresponding to a given guess of the 

material property distribution. The “weights” wn that appear in the objective function (28) 

are selected so that the magnitude of the contribution from multiple measured displacements 

to the displacement matching term is roughly equal. The tensor T is used to weigh the 

different components of displacement within a single measurement differently. This is 

necessary because different components are often measured with different levels of 

accuracy. For example in ultrasound elastography, the component of the measured 

displacement along the axis of the transducer is around ten times more accurate than the 

other components.

The second and the third terms in (28) are the regularization terms, that are added to provide 

stability to the inverse problem, which is often ill-posed. In particular, it is well known that 

small perturbations in the measured displacements can lead to large variations in the 

reconstructed parameters. The regularization term is typically a measure of overall spatial 

variation of the reconstructed parameters. In our paper we have used the total variation 

regularization [Rudin et al., 1992],

(29)

which penalizes the total variation in the material parameters, without regard to the 

magnitude of the slope of the variation. In doing so, for sharply varying material properties, 

it diminishes the contrast of the variation but does not cause it to spread or smear out. We 

note that in the equation above c is a numerical parameter which ensures that regularization 

term is smooth function of the material parameters.
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The regularization term is multiplied the parameter, α, which is referred to as the 

regularization parameter. Large values of this parameter enhance the effect of the 

regularization term at the expense of displacement matching term. This yields smooth 

material property distributions and large differences between the predicted and the measured 

displacement fields. Small values of this parameter lead to large variations in the material 

property distributions but small displacement matching terms. The optimal value of this 

parameter is dependent on the noise in the measurements, and reflects a compromise 

between the smoothness of the reconstructed parameters and value of the displacement 

matching term. One approach to determine this value is to utilize the so-called L-curve 

[Morozov, 1968]. See [Dong et al., 2016] for an application to the L-curve to a similar 

problem in computing the spatial distribution of mechanical properties. In this manuscript 

we have use the L-curve method to obtain the regularization parameters for all cases. Across 

all cases, the value of this parameter, when non-dimensionalized by the appropriate 

parameters, was found to vary by about one order of magnitude.

4.1 Solution of the inverse problem

The uniqueness of the solution for the spatial parameters for E and γ has not been 

demonstrated. However, for a large class of hyperelastic constitutive models with two 

parameters it has been shown that given two deformation fields: one at small strain, and 

another at large strain, we are guaranteed a unique solution for the two parameters up to two 

undetermined constants [Ferreira et al., 2012]. These constants can be determined by 

knowing these parameters at one point within the domain. We believe that this general 

approach to proving uniqueness can also be extended to the constitutive model considered in 

this manuscript, and this will be a topic of future research.

The minimization problem (28) is solved using a quasi-Newton algorithm (the limited-

memory BFGS method [Zhu et al., 1997]) that requires the gradient of the objective function 

with respect to the optimization parameters at every iteration. The gradients are obtained 

efficiently by using adjoint method [Gokhale et al., 2008, Oberai et al., 2004]. This approach 

involves the following steps:

1. Corresponding to each measured displacement field, solve the forward problem 

to determine the predicted displacement field Un and the stress tensor Sn.

2. Solve the corresponding adjoint problem in order to determine the adjoint field 

Wn.

3. Use the displacement field, the stress tensor and the adjoint field in order to 

determine the gradient of the objective function with respect to the material 

parameters using the expressions that appear below.

The derivative of π with respect to the nodal value of the Young’s modulus at node number 

A, denoted by EA, is given by
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where,

(30)

where ϕA(X) is the finite element shape function associated with the A-th node. Similarly 

the expression for the derivative of π with respect to the nodal value of the nonlinear 

parameter is given by

where

(31)

In the followings sections we use the approach described above in order to determine the 

spatial distribution of material properties of tissue-like specimens from measurements of 

their interior displacement fields. We first consider “synthetic” or in-silico specimens, where 

we determine the displacement fields by solving appropriate forward problems. Thereafter 

we consider physical specimens made from gelatin-agar co-gels and measure the interior 

displacement field using ultrasound-based elastography methods.

5 Numerical tests with synthetic data

In this section, two-dimensional numerical examples are considered to test the performance 

of the proposed approach for recovering the spatial distribution of the material parameters. 

These examples are motivated from inverse problems related to biological applications 

where one is often looking for inclusions (tumors) whose microstructural properties are 

significantly different from that of the surrounding tissue.

Problem description

A schematic diagram of the problem setup and boundary conditions are shown in Figure 3. 

We consider two specimens. Each has dimensions of 10 × 10 units, and consists of an 

inclusion and a background, where the material properties are shown in Table 1. We note 

that one specimen has a higher value of Young’s modulus in the inclusion, which could be 

attributed to a higher concentration of fibers in this region, while the other has higher value 

of the nonlinear parameter in the inclusion which is attributed to a smaller value of tortuosity 

in this region.

The bottom edge is fixed in the vertical direction and traction free in the horizontal direction, 

whereas the top edge is traction free in the horizontal direction, and uniformly loaded in the 
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vertical direction. The specimen with the contrast in the Young’s modulus is deformed to 

about 2% strain, and this displacement field is used to reconstruct the Young’s modulus. The 

specimen with contrast in the nonlinear parameter is deformed to 20% strain, and this 

displacement field is used to determine the nonlinear parameter. The vertical edges are 

traction free in both vertical and horizontal directions. In order to prevent rigid body motion, 

the left corner of the bottom edge is fixed to prevent movement along horizontal direction. 

The domain is discretized with 10,000 rectangular elements with a total of 10,201 nodes.

To evaluate the performance of the proposed algorithm, displacement fields are generated by 

solving forward problems with the known material parameters (see Table 1). Then about 

0.3%, 1% and 3% white Gaussian noise is added to the displacement fields. These noisy 

displacement fields are used in the inversion algorithm to recover the material parameter 

distributions. In both cases, the displacement component along the vertical direction is 

utilized in the reconstruction.

Results

The recovered spatial distribution of material properties, E and γ, are shown in Figure 4 and 

Figure 6. The values of regularization parameters used for the reconstruction of material 

properties are shown in Table 2. We observe that the proposed approach is able to capture 

the inclusions clearly for both specimens. In Figure 5 and Figure 7, we have plotted the 

exact and the recovered values of E and γ along center line. We note that the reconstructed 

values are in good agreement with the exact solutions. We also note the effect of the 

regularization which causes the contrast to diminish with increase values of the 

regularization parameter.

6 Tissue-mimicking phantom experiments

In this section we utilize displacement data collected from a gelatin-agar tissue-mimicking 

phantom to validate the performance of our ability to infer the spatial distribution of 

microstructural properties. The displacement data is obtained by performing image cross-

correlation on a sequence of radio-frequency (rf.) ultrasound images as the phantom is 

slowly compressed.

6.1 Phantom description

A tissue-mimicking phantom (Figure 8) was fabricated with four stiff spherical inclusions 

bonded to the background. The methods used to manufacture the phantom are reported in 

[Pavan et al., 2010, Pavan et al., 2012]. Each of the four spheres and the background contain 

the same concentration of gelatin (2.93%), but different concentrations of agar, which leads 

to different microstructure, and consequently, different mechanical properties. The bottom 

part of the background, which is denoted as “Background 1”, and the upper part, which is 

denoted as “Background 2”, have the same concentration of gelatin and agar. However, they 

were manufactured in different batches, and due to the inherent variability in the 

manufacturing process, they have different mechanical properties. Inclusion 1 contains a 

dispersion of oil droplets in the gelatin-agar material, which is added to modify its nonlinear 

mechanical response, as discussed in Section 6.6 and 6.7. The phantom is a cube where each 
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side 100 mm, and the diameter of each inclusion is 10 mm (see Figure 8). The 

microstructure of hydrated gelatin-agar gels comprises of an interpenetrating network of 

fibrous links where the concentration of the constituents determines the cross-link density, 

and therefore, the elastic properties of gel [Clark et al., 1983, Marmorat et al., 2016].

6.2 Independent mechanical test

For each component of the phantom (2 backgrounds and 4 inclusions) a separate cylindrical 

test sample was created at the time of manufacture for independent measurement of the 

mechanical material properties in a uniaxial compression test. The test is described in [Pavan 

et al., 2012]. The stress-strain data from this test was then used in conjunction with the 

uniaxial stress-strain curve of the proposed microstructure-based constitutive model (13) in 

order to determine the material parameters E and γ. This provides us with an independent 

measurement of these properties for each component of the phantom (see Table 3). We treat 

these as the benchmark values in our validation tests.

6.3 Elasticity imaging

The phantom was deformed by compressing the top face slowly to about 20% strain. 

Ultrasound radio-frequency (rf.) echo data was acquired during the compression using a 

Siemens SONOLINE Antares (Siemens Medical Solutions USA, Inc. Malvern, PA) 

ultrasound scanner. Displacement fields were estimated between successive pairs of 

ultrasound images using a modified block matching motion tracking algorithm [Jiang and 

Hall, 2007]. These were then mapped back to the least deformed state (the reference 

configuration) and added to yield the accumulated displacement at each compression step. 

The displacement fields were measured on a 300 × 231 grid (axial by lateral), centered 

around each inclusion, with a grid spacing of 0.1545 mm × 0.1217 mm.

When solving the inverse problem the imaging plane was assumed to be in a state of plane 

stress. We note that plane stress is an approximation to the true stress state, which is three-

dimensional. However, in ultrasound elasticity imaging the displacement data is obtained in 

a single plane. As a result it is necessary to reduce a three-dimensional elasticity problem to 

a two-dimensional problem using either the plane-strain or the plane-stress approximation. 

Of the two, we believe that plane-stress is appropriate for the given problem. This is because 

the sample thickness (in the out-of-plane direction) is of the same order as the other 

dimensions. It is certainly not much greater than the other dimensions, which is a 

requirement for plane-stress. Further, during the test the sample was unconfined in the out-

of-plane direction, and was allowed to expand in that direction. Thus we expect the out-of-

plane strain to be non-zero (actually quite significant), which automatically rules out plane 

strain. Finally, we note that the approach we have developed in this manuscript can be 

applied to there-dimensional situations whenever data in three dimensions is available.

The measured axial (along the axis of the transducer) displacement was used as prescribed 

boundary condition in the axial direction on each boundary edge. In the lateral direction, a 

traction-free condition was assumed on each edge. This was justified based on the 

lubrication between the compression plate and the phantom, and the fact that the phantom 

was not confined in any direction.
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The inverse problem was solved in a truncated region of interest (ROI) obtained by 

excluding 39 lines of data from the face close to the ultrasound probe, 8 lines from the 

opposite face, 9 lines from each lateral face. This was done in order to exclude the noisy 

displacement measurements close to each of these faces. Further, in order to keep the overall 

computational costs small, the displacement data was down-sampled by a factor of four in 

each direction. As a result the reconstructions were performed on a 64 × 54 grid at a 

resolution of about 0.6180 mm × 0.4869 mm. Due to the fact that the displacement along the 

axial direction was more accurate than the displacement measured along the lateral 

direction, only axial displacement was utilized in the reconstructions.

The lower 1/10th of the specimen, which was completely comprised of “Back-ground 1” 

was treated as a calibration layer. It was assumed that the mechanical and the microstructural 

properties of this region were known, and these were used to assign quantitative measures to 

the mechanical and microstructural maps determined for the remainder of specimen. 

Different approaches were used to calibrate the Young’s modulus (and fiber concentration) 

and the nonlinear parameters, and these are described in the following sections.

6.4 Young’s modulus

The inverse problem was solved in two steps [Goenezen et al., 2010]. First, the displacement 

estimate at about 1.5% strain was used to determine the Young’s modulus, while the 

nonlinear parameter γ was fixed to be a small constant. The initial guess for Young’s 

modulus was set to 1, and it was constrained to be in the interval (1, 50). The regularization 

parameter, αE = 1.0e − 05, was selected by performing a sweep and constructing the L-

curve.

We note that in the absence of a force measurement the Young’s modulus is determined 

uniquely up to a multiplicative factor [Tyagi et al., 2014]. In order to compare our 

reconstructions with the quantitative mechanical measurements, this factor must be 

determined. This was determined by using the calibration region which is comprised entirely 

of “Background 1”. The value of the reconstructed Young’s modulus was multiplied by the 

ratio of the independently measured modulus for Background 1 and the average value of the 

reconstructed modulus in the calibration layer. The resulting images of the quantitative 

reconstructed Young’s modulus are shown in Figure 9.

We note that all the inclusions are observed clearly in the Young’s modulus image, where 

their shapes and boundaries have been accurately reconstructed. We also observe that the top 

part of the background is stiffer than the bottom part, which is consistent with how the 

phantom was manufactured. The average values of recovered Young’s modulus (predicted 

E) for the inclusions and the backgrounds are presented in Figure 10, respectively. Figure 10 

also includes the values of Young’s modulus determined from the independent mechanical 

test (measured E). We note that the trend in the variation of the Young’s modulus of the 

inclusions is accurately captured in the reconstructed modulus results and error is within 

30% in all cases. We also note that contrast in modulus is underestimated in all cases. This is 

attributed to the effect of the total variation regularization which is known to preserve the 

sharpness in variations but lower the overall contrast. It may also be attributed to the 
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assumption of plane stress that is used in the reconstructions. Given the geometry of the 

phantom specimen (see Figure 8) the true state of the specimen is likely to be more complex.

The variations of the modulus in the inclusions is closely related to the concentration of agar. 

Higher concentration of agar leads to more dense fiber networks, which in turn have a higher 

average Young’s modulus. A constitutive model that is derived from the microstructure can 

be used to exploit this link and determine the concentration. This is explored in the 

following section.

6.5 Fiber concentration

As stated earlier, the microstructure of hydrated gelatin-agar gels is made up from an 

interpenetrating network of fibrous links where the concentration of the constituents 

determines the cross-link density, and therefore, the elastic properties of gel [Clark et al., 

1983, Marmorat et al., 2016].. It is these cross-links that provide the mechanical strength to 

the collagen-agar mixture. When the concentration of agar is increased the density of these 

web-like links increases, and consequently the resulting mixture increases its stiffness. A 

direct consequence of this is that the homogenized stiffness is determined almost solely by 

the concentration of agar and not gelatin. This is consistent with the results reported from 

experiments [Hall et al., 1997] that pure gelatin network is much less stiff when compared 

with pure agar network.

In our constitutive model this dependence of the Young’s modulus on concentration is 

captured in (14), where we note that the concentration of agar (n) is proportional to the 

square root of the Young’s modulus (E). Using this relation, and assuming that the 

microstructural organization remains the same as the concentration is increased, we may 

write

(32)

Here ncal and Ecal are the agar concentration, and the Young’s modulus of the mixture in the 

calibration layer, and x is any point in the domain of the specimen. Thus it is possible to use 

the modulus maps displayed in Figure 9, and the concentration of agar in the calibration 

layer, in order to create concentration maps displayed in Figure 11. These maps represent the 

spatial variation of the average concentration of agar within the sample, and within them we 

can clearly identify the inclusions as regions of higher agar concentration.

The concentration maps in Figure 11 may be used to compute the average concentration of 

agar in the two backgrounds and all the inclusions, except inclusion 1, as explained below. 

These values are reported in Figure 12, where we have also presented the actual agar 

concentration (measured at the time of manufacture). We note that we are able to accurately 

capture the trends of agar concentration within all groups of materials and the error in 

predicting the concentration is about 15%.

Liu et al. Page 17

Biomech Model Mechanobiol. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We have excluded sample number 1 in our analysis because this sample was created using a 

mixture of water and oil. The presence of oil droplets in collagen-agar mixture breaks the 

agar cross-links and completely changes the microstructural organization of the material 

[Kim et al., 1996, Kim et al., 1999]. In particular it changes the ratio of the number of cross-

links to the concentration of agar. Our microstructural model assumes a constant value for 

this parameter, and therefore cannot be applied in a straightforward manner to this case.

6.6 Nonlinear parameter

In the second step, the displacement data at 20% strain was used to determine the nonlinear 

parameter, γ, while the Young’s modulus was fixed at the value determined in the first step. 

The initial guess for γ was 15.5, and it was constrained to be in the interval (1, 100). The 

regularization parameter, αγ = 1.0e − 05, was selected by performing a sweep and 

constructing the L-curve. The images of the reconstructed nonlinear parameter are shown in 

Figure 13.

The value of γ in the calibration region (the bottom 1/10th. of the domain) was fixed at the 

measured value of 19 (measured in an independent mechanical test). The nodal values in this 

region were not treated as optimization variables while solving the minimization problem.

The recovered images of the nonlinear parameter γ for the phantom are shown in Figure 13. 

In these images we observe a significant change in the nonlinear parameter for the inclusion 

in target 1. The inclusions in all other targets appear to have a nonlinear parameter value that 

is close to the background. We also observe that the images for the nonlinear parameter are 

noisier than those for the Young’s modulus. We believe that this is the case because the level 

of strain applied in this test is barely sufficient to resolve the contrast in the nonlinear 

properties the samples.

The average value of the nonlinear parameter for the background and the inclusions are 

shown in Figure 14, where they are compared with the values determined from an 

independent numerical test. We observe that we predict the trends correctly; however we 

incur significant error when the value of γ is small. This is to be expected since it would 

take very large values of strain to observe differences in material behavior when the value of 

γ is small.

From the nonlinear parameter images, we observe that there is one inclusion in target 1, and 

there are no inclusions in target 2 to 4, which is consistent with the fact that the inclusions 

and background for target 2, 3, 4 were manufactured to have the same nonlinear parameter, 

and inclusion 1 has distinct nonlinear parameter from the background. The change in 

macroscopic mechanical behavior is due to a difference in the microstructure as described in 

the following section.

6.7 Fiber tortuosity

Once the value of γ is known, it can be used in conjunction with (3) to determine the value 

of tortuosity of the fibers. These images are plotted in Figure 15 for C = e.
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Here we observe a significant difference only for the inclusion in target 1. This is the 

inclusion that is manufactured with 50% by volume oil. It is well known that the oil 

disperses within the gel as tiny droplets, and that the agar-gelatin network bends around 

these droplets [Kim et al., 1999]. This increases the overall tortuosity of the network, and is 

likely responsible for the higher value of tortuosity that we observe. Whether this is really 

the case can only be confirmed through scanning electron microscope (SEM) images of the 

specimen, which are unavailable. We note further that these parameters are to be interpreted 

as lower bounds on the tortuosity. With 12% axial compression, we induce approximately 

6% maximum tensile strain in the specimen, which occurs in the lateral directions. At these 

stretch levels, we would not be able to observe contributions from fibers of tortuosity larger 

than about 1.06.

7 Conclusions

In this paper we considered an extension to elasticity imaging wherein the constitutive 

model was derived from microstructural considerations. In particular, a microstructure 

comprised of a network of elastic fibers was assumed and the constitutive model was 

obtained from a simple homogenization procedure. Consequently, the parameters that appear 

in this model were directly linked to local averages of microstructural quantities such as 

fiber concentration, initial fiber stiffness and fiber tortuosity. This constitutive equation was 

used in conjunction with the equations of equilibrium to solve the inverse elasticity problem: 

given the displacement field in the interior of a specimen, determine the spatial distribution 

of the material parameters, and hence the spatial distribution of the local averages of the 

microstructural parameters, within the specimen. An efficient computational strategy was 

developed and implemented to solve this challenging inverse problem. The performance of 

this strategy was tested on in-silico tissue samples. Thereafter this approach was used to 

infer the spatial distribution of the microstructural properties of agar-gelatin co-gels. It was 

found that it accurately predicted the spatial distribution of agar fiber concentration, and 

provided physically consistent spatial distributions of fiber tortuosity.

While the approach described in this manuscript has demonstrated the viability of 

determining the spatial distribution of microstructural parameters from the macroscopic 

mechanical response of soft material, there are several areas that are open to further 

exploration. First, the uniqueness of the inverse problem for the class of constitutive laws 

used in this manuscript can be worked out. Second, other constitutive laws for the 

microstructure that are valid when the fibers are fully stretched and even start to incur 

damage, may be considered. Third, a study designed to quantitatively validate the 

performance of the proposed method in determining fiber tortuosity is called for. In this 

study the nonlinear parameter and the tortuosity would be determined in the way described 

in this manuscript. However, this step will be followed by an independent evaluation of the 

specimen microstructure using techniques such as scanning electron microscopy (SEM) or 

second harmonic generation (SHG) imaging. Finally, the application of these methods to in-

vivo tissue data in order to determine microstructural changes in diseased tissue is a 

potential area of application in medical diagnosis.
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A

We examine the effect of the parameter κ and nonlinear parameter γ on the force-stretch 

response of individual fibers to better understand the relevance of these parameters. In 

Figure 18(a) we have plotted force-stretch curves for a family of fibers where the nonlinear 

parameter γ is fixed at 2 and the fiber stiffness κ is varied from 1 to 9. We notice that the 

slope of curves at small strain increases as the value of fiber stiffness increases indicating 

that κ determines the small strain behavior of individual fibers. In Figure 18(b) we have 

plotted force-stretch curves for fibers that have the same fiber stiffness, κ = 1, but different 

and values of the nonlinear parameter γ ∈ (2, 10). We observe that the fibers show an 

increase in stiffness with increasing strain at all values of γ. However, with increasing γ, the 

onset of the this increase shifts to lower values of stretch. This behavior can be used to link 

the nonlinear parameter γ directly to the tortuosity of the fibers as described in the following 

paragraph.

B

For an incompressible material in uniaxial tension, the axial component of the Second Piola-

Kirchhoff stress is given by

(33)

where λθ is stretch of an individual fiber, and θ = [γ, ϕ] determines its orientation. For an 

incompressible material in uniaxial tension, the stretch of each fiber is related to the 

macroscopic stretch, λ1, through the relation

(34)

Now assuming that the strain is small, that is λ1 = 1 + ε11, where |ε11| ≪ 1, we arrive at

(35)

Using this expression in (33) and recognizing that |ε11| ≪ 1,

(36)

Liu et al. Page 20

Biomech Model Mechanobiol. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We further assume that the fibers carry load only in tension, that is for values of θ in (35) for 

which λθ > 1. This implies that the integral in (36) must be evaluated within the limits 

, which yields

Recognizing that under the small strain assumption, the second PK stress tensor and the 

Caucy stress tensor reduce to the same expression, the Young’s modulus is given by
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Fig. 1. 
Schematic diagram of a wavy fiber with orientation θ = [θ, ϕ]
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Fig. 2. 
Macroscopic response of materials comprised of fibers with different tortuosity.
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Fig. 3. 
Schematic diagram of the problem setup and boundary conditions.
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Fig. 4. 
Young’s modulus distributions for Specimen 1. (a) Exact modulus. Reconstructed modulus 

for data with (b) 0.3%, (c) 1% noise, and (d) 3% noise.
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Fig. 5. 
Young’s modulus E along the center line.
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Fig. 6. 
Nonlinear parameter (γ) distributions for Specimen 2. (a) Exact parameter. Reconstructed 

parameter for data with (b) 0.3%, (c) 1% noise, and (d) 3% noise.
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Fig. 7. 
Nonlinear parameter γ along the center line.
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Fig. 8. 
A schematic diagram of the tissue-mimicking phantom [Pavan et al., 2012].
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Fig. 9. 
Reconstructed spatial distribution of Young’s modulus, E, for agar-gelatin phantoms with 

four circular inclusions (targets 1 to 4, form left to right).
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Fig. 10. 
Comparison of reconstructed and benchmark Young’s modulus values.
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Fig. 11. 
Reconstructed spatial distribution of agar concentration, n, for gelatin-agar phantoms 

(targets 2 to 4, from left to right).
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Fig. 12. 
Comparison of reconstructed and benchmark agar concentration.
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Fig. 13. 
Reconstructed spatial distribution of non-linear parameter, γ, for agar-gelatin phantoms with 

four circular inclusions (targets 1 to 4, form left to right).
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Fig. 14. 
Comparison of reconstructed and benchmark nonlinear parameter.
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Fig. 15. 
Reconstructed spatial distribution of fiber tortuosity, τ, for agar-gelatin phantoms with four 

circular inclusions (targets 1 to 4, form left to right).
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Fig. 16. 
Reconstructed values of fiber tortuosity, τ.
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Fig. 17. 
Schematic diagram of the effect of oil droplets embedded in gelatin-agar gel.
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Fig. 18. 
Force-stretch curve for a single fiber. (a) Increasing the fiber stiffness increases the slope of 

the force-stretch curves at small strain.(b) As the nonlinear parameter γ is increased, the 

fiber becomes nonlinear at smaller strains.
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Table 1

Material Properties for synthetic Phantoms.

Parameters Background Inclusion

Specimen 1
E 1 5

γ 1 1

Specimen 2
E 1 1

γ 1 5
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Table 2

Regularization parameters for reconstructions.

Parameters 0.3% noise 1% noise 3%noise

αE 1.0e-07 3.0e-07 8.0e-07

αγ 1.0e-05 5.0e-05 1.0e-04
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Table 3

The composition of the agar, gelatin and oil used to manufacture the phantom and values of material properties 

E (kPa) and γ measured from independent mechanical tests

Agar (wt.%) Gelatin (wt.%) Oil (vol.%) E (kPa) γ

Inclusion 1 2.24 2.93 50 70 3.8

Inclusion 2 1.32 2.93 0 145 18.5

Inclusion 3 1.09 2.93 0 92 18.5

Inclusion 4 0.92 2.93 0 59 20

Background 1 0.58 2.93 0 22 19

Background 2 0.58 2.93 0 28.5 15
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