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The impact of aging on cardiac extracellular matrix
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Abstract Age-related changes in cardiac homeostasis
can be observed at the cellular, extracellular, and tissue
levels. Progressive cardiomyocyte hypertrophy, inflam-
mation, and the gradual development of cardiac fibrosis
are hallmarks of cardiac aging. In the absence of a
secondary insult such as hypertension, these changes
are subtle and result in slight to moderate impaired
myocardial function, particularly diastolic function.
While collagen deposition and cross-linking increase
during aging, extracellular matrix (ECM) degradation
capacity also increases due to increased expression of
matrix metalloproteinases (MMPs). Of the MMPs ele-
vated with cardiac aging, MMP-9 has been extensively
evaluated and its roles are reviewed here. In addition to
proteolytic activity on ECM components, MMPs over-
see cell signaling during the aging process by modulat-
ing cytokine, chemokine, growth factor, hormone, and
angiogenic factor expression and activity. In association
with elevated MMP-9, macrophage numbers increase in

an age-dependent manner to regulate the ECM and
angiogenic responses. Understanding the complexity
of the molecular interactions between MMPs and the
ECM in the context of aging may provide novel diag-
nostic indicators for the early detection of age-related
fibrosis and cardiac dysfunction.

Keywords Review.Matrixmetalloproteinases .

Cardiac aging . Collagen . Inflammation .Macrophage .

Proteomics

Introduction

The myocardium undergoes a number of structural and
functional responses to aging. Across a broad range of
species, one consistent hallmark of cardiac aging is a
decrease in myocardial reserve capacity (Bokov et al.
2009; Lakatta 1994). In the absence of pathology or
stressors, cardiac performance is often maintained.
When superimposed on an increased workload, howev-
er, a diminished reserve becomes apparent.

Physiological changes in humans with age include
decreased sympathetic signaling (Strait and Lakatta
2012) and decreased heart rate variability (Parati et al.
1997). Rats and mice also demonstrate reduced heart
rate variability with age (Lin et al. 2008; Rossi et al.
2014). Increases in LV mass, due to increased wall
thickness and volumes, and prolonged systolic contrac-
tion and diastolic relaxation occur first, before there is an
appreciable decline in myocardial performance
(Lindsey et al. 2005). Cardiac aging by itself results in
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a slight but significant decline in LV function. For
example, ejection fraction in mice declines from about
70% in young 7.5-month-old mice to about 60% in
38.1-month-old mice (Lin et al. 2008).

Aging-associated physiological changes in the hu-
man and rat cardiovascular system increase afterload
and impair vasodilation, which increases wall stress in
the left ventricle (LV) and leads to cardiomyocyte hy-
pertrophy (Strait and Lakatta 2012). In mice, pressure
overload does not naturally occur with aging, as mice
are resistant to vascular adaptations, yet cardiomyocyte
hypertrophy occurs, indicating that intrinsic myocardial
changes are directly responsible for the shift in myocyte
phenotype (Yabluchanskiy et al. 2014). Increased oxy-
gen and ene rgy demand by hype r t r oph i c
cardiomyocytes creates a low-grade oxygen environ-
ment, where free radical production is unbalanced and
may damage cellular components (Toprak et al. 2009;
Wohlgemuth et al. 2014).

In response to the hypoxic environment ,
cardiomyocytes release pro-inflammatory cytokines
and chemokines that stimulate an immune response to
increase macrophage numbers in the LV (Chiao et al.
2011). Macrophages are a rich source of matrix metal-
loproteinases (MMPs), and an unbalanced MMP activ-
ity profile has been linked to myocardial aging status in
humans with no evidence of cardiovascular disease
(Bonnema et al. 2007) and across a variety of animal
models (Jugdutt et al. 2010; Lindsey et al. 2005). In
aging mice, increasedMMP activity has been connected
to increased inflammation, extracellular matrix (ECM)
deposition, and attenuated angiogenesis capacity
(Yabluchanskiy et al. 2014).

Indices of aging can include cellular DNA damage
and changes in protein structure and organelle function;
in particular, mitochondrial dysfunction is well-studied
in the context of aging (Sun et al. 2016). Molecular
changes translate to cellular function impairment, in-
cluding upregulation of apoptosis or necrosis pathways
to enhance progressive cardiomyocyte loss (Kajstura
et al. 1996). In the extracellular environment of the aged
myocardium, a deregulated ECM leads to fibrosis which
results in dysfunction at the cellular, extracellular, and
whole organ levels. Aging-related myocardial fibrosis
has been observed in mice (Bradshaw et al. 2010; Chiao
et al. 2012), rats (Annoni et al. 1998; Eghbali et al.
1989b), dogs (Liu et al. 2003), sheep (Horn et al.
2012), and humans (Burkauskiene 2005; Gazoti
Debessa et al. 2001).

In this review, we evaluate the aging effects on car-
diac ECM and the cell types that regulate or are regu-
lated by ECM. We discuss the relationship between
aging and two cardiovascular pathologies (hypertension
and myocardial infarction (MI)) and the role of MMPs
in these pathologies within the context of aging.

Aging effects on cardiac structure and function

Aging effects on collagen

Myocardial ECM accumulation depends on the balance
between synthesis and degradation. Cardiac ECM pro-
teins that accrue with age include glycoproteins, proteo-
glycans, glycosaminoglycans, matricellular proteins,
and integrins (Nguyen et al. 2014); effects of aging on
these proteins are summarized in Table 1. A major
component of the myocardial ECM is collagen. Total
collagen content includes the summation of all collagen
types (e.g., I, III, IV, V, VI) and includes all forms of
collagen proteins (e.g., full length, fragmented, post-
translationally modified) that reflect ECM quality. Each
collagen subtype has a unique tridimensional structure,
physicochemical properties, and biological function.
Collagens I and III are the most abundant in the myo-
cardium, and collagen I represents 85 ± 5% while col-
lagen III comprises 11 ± 4% of total collagen content in
young adult non-human primates (Weber et al. 1988).

With age, the increase in collagen content in themouse
model is relatively modest (e.g., increases from 1–2 to 2–
4% of total LV area) (Chiao et al. 2012; Lin et al. 2008)
compared to what is seen after a MI, where the collagen
content in the scar region increases to 65% at 4 weeks
post-MI (Voorhees et al. 2015). Collagen represents 6%
of total LV protein content in 1-month-old rats and dou-
bles to 12% by 22–26 months of age (Eghbali et al.
1989b). Therefore, both mice and rats have a doubling
in collagen from young to old age, with the difference
being the collagen concentration at baseline. While col-
lagen fibril numbers increase, collagen fibril diameter is
also larger in old rat hearts (Gazoti Debessa et al. 2001).

While total amounts vary across species including
humans, there is a consistent increase in collagen with
age. From autopsies of humans without cardiovascular
disease history, myocardial collagen content increased
from 3.9 ± 0.8% in 20–25-year-old individuals to
5.9 ± 0.8% in 67–87-year-old individuals (Gazoti
Debessa et al. 2001). Collagen I increased and collagen
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III decreased in the hearts from autopsies of 80-year-old
subjects in comparison to younger subjects (Mendes
et al. 2012). This shift from collagen III to collagen I
would provide a cardiac ECM mechanism that is inde-
pendent of vascular changes, as the increased ratio of
collagens I to III can contribute to LV stiffness (Gazoti
Debessa et al. 2001; Mendes et al. 2012). Collagen I has
high tensile strength, while type III collagen is more
distensible; therefore, an increased ratio of types I to III
can impair cardiac biomechanics (Nguyen et al. 2014).
In contrast to protein levels, transcription of collagens I
and III, fibronectin, and β1 integrin messenger RNAs
(mRNAs) are decreased in aging LV (Chiao et al. 2012;
Horn et al. 2012; Mamuya et al. 1992). The increased

collagen with age, therefore, is due to post-
transcriptional regulation rather than increased tran-
scription (Nguyen et al. 2014).

Collagen cross-linking can increase LV stiffness
without altering total collagen content (Horn and
Trafford 2016). Collagen cross-linking, measured by
hydroxylysyl pyridinoline concentration, is increased
in the LVs of 23-month-old rats (Thomas et al. 1992).
Fibroblasts secrete collagen into the extracellular space
in the procollagen form, where it undergoes further
processing to become a mature collagen fibril
(Prockop and Kivirikko 1995). Secreted protein acidic
and rich in cysteine (SPARC) belongs to the
matricellular protein family, and SPARC is involved in

Table 1 Summary of aging impacts on ECM molecules in the left ventricle

ECM component Changes Type Species Reference

Collagen Type I ↓ mRNA C57BL/6C57BL/6 (Toba et al. 2016)

Type III ↓ mRNA Wistar rat; C57BL/6 (Mamuya et al. 1992; Toba et al. 2016)

↓ Protein C57BL6/J (Padmanabhan Iyer et al. 2016)

Type IV ↓ mRNA C57BL/6 (Toba et al. 2016)

Type V ↓ mRNA C57BL/6 (Toba et al. 2016)

Type XV ↓ Protein C57BL6/J (Padmanabhan Iyer et al. 2016)

Procollagen Type I ↓ mRNA Fischer 344 rat (Thomas et al. 2000)

Type III ↓ mRNA Fischer 344 rat (Thomas et al. 2000)

Glycosaminoglycan Hyaluronan ↓ Protein Sprague-Dawley rat (Hellstrom et al. 2006)

Glycoproteins Fibronectin ↑ Protein Balb-c mice (Burgess et al. 2001)

↓ mRNA Wistar rat; C57BL/6 (Mamuya et al. 1992; Toba et al. 2016)

Laminin-α2 ↑ mRNA C57BL/6 (Toba et al. 2016)

Laminin-γ1 ↓ mRNA C57BL/6 (Toba et al. 2016)

Periostin ↑ mRNA C57BL6/J (Ma et al. 2012)

↑ mRNA C57BL6/J (Chiao et al. 2012)

Integrin α1 ↑ Protein Balb-c mice (Burgess et al. 2001)

α3 ↑ mRNA C57BL/6 (Toba et al. 2016)

α5 ↑ Protein Balb-c mice (Burgess et al. 2001)

αE ↑ mRNA C57BL/6 (Toba et al. 2016)

β1 ↓ Protein Balb-c mice (Burgess et al. 2001)

↓ mRNA Wistar rat; C57BL/6 (Mamuya et al. 1992; Toba et al. 2016)

Matricellular SPARC ↑ Protein C57Bl6/SV129 mice (Bradshaw et al. 2010)

proteins Thrombospondin-2 ↑ mRNA C57BL/6J (Ma et al. 2012)

↑ Protein C57Bl6/129SvJ/EMS + Ter mice (Swinnen et al. 2009)

Osteopontin ↓ mRNA C57BL/6 (Chiao et al. 2012)

↓ mRNA Sprague-Dawley rat (Graf et al. 1997)

↑ increased, ↓ decreased. ECM extracellular matrix, SPARC secreted protein acidic and rich in cysteine
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cross-linked collagen fibril formation (Bradshaw 2009).
SPARC is predominantly expressed in cardiac fibro-
blasts, although cardiomyocytes, endothelial cells, and
macrophages also exhibit low SPARC expression (Toba
et al. 2015). SPARC increases in the LV of 18- to 29-
month-old mice and has been linked to age-related
increases in myocardial diastolic stiffness as well as
fibrillar and insoluble collagen content. These changes
are all blunted by SPARC deletion (Bradshaw et al.
2010). Aging SPARC-null mice (18–29 months old)
also have decreased collagen type III and IVexpression
and macrophage infiltration compared to aging wild-
type control mice (de Castro Bras et al. 2014; Toba
et al. 2015). The decrease in collagen III may result in
an increased collagen I to collagen III ratio, which
would also explain the increase in myocardial diastolic
stiffness. Lysyl oxidase (LOX) activity produces a co-
valent cross-linking of collagen fibrils, which increases
collagen tensile strength and prevent them from degra-
dation by proteases (Biernacka and Frangogiannis
2011). Increased collagen content and increased LOX
cross-linking collagen products have been observed in
myocardium of old rats (Thomas et al. 2001).

Advanced glycation end-products (AGEs) are pro-
duced by a non-enzymatic reaction between proteins
and sugar residues and can covalently bind other AGEs
to form protein-protein cross-links among a variety of
ECM components, including collagen, laminin, and
elastin (Hartog et al. 2007). AGEs have been measured
in the plasma and associate with the extent of diastolic
dysfunction in elderly humans (Campbell et al. 2012).
Age-related diastolic dysfunction can be ameliorated by
AGE cross-link breaker treatment in dogs (Asif et al.
2000). Besides collagen changes, aging-related modifi-
cations in fibronectin folding have been reported (Antia
et al. 2008). Increased stretching of fibronectin fibrils
can lead to partial unfolding of the secondary structure.
This change in protein structure may shift cell and
enzyme recognition sites on ECM proteins by physical-
ly modifying binding site availability (Antia et al. 2008).

Aging effects on MMPs

MMPs are defined by their ability to proteolytically
process ECM components and as such are key regula-
tors of ECM turnover. MMPs are secreted in their pre-
activated zymogen form, in which an inhibitory pro-
peptide domain is bonded by a cysteine residue to the
Zn2+ ion present on the catalytic domain. Classical

MMP activation removes the inhibitory pro-peptide do-
main to disrupt the cysteine switch. MMP activity, how-
ever, does not solely rely on activation, as MMPs can
have activity in the presence of substrate that is not
dependent on pro-domain cleavage (Kandasamy et al.
2010). MMPs are endogenously inhibited in the tissue
by interaction with the tissue inhibitors of metallopro-
teinases (TIMPs), of which four have been identified.

Aging effects on MMPs levels are summarized in
Table 2. MMP-2, MMP-7, TIMP-1, TIMP-2, and TIMP-
4 increase in the plasma of elderly human subjects, and
MMP-7, TIMP-1 and -4 correlate with diastolic dysfunc-
tion variables (Bonnema et al. 2007). In mice, plasma
MMP-9 concentration positively correlates with age and
withmonocyte chemotactic protein-1 (Yabluchanskiy et al.
2015). MMP-1, MMP-2, MMP-3, and MMP-14 increase
in the LV of 31-month-old rats that underwent exercise
training vs. an age-matched sedentary group (Kwak et al.
2011). MMP-3, MMP-12, MMP-13, and MMP-14 de-
crease in the soluble fraction of 23-month-old CB6F1 LV
compared to young controls, while MMP-3, MMP-8, and
MMP-14 increase in the insoluble ECM-bound fraction
(Lindsey et al. 2005). MMP-28 is the newest member of
the MMP family, and MMP-28 increases in the LVof 20-
month-old mice (Ma et al. 2012).

MMP functions go beyond cleaving ECM substrates.
For example, MMP-9 can process a number of cytokines,
growth factors, and other MMPs, including interleukin
(IL)-1β, IL-6, and IL-8, tumor necrosis factor α (TNF-α),
endothelin-1, transforming growth factor beta (TGF-β),
vascular endothelial growth factor (VEGF), osteopontin,
and MMP-2, MMP-9, and MMP-13 (Cauwe et al. 2007;
Egeblad and Werb 2002; Lindsey et al. 2016; Sternlicht
andWerb 2001). A number of intracellular substrates have
been identified (Cauwe and Opdenakker 2010). Figure 1
illustrates how aging can induce MMPs to modulate a
number of biological functions.

Of the MMPs evaluated to date, a number of studies
have assessed MMP-9 in cardiac aging. There is strong
evidence that MMP-9 is a major mediator for increased
stiffness in the aging LV (Iyer et al. 2016).
MMP-9 is predominantly expressed in leukocytes,
with low expression in cardiomyocytes (Huet
et al. 2015). Macrophage-derived MMP-9 has been
implicated in cardiac aging (Chiao et al. 2011). MMP-
9 expression increases twofold in the LVof aged mice.
Plasma MMP-9 positively correlates with LV end-
diastolic dimension (Chiao et al. 2011).Moreover, aging
MMP-9-null mice have reduced expression of cadherin
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1, integrin αV, and TIMP-3 (Yabluchanskiy et al. 2014).
Together, MMP-9 deletion-associated changes result in
increased angiogenesis and decreased cardiomyocyte
hypertrophy during aging (Yabluchanskiy et al. 2014).
In contrast, MMP-28 deletion amplifies inflammation
and of note, MMP-9 is elevated in the absence ofMMP-
28, suggesting cross-talk amongMMPs (Ma et al. 2015;
Ma et al. 2012; Iyer et al. 2016).

Aging effects on cardiac fibroblast cell physiology

Cardiac fibroblasts are the major producer of ECM,
including collagen. In this review, we classify all

Table 2 Summary of aging impacts on MMPs in plasma and left ventricle

Changes Sample type Location Species Reference

MMP-1 ↓ Protein LV C57BL/6 mice (Huet et al. 2015)

MMP-2 ↑ Protein Plasma Human (Bonnema et al. 2007)

↑ mRNA LV C57BL/6 mice (Toba et al. 2015)

↓ Protein LV C57Bl6 mice (Huet et al. 2015)

MMP-3 ↑ mRNA LV C57BL/6 mice (Toba et al. 2015)

↓ Soluble protein LV CB6F1 mice (Lindsey et al. 2005)

↑ Insoluble protein LV CB6F1 mice (Lindsey et al. 2005)

MMP-7 ↑ Protein Plasma Human (Bonnema et al. 2007)

MMP-8 ↑ Insoluble protein LV CB6F1 mice (Bonnema et al. 2007)

MMP-9 ↓ Protein Plasma Human (Bonnema et al. 2007)

↑ Protein Plasma C57BL/6J mice (Chiao et al. 2011)

↑ Protein Plasma C57BL/6J mice (Yabluchanskiy et al. 2015)

↑ Soluble protein LV C57BL/6J mice (Chiao et al. 2011)

↑ mRNA LV C57BL/6 mice (Toba et al. 2015)

↑ mRNA LV C57BL/6J mice (Chiao et al. 2012)

↑ Soluble protein LV C57BL/6J mice (Chiao et al. 2012)

↑ mRNA LV C57BL/6J mice (Yabluchanskiy et al. 2014)

MMP-12 ↓ Soluble protein LV CB6F1 mice (Lindsey et al. 2005)

MMP-13 ↓ mRNA LV C57BL/6 (Toba et al. 2015)

↓ Soluble protein LV CB6F1 mice (Lindsey et al. 2005)

MMP-14 ↓ Soluble protein LV CB6F1 mice (Lindsey et al. 2005)

↑ Insoluble protein LV CB6F1 mice (Lindsey et al. 2005)

↓ Protein LV C57Bl6 mice (Huet et al. 2015)

MMP-15 ↓ mRNA LV C57BL/6 (Toba et al. 2015)

MMP-28 ↑ Protein LV C57BL/6J (Ma et al. 2012)

TIMP-1 ↑ Soluble protein Plasma Human (Bonnema et al. 2007)

↑ Soluble protein Plasma C57BL/6J mice (Chiao et al. 2011)

TIMP-2 ↑ Protein Plasma Human (Bonnema et al. 2007)

TIMP-3 ↓ Insoluble protein LV CB6F1 mice (Bonnema et al. 2007)

TIMP-4 ↑ Protein Plasma Human (Bonnema et al. 2007)

↑ increased, ↓ decreased. MMP matrix metalloproteinase

SPARC

Aging

MMPs

Chemokines

ECM

Cytokines
Growth 

factors

Vasoactive

peptides

Angiogenic

factors

Fig. 1 Aging modulates cell signaling and extracellular matrix
(ECM) remodeling through matrix metalloproteinase (MMP) ac-
tions. SPARC secreted protein acidic and rich in cysteine
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fibroblast subtypes (fibrocytes, fibroblasts, and
myofibroblasts) under the fibroblast term and do not
discuss fibroblast sources, which is currently an area
of active investigation. Cardiac fibroblasts contain
mRNA transcripts for collagens I, III, and IV (Eghbali
et al. 1989a; Luther et al. 2012). In addition to collagen,
other ECM proteins produced by cardiac fibroblasts
include fibronectin, α1- , α2-, and α5-integrins
(Burgess et al. 2001), MMPs, and TIMPs (Flack et al.
2006; Horn et al. 2012; Vanhoutte and Heymans 2010).
While ECM expression has been evaluated, little is
known about how gene or protein expression in cardiac
fibroblasts changes their cell physiology.

Cardiac fibroblast senescence is affected by metabolic
levels. For example, increased metabolic supply, such as
increased extracellular pyruvate concentration, impairs fi-
broblast growth and causes mitochondrial dysfunction (Xu
and Finkel 2002). Low nutrient levels can feedback to
increase sirtuin-1 and sirtuin-3 activities, which are associ-
ated with increased mitochondrial biogenesis, mitochon-
drial protein synthesis, antioxidant defense, and life span
(Sack and Finkel 2012). Little is currently known about the
effect of fibroblast cell metabolism on cell physiology,
particularly in the context of aging.

Aging effects on cardiomyocyte cell physiology

In the aging LV, there are quantitative and qualitative
changes in the cardiomyocyte population, with hypertro-
phy characterizing the early phase of response. Myocyte
cell volumes, cross-sectional areas, and cell length all
increase with aging, resulting in reduced inter-
cardiomyocyte space (Anversa et al . 2005;
Yabluchanskiy et al. 2014). Together with cardiomyocyte
hypertrophy, the number of multi-nucleated
cardiomyocytes increases (Anversa et al. 1990; Olivetti
et al. 1987). Age-induced cardiomyocyte hypertrophy
can be accompanied by a deficiency in oxygen supply
(Khan et al. 2002). While some reports indicate that hy-
pertrophy is less efficient and uses more oxygen, other
reports indicate that hypertrophy is more efficient and uses
less oxygen (Gunning and Coleman 1973). The setting of
hypertrophy (physiological vs. pathological) may explain
the differences observed, and further studies are warranted.
Hypoxia, in part through upregulation of hypoxia induc-
ible factor 1, is a powerful stimulus for the expression of
angiogenic signaling factors. Reactive oxygen species
(ROS) production resulting from impaired mitochondrial
function stimulates hypoxia inducible factor 1 activation

(Liu and Finkel 2014). Cardiomyocytes contribute to
ECM remodeling by expressing collagen type IV
(Eghbali et al. 1989a), MMP-2, MMP-9, MMP-14, and
all TIMP subtypes (Bildyug et al. 2015; Riches et al. 2009;
Vanhoutte and Heymans 2010).

Cardiomyocyte aging is accompanied by organelle
changes. Myocyte aging is associated with the accumula-
tion of mitochondrial DNA mutations, protein oxidation,
and altered biogenesis, which leads to impaired bioener-
getic efficiency and increased ROS levels, which enhance
myocyte apoptosis rates and induce an inflammatory reac-
tion (Martin-Fernandez and Gredilla 2016). Mitochondrial
function and life span are improved by the genetic inhibi-
tion of the mammalian target of rapamycin (mTOR), a
serine-threonine kinase that functions as an intracellular
energy sensor (Finkel 2015; Wu et al. 2013).

Sarcoplasmic reticulum function and calcium signaling
are impaired with age. The sarcoplasmic reticulum Ca2+

pump (SERCA2) regulates cardiomyocyte contraction and
relaxation by handling intracellular Ca2+ stores; SERCA2
activity is decreased in aging hearts (Kaplan et al. 2007).
The overall result of cardiomyocyte aging is a decrease in
cardiomyocyte numbers, which have been observed in
both animal experiments and human clinical studies
(Anversa et al. 1986; Olivetti et al. 1991). Regression
analysis suggests that cardiac aging process is character-
ized by a loss of 38 million cardiomyocyte nuclei per year
in human LVs (Olivetti et al. 1991).

The endocr ine sys tem has an impact on
cardiomyocytes during aging, especially the renin an-
giotensin system (RAS). Angiotensin II (Ang II) and
angiotensin converting enzyme (ACE) are increased in
cardiac tissue with age (Dai et al. 2009; Lakatta and
Levy 2003). Ang II can directly induce cardiomyocyte
hypertrophy, fibrosis, apoptosis, LV stiffness, and dia-
stolic dysfunction (Domenighetti et al. 2005). Further-
more, treatment with the ACE inhibitor enalapril and the
angiotensin II type 1 receptor antagonist losartan ame-
liorates age-related cardiac changes (Basso et al. 2007).
ACE inhibitors have been shown to inhibit MMP-9
activity by interacting with the proteolytic site
(Yamamoto et al. 2007a; Yamamoto et al. 2007b), which
can partially explain the beneficial effects of ACE in-
hibitors on cardiac aging.

Aging effects on cardiac macrophage physiology

An enhanced chronic inflammatory status is a hallmark
of cardiac aging (Franceschi 2007).Mitochondrial DNA
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(mtDNA) from dead cells may play a role in cardiac
inflammation by stimulating endogenous cardiac cell
inflammatory gene expression and by serving as a direct
or indirect chemoattractant for inflammatory cells. Un-
like nuclear DNA, mtDNA is not methylated and trig-
gers macrophage activation by engaging with toll-like
receptors (Sun et al. 2016). Monocyte chemoattractant
protein-1 (MCP-1 or CCL2) is a chemokine with an age-
dependent increase in circulating levels and LV expres-
sion (Chiao et al. 2011; Deshmane et al. 2009). Macro-
phage content in the LV and MMP-9 expression in the
LV and plasma are also elevated in aging mice (Chiao
et al. 2011). Plasma MCP-1 and MMP-9 positively
correlate with end-diastolic dimension, indicating
MCP-1 and MMP-9 are circulating biomarkers of car-
diac aging (Chiao et al. 2011).

Beyondmacrophage quantity, LVmacrophage polar-
ization (M1 vs. M2 phenotype) is also altered by aging
(Ma et al. 2015). MMP-9 deletion suppresses these
phenotypic changes by increasing macrophage mRNA
levels of CD206 and Fizz1 and by preventing the age-
related shift from F4/80+CD206+ M2 cells to F4/
80+CD206− M1 cells (Ma et al. 2015). Macrophage
accumulation is also decreased in the LVs of old
SPARC-null mice (Toba et al. 2015). Isolated peritoneal
macrophage stimulated with SPARC recombinant pro-
tein showed increased expression of M1 pro-
inflammatory polarization markers (Ccl3, Ccl5, TNF-α,
and IL-12) and decreased expression of anti-
inflammatory M2 polarization markers (Arg1 and
Mrc1) (Toba et al. 2015). Therefore, in addition to
mediating ECM events in cardiac aging, MMP-9 and
SPARC regulate cell physiology and signaling.

Aging effects on myocardial endothelial cell physiology

Endothelial dysfunction is highly associated with age.
Impaired nitric oxide (NO) bioavailability is a major
cause of diminished vasodilation, and endothelial NO
synthase (eNOS) expression is decreased with age
(Brandes et al. 2005). Moreover, reactive oxygen spe-
cies (ROS), including superoxide radical (O2

−), are in-
creased with age (Herrera et al. 2010). ROS can rapidly
scavenge NO, decreasing its bioavailability and produc-
ing other free radicals such as reactive nitrogen species
(RNS). In addition, ROS can uncouple eNOS by deplet-
ing tetrahydrobiopterin (BH4) stores. This uncoupled
eNOS converts L-arginine to O2

− instead of NO, creat-
ing a positive feedback loop to free-radical production

(Zweier et al. 2011). ROS and RNS can promote protein
structural modifications by reacting with amino acid
residues. Protein oxidation or nitrosylations can enhance
or diminish activity. For example, free radicals can
disrupt the cysteine switch between the inhibitory and
catalytic domains of MMPs, resulting in an active full-
length enzyme (Chow et al. 2007). Unbalanced ROS
production can activate nuclear factor-kappa B (NFκB),
leading to a pro-inflammatory shift in the endothelial
gene expression profile (Donato et al. 2007). Increased
ROS contributes to activation of the TNF-α signaling
pathway and impaired mitochondrial activity (Herrera
et al. 2010). Thus, oxidative stress can accelerate endo-
thelial cell senescence by decreasing proliferative re-
sponses to mitotic stimuli (Toussaint et al. 2002).

One index of endothelial dysfunction is vascular
permeability. Increased vascular permeability and
cadherin-1 expression were observed in the LVs of
15–18-month-old mice compared to 6–8-month-old
mice (Yabluchanskiy et al. 2014). Cadherin-1 is a trans-
membrane protein that forms adherens junctions be-
tween endothelial cells, and an increase in cadherin-1
may indicate an attempt to preserve vascular permeabil-
ity in the aged LV. Moreover, integrin αV decreases
with age and in line with the observed vessel rarefaction.
MMP-9 gene deletion blunts vascular permeability in
15–18-month-old mice, indicating a role for MMP-9 in
maintaining vessel integrity (Yabluchanskiy et al. 2014).

Vascular endothelial growth factor (VEGF) is an
essential factor that regulates angiogenesis by inducing
endothelial cell growth, migration, and tube formation
(Yabluchanskiy et al. 2014). While VEGF mRNA in-
creases in the LVs of both 15–18-month-old wild-type
and MMP-9-null mice, vessel numbers assessed by
griffonia simplicifolia lectin I staining only increase in
the null group (Yabluchanskiy et al. 2014). These results
indicate an age-related disconnect between angiogenic
mediators released by myocardial cells and their effec-
tiveness (Yabluchanskiy et al. 2014). Human dermal
microvascular endothelial cells derived from elderly
and neonatal individuals showed decreased VEGF
mRNA and protein in the elderly group, indicating
likely organ specific differences (Ahluwalia et al. 2014).

Coronary blood flow is decreased in the hearts of 30-
month-old rats compared to 6-month-old young rats,
and capillary density was decreased in the mid and apex
regions (Khan et al. 2001). Decreased blood perfusion,
decreased new vessel formation, and impaired vasodi-
lation are associated with age to generate an
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environment that can maintain basal function but has
reduced reserve potential.

Aging effects on associated cardiovascular
pathologies

Aging and hypertension

Cardiovascular aging affects the walls of large arter-
ies in humans, particularly the aorta. Over time, the
aorta becomes thicker and loses its elastic nature.
This process results in arterial stiffness and increases
in pulse wave velocity. Of note, the age-related
increase in blood pressure does not occur in mice
(Lin et al. 2008). Thus, the mouse is a particularly
interesting species to study aging effects on the heart
without confounding age-related blood pressure ef-
fects. Intrinsic cardiac aging in the murine model
closely recapitulates age-related changes in humans
who do not have accompanying hypertension, in-
cluding LV hypertrophy, fibrosis, and diastolic dys-
function (Dai and Rabinovitch 2009).

Aging-induced hypertension has been related to
adverse remodeling with accompanying endothelial
dysfunction, LV hypertrophy, and diastolic dysfunc-
tion (Wang and Shah 2015). In aging Wistar rats,
mRNA transcription is decreased for type III colla-
gen, fibronectin, and β1 integrin in comparison to
young Wistar rats. In contrast, increased transcrip-
tion and expression of type III collagen, fibronectin,
and β1 integrin are observed in aging spontaneously
hypertensive rats (SHR) compared to young SHR
(Mamuya et al. 1992). These data suggest that in
the rat, aging may not increase transcription of ECM
components when blood pressure is normal. In this
case, post-transcriptional modifications may be con-
tributing to the increased ECM deposition in aging
hearts.

Aging and MI

Aging worsens post-MI LV remodeling outcomes.
There is reduced collagen scar deposition in healing
infarcts of old mice (>24 month old) compared to
young mice (2–3 month old); collagen deposition in
resolving infarctions is similar, indicating delayed
kinetics (Yang et al. 2008). Mice >2 years old have
decreased expression of osteopontin mRNA

compared to young mice 2–3 months old. TGF-β1,
TGF-β2, and TGF-β3 levels are not significantly
different in the infarcted/reperfused regions of both
old and young mice (Bujak et al. 2008). The upreg-
ulation of TGF-β stimulates the synthesis of fibrous
connective tissue, which reduces the flexibility of
the myocardium and increases myocardial stiffness.
In addition, an imbalance between MMPs and
TIMPs leads to ECM changes that stimulate cardiac
dilatation due to excessive ECM degradation. These
changes can lead to diastolic dysfunction and even-
tually heart failure. Aging, therefore, changes the
ECM environment, such that the response to MI
injury is less effective (Nguyen et al. 2014). The
positive correlation between age and LV dilation in
post-MI wild-type mice is not observed with MMP-
9 deletion (Yabluchanskiy et al. 2015). In addition,
MMP-9 deletion improves post-MI survival rates.
Moreover, MMP-9 deletion does not change the
number of macrophages in the LV, but does increase
the expression of M2 polarization markers, suggest-
ing an improved post-MI repair profile.

Aging

Hypertrophy 

Oxygen & energy demand

Hypoxia

ROS

Immune cells infiltration

Inflammation

MMPs

ECM

Angiogenesis

Cardiac dysfunction

Input

Cardiomyocyte

Macrophage

Output

Fig. 2 Aging-related events involved in the development of car-
diac dysfunction. Aging leads to increased afterload and decreased
vasodilation, and these are the inputs for cardiomyocyte hypertro-
phy. Increased oxygen and energy demand results in hypoxia,
which favors an increase of reactive oxygen species (ROS) levels
and release of pro-inflammatory factors. As a result, there is an
increase in immune cell infiltration, such as macrophages. Macro-
phages secrete matrix metalloproteinases (MMPs), which leads to
increased extracellular matrix (ECM) deposition, decreased angio-
genesis, and cardiac dysfunction
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Future directions and conclusion

The myocardium undergoes a number of cellular and
extracellular responses during aging, leading to in-
creased LV stress and diastolic dysfunction (Fig. 2).
While much knowledge has been obtained, there are
several avenues fruitful for future examinations. One
direction is to better understand how MMP activities
could bemodified to prevent or slow the development of
excessive cardiomyocyte hypertrophy and ECM depo-
sition. Aging is a resetting of baseline values to set a
new homeostasis, and attempts to delay or prevent this
shift may improve the cardiac aging phenotype.

Proteomics is a powerful tool with multiple ap-
plications for cardiac aging studies. Proteomics is
used to catalogue MMP substrates to further eluci-
date cell signaling pathways modified by MMPs
(Cauwe et al. 2009; Eckhard et al. 2016; Ma et al.
2012; Iyer et al. 2016). Unbiased proteomics explo-
rations will continue to elucidate molecular path-
ways involved in cardiac aging and identify useful
biomarkers of cardiac aging. Genomics screens also
provide a method of identifying gene pathways im-
portant for aging (Johnson et al. 2011; Yamamoto
and Takai 2009). As we amass big data on cardiac
aging, computational models at the molecular, cel-
lular, and organ levels will be useful. For example, a
computational model of fibroblast changes during
the time course of aging will be useful for under-
standing intracellular fibroblast communication, as
well as intercellular communication that includes
fibroblast connections to macrophages, cardiomyo-
cyte, and endothelial cells (Saucerman 2016). Un-
derstanding the relationship between myocyte hy-
pertrophy, inflammation, and fibrosis will also be
an important future avenue of research (Nahrendorf
2016; Turner 2016).

While this review focused on aging-related changes
in ECM and MMPs and their relationship with hyper-
tension and MI, a similar template can be applied for
other relevant molecular components and as a broad
application to other cardiovascular diseases that involve
MMPs and have aging as a risk factor, such as diabetes,
hyperlipoproteinemia, renal failure, and also cardiovas-
cular events as stroke and aneurysms. In conclusion,
understanding the dynamic ECM changes that occur
over the time continuum of cardiac aging will provide
us novel insight into the aging process that has implica-
tions for both physiology and pathophysiology.
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