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Abstract Post-reproductive lifespan varies greatly
among species; human post-reproductive lifespan com-
prises ~30–50% of their total longevity, while semelpa-
rous salmon and dasyurid marsupials post-reproductive
lifespan comprises <4% of their total longevity. To
examine if the magnitude of hypothalamic-pituitary-
gonadal (HPG) axis dyscrasia at the time of reproductive
senescence determines post-reproductive lifespan, we
examined the difference between pre- and post-
reproductive (1) circulating sex hormones and (2) the
ratio of sex steroids to gonadotropins (e.g., 17β-estradi-
ol/follicle-stimulating hormone (FSH)), an index of the
dysregulation of the HPG axis and the level of dyotic

(death) signaling post-reproduction. Animals with a
shorter post-reproductive lifespan (<4% total longevity)
had a more marked decline in circulating sex steroids
and corresponding elevation in gonadotropins compared
to animals with a longer post-reproductive lifespan (30–
60% total longevity). In semelparous female salmon of
short post-reproductive lifespan (1%), these divergent
changes in circulating hormone concentration post-
reproduction equated to a 711-fold decrease in the ratio
of 17β-estradiol/FSH between the reproductive and
post-reproductive periods. In contrast, the decrease in
the ratio of 17β-estradiol/FSH in iteroparous female
mammals with long post-reproductive lifespan was sig-
nificantly less (1.7–34-fold) post-reproduction. Like-
wise, in male semelparous salmon, the decrease in the
ratio of testosterone/FSH (82-fold) was considerably
larger than for iteroparous species (1.3–11-fold). These
results suggest that (1) organisms with greater reproduc-
tive endocrine dyscrasia more rapidly undergo senes-
cence and die, and (2) the contribution post-
reproduction by non-gonadal (and perhaps gonadal)
tissues to circulating sex hormones dictates post-
reproductive tissue health and longevity. In this way,
reproduction and longevity are coupled, with the degree
of non-gonadal tissue hormone production dictating the
rate of somatic tissue demise post-reproduction and the
differences in post-reproductive lifespans between
species.
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Introduction

Post-reproductive lifespan varies greatly among species.
Certain animals, like humans and most mammals, have
a comparatively long post-reproductive lifespan that
comprises ~30–50% of their total longevity. Conversely,
other animals such as semelparous salmon and dasyurid
marsupials have short post-reproductive lifespans com-
prising <1–4% of their total longevity (Table 1). Indeed,
both female and male semelparous salmon die rapidly
after their reproductive episode is complete (Truscott
et al. 1986), as do certain semelparous male dasyurid
marsupials (Braithwaite and Lee 1979; Diamond 1982;
Dickman 1993; Fisher et al. 2006; Humphries and
Stevens 2001; Oakwood et al. 2001; Woolley 1966),
polychaetes (Lawrence and Soame2009), and insecta
(Fritz et al. 1982). These differences in post-
reproductive lifespan and total longevity are related to
the survival strategies of different species (i.e., require-
ment or not, for post-reproductive care of offspring,
transfer of survival knowledge, optimal mate selection
or mating strategy, optimal sperm selection/competi-
tion). However, a mechanistic explanation of what reg-
ulates this range of post-reproductive lifespans between
and within species has been elusive.

The Reproductive Cell-Cycle Theory of Aging posits
that the hormones that regulate reproduction act in an
antagonistic pleiotropic manner to control aging via cell
cycle signaling; promoting growth and development
early in life in order to achieve reproduction, but later
in life, in a futile attempt to maintain reproduction,
become dysregulated and drive senescence (Atwood
and Bowen 2011; Bowen and Atwood 2004). In es-
sence, the theory postulates that longevity is dictated
by the dysregulation of sex hormones (endocrine dys-
crasia) of the hypothalamic-pituitary-gonadal (HPG)
axis that occur when the gonads can no longer produce
sufficient sex steroids, inhibins, anti-Müllerian hormone
(AMH), and other gonadal hormones. Since reproduc-
tive hormones regulate cell cycle dynamics (division:
gonadotropins/gonadotropin-releasing hormone
(GnRH); differentiation: sex steroids, activins), this re-
productive endocrine dyscrasia is thought to promote
aberrant cell cycle signaling (Bdyotic signaling^) lead-
ing to cell dysfunction and death, and the eventual
dysfunction of tissues leading ultimately to tissue failure
and the death of the organism (Bowen and Atwood
2004; Sun et al. 2006). Importantly, these sex hormones
when in balance drive organismal growth and develop-
ment early in life, and also are required for the normal

Table 1 Post-reproductive lifespan of representative iteroparous and semelparous species

Species Lifespan
(mean, years)

Post-reproductive lifespan
(mean or range; years)

Proportion of post-reproductive
lifespan (mean or range in %)

Human (Homo sapiens) 79
(Wang et al. 2013)

24–34
(Cohen 2004)

37

Chimpanzee (Pan troglodytes) 60
(Videan et al. 2008)

15–20
(Videan et al. 2008)

29 (25–33)

Rhesus monkey (Macaca mulatta) 25
(Uno 1997)

5–10
(Hodgen et al. 1977;
Uno 1997)

30 (20–40)

Rat (Rattus norvegicus) 2.5
(Segall 1977)

0.7–1.3
(McShane and Wise 1996)

60 (27–53)

Mouse (Mus musculus) 2.2
(Rowlatt et al. 1976)

0.7–1.3
(Rowlatt et al. 1976)

60 (30–52)

Japanese quail (Coturnix coturnix japonica) 4.5
(http://eol.org/pages/
1049255/overview)

1.5–2.5
(Ottinger et al. 1983)

44 (33–56)

Bush rat (Rattus fuscipes) 1
(McDonald et al. 1988a;
Taylor and Calaby 1988)

0.04
(McDonald et al. 1988a;
Taylor and Calaby 1988)a

4a

Salmon (Oncorhynchus nerka) 5
(Truscott et al., 1986)

0.06
(Truscott et al. 1986)

1

a Post-reproductive lifespan has not been accurately determined
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maintenance of structure and function of the tissues of
the body (Atwood and Bowen 2011; Berndt et al. 2009;
Berndt et al. 2006; Bowen and Atwood 2004; Cole
2009; Prior 1990; Rogers et al. 2009; Vadakkadath
Meethal and Atwood 2005; Wang et al. 2005;
Zygmunt et al. 2002). Recent parabiosis experiments
of young and old mice support this concept that the
(reproductive) hormones that regulate cell growth and
differentiation also regulate tissue maintenance and
health in adult animals (Eggel and Wyss-Coray 2014;
Katsimpardi et al. 2014; Sinha et al. 2014a; Sinha et al.
2014b). Based on this, a simple explanation for differ-
ences in post-reproductive lifespan might be that the rate
and magnitude of post-reproductive HPG axis dysregu-
lation determines the rapidity of cellular, tissue, and
organismal dysfunction and death. If this scenario is
true, then we might expect that for animals with a long
post-reproductive lifespan, there is a significant non-
gonadal tissue production of sex steroids, inhibins,
AMH, etc., i.e., endocrine dyscrasia is less in these
animals and the rate of demise is slower. Conversely,
animals that have a short post-reproductive life, such as
semelparous animals, would have less non-gonadal tis-
sue production of sex hormones, i.e., endocrine dyscra-
sia is greater in these animals since their non-gonadal
(and/or gonadal) tissues post-reproduction cannot com-
pensate for the loss of gonadal sex steroids and inhibins,
and their rate of demise is faster.

In this paper, we address this hypothesis by compar-
ing changes in HPG axis hormones during reproduction
and post-reproduction in semelparous and iteroparous
species. We find that endocrine dyscrasia following
reproduction in semelparous species is significantly
greater than in iteroparous species and discuss the role
of non-gonadal sex hormone production as a mecha-
nism to regulate post-reproductive lifespan.

Methods

A PubMed search was performed for animals with short
and long post-reproductive periods where circulating
concentrations of both sex steroids and gonadotropins
had been measured during- and post-reproduction in
order to assess endocrine dyscrasia of the HPG axis.
Data on the concentrations of circulating sex steroids
(testosterone (T) and 17β-estradiol (E2)) and gonado-
tropins FSH and luteinizing hormone (LH)) were ob-
tained from published reports (see Tables 2 and 3) for

animals with short (Oncorhynchus nerka—sockeye
salmon—free-living; Rattus fuscipes—bush rat—free-
living) and long (Homo sapiens—human; Pan troglo-
dytes—chimpanzee;Macaca mulatta—rhesus monkey;
Rattus norvegicus—rat; Mus musculus—mouse
(C57BL/6); Coturnix coturnix japonica—Japanese
quail) post-reproductive lifespans. Animals were only
included in the study if reproductive and post-
reproductive hormone concentrations had been report-
ed. Fold changes in the concentration of each hormone
between the reproductive and post-reproductive periods
were determined. The ratios of sex steroids/
gonadotropins were calculated from this data. Informa-
tion on the average lifespan, average post-reproductive
lifespan, and average proportion (%) of post-
reproductive lifespan for these animals was obtained
from published data (see references in Table 1).

Results and discussion

Post-reproductive sex steroid concentrations regulate
post-reproductive lifespan

Between species analysis

To examine the relationship between sex hormones and
post-reproductive lifespan, we analyzed the post-
reproductive concentrations of sex hormones in animals
with different post-reproductive lifespans (Table 1). An-
imals whose sex steroids and gonadotropins had been
measured during the reproductive and post-reproductive
stages of life were included (Tables 2 and 3; data from
published papers). Since post-reproductive circulating
hormones are derived from sex steroids released primar-
ily from non-gonadal tissues (adipose tissue, adrenals,
brain, etc.), we used circulating concentrations of sex
hormones as a proxy for the whole body post-
reproductive non-gonadal sex hormone production.
The contribution of gonadal sources of steroids may
not be significant since low levels of enzymes necessary
for steroid biosynthesis are expressed in the post-
reproductive ovary (Havelock et al. 2006). It is known
that the post-menopausal ovary contributes few if any
estrogens to the circulating pool by way of direct pro-
duction, although it appears to retain some capacity to
produce androgens (Adashi 1994; Ushiroyama and
Sugimoto 1995; Vermeulen 1976).
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In female mammals, there is an approximately 1- to
8-fold decrease in circulating 17β-estradiol concentra-
tions post-reproduction and a corresponding approxi-
mately 2- to 7-fold and an approximately 2- to 8-fold
increase in LH and FSH, respectively (Table 2). These
increases are the result of the loss of negative feedback
by the sex steroids on the hypothalamus and pituitary.

Like Mammalia, Osteichthyes (fish) have an HPG
axis complete with negative feedback regulation by
gonadal-produced sex steroids and inhibins on the hy-
pothalamus and pituitary (Poon et al. 2009). In salmon,
this axis regulates gonadal development and maturation
for spawning (reproduction). Circulating sex steroids
such as testosterone and 17β-estradiol increase during
reproductive maturation and peak well before spawning
(sometimes several hundred kilometers before reaching
natal spawning grounds and several weeks before final
maturation (Hinch et al. 2006)). Remarkably, in matur-
ing female O. nerka (sockeye salmon), circulating 17β-
estradiol concentrations are 123- to 264-fold higher than
reproductive females of common mammalian species
(Table 2), illustrating a crucial function for 17β-
estradiol in normal tissue maintenance and function in
O. nerka. Intriguingly, around the time of spawning,
there is a precipitous 15-fold decrease in circulating
17β-estradiol concentrations and a corresponding 45-
fold increase in total gonadotropins in female O. nerka
(Table 2, Truscott et al. 1986). Accompanying these
changes, there is a large increase in 17-hydroxyprogester-
one, the precursor of 17β-estradiol and testosterone, from
undetectable levels to 85 ng/mL post-spawning. Also, the
fish oocyte meiotic maturation-inducing hormone
17α, 20β-dihydroxy-4-pregnen-3-one (both free and con-
jugated) increases from undetectable levels to 34 and
16 ng/mL, respectively, post-spawning (Truscott et al.
1986), indicating that the rate of conversion of these
precursors into estradiol (and testosterone) is dramatically
decreased. Indeed, the circulating concentration of testos-
terone also decreases from 587 to 178 ng/mL, while that
of conjugated testosterone increases from undetectable
levels to 200 ng/mL post-spawning (Truscott et al. 1986).

In male O. nerka, free testosterone levels, like 17β-
estradiol in females, are higher (9 to 51-fold) than males
of iteroparous mammalian and fish species (Table 3),
suggesting testosterone also is crucial for normal tissue
maintenance and function in O. nerka. Around the time
of spawning, similar hormonal changes are observed in
male O. nerka (with the exception of 17β-estradiol
which is low throughout, Table 3; (Truscott et al.

1986); circulating testosterone decreases 2.5-fold while
total gonadotropins increase 32-fold (Table 3; Truscott
et al. 1986). Sex steroids also have been found to di-
minish and continue to decline prior to death in other
species, including in pink salmon Oncorhynchus
gorbuscha (Dye et al. 1986; Williams et al. 1986), coho
salmon Oncorhynchus kisutch (Fitzpatrick et al. 1986),
and chum salmon Oncorhynchus keta (Onuma et al.
2009). Thus, these results indicate that at around the
time of spawning, sufficient bioactive 17β-estradiol and
testosterone can no longer be synthesized while there is
an increase in bound sex steroids that would together
dramatically decrease bioavailable and bioactive sex
steroid signaling. Although unreported for salmon, there
is a decline in inhibin A expression in the follicles of
zebrafish whose oocytes undergo spontaneous matura-
tion or germinal vesicle breakdown (see Poon et al.
2009). These authors demonstrated that human inhibin
A induced a slight but significant inhibitory effect on
17α, 20β-dihydroxyprogesterone-induced oocyte mat-
uration, suggesting that inhibin production maintains
HPG axis homeostasis and that its loss upon follicle
maturation contributes to the endocrine dyscrasia asso-
ciated with spawning and the demise of body tissues.
Unlike some salmon, zebrafish possess ovarian follicle
reserves for subsequent reproductive episodes.

Since both male and female O. nerka die rapidly
around the time of spawning, and 17β-estradiol levels
are not altered in male O. nerka, the elevations in
gonadotropins and loss of testosterone (and likely inhib-
in) signaling in both males and females appear to be the
primary dyotic signals in salmon (Table 2). The loss of
17β-estradiol (and inhibin) signaling also may be im-
portant for the demise of female O. nerka (Table 2;
Jeffries et al. 2011), as supported by the high 17β-
estradiol concentrations in O. nerka prior to spawning
(Table 2), and the lack of a decrease in testosterone
signaling in post-menopausal women with aging (Rohr
2002). Although post-spawning female O. nerka circu-
lating 17β-estradiol (and male O. nerka testosterone) is
considerably higher than in mammals, their relative
concentration declines by a far greater extent
(Tables 2, 3, 4, and 5), thereby triggering robust dyotic
signaling.

Within species analysis

Differences in sex hormone production as a regulator of
post-reproductive lifespan within a species also have
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been identified (Atwood and Bowen 2011). Post-
reproductive lifespan in humans varies from ~24–
34 years or more (Thomas et al. 2001; Table 1). Those
individuals with greater dyotic signaling post-
menopause and during andropause are more likely to
develop Alzheimer’s disease (AD) (Bowen et al. 2000;
Hogervorst et al. 2004; Hyde et al. 2010; Manly et al.
2000; Rodrigues et al. 2008; Short et al. 2001; Verdile
et al. 2008); coronary artery disease (see Yeap 2010);
and osteoporosis (Bagur et al. 2004; Randolph et al.
2004; Sowers et al. 2006). With respect to the brain, it
has been demonstrated that the concentration of 17β-
estradiol and testosterone is decreased in women and
men, respectively, with AD compared to age-matched
controls (Rosario et al. 2009; Yue et al. 2005). Similarly,
circulating testosterone concentration is significantly
inversely correlated with stroke severity, infarct size,
and 6-month mortality in men (Elwan et al. 1990).
These results suggest that those post-reproductive indi-
viduals with a lower capacity to synthesize sex steroids
are more likely to develop age-related diseases sooner.

Ratio of sex steroid/gonadotropin as a measure of dyotic
signaling

Examination of the changes in individual circulating
hormones in reproductive and post-reproductive ani-
mals indicates clear differences between salmon and
humans. For example, there is a 2- to 6-fold increase
in circulating gonadotropins in humans, but a 45-fold
increase in circulating gonadotropins between salmon
pre- and post-reproduction. We have suggested that this

altered endocrine milieu post-reproduction leads to
dyotic/death signaling that drives altered cell cycle dy-
namics (overwhelming mitotic signaling), dysfunction
and death (Bowen and Atwood 2004). In this example,
it is clear that salmon have far greater mitotic signaling
than human post-reproduction. Since cell cycle dynam-
ics is determined by the relative concentrations of mito-
genic to differentiation hormones of the HPG axis, the
extent of dyotic signaling can be determined by the ratio
of these hormones. We have chosen to use the ratio of
sex steroids/gonadotropins/GnRH since the loss of sex
steroids (i.e., differentiation) and elevation of
gonadotropins/GnRH (mitogenic) gives an index of
differentiation/mitogenic (dyotic) signaling. In particu-
lar, we have chosen to examine the ratios of 17β-estra-
diol/FSH (and testosterone/FSH) because (1) the decline
in sex steroids necessarily promotes dyotic signaling
and results in the loss of feedback on the hypothala-
mus-pituitary, (2) FSH is a good marker of the loss of
negative feedback inhibition on the hypothalamus-pitu-
itary, (3) FSH acts as a proxy for the loss of inhibin
signaling and feedback on the hypothalamus-pituitary
(Downs and Urbanski 2006) and inhibin concentrations
are generally not measured, (4) FSH has a longer half-
life in mammals thereby obfuscating the need for mul-
tiple hormone measurements (such would be the case
with LH or GnRH), and (5) data on 17β-estradiol,
testosterone, and FSH is readily available. The more
dysregulated the axis, the larger will be the change in
the ratio. Finally, the use of ratios helps to mitigate
incorrect interpretations from absolute circulating hor-
mone concentrations due to any differences between

Table 4 Female reproductive and post-reproductive circulating sex hormone ratios

E2/FSH ratio (×10−3) E2/FSH ratio E2/LH ratio (×10−3) E2/LH ratio

Reproductive Post-reproductive Reproductive to
Post-reproductive
ratio

Reproductive Post-reproductive Reproductive to
Post-reproductive
ratio

Human (Homo sapiens) 15 0.4 34 30 1.1 27

Chimpanzee
(Pan troglodytes)

12 1.8 6.7 48 100 0.5

Rhesus monkey
(Macaca mulatta)

50 7.6 6.6 3 0.6 5

Rat (Rattus norvegicus) 17 10 1.7 113 53 2

Mouse (Mus musculus) 19 0.9 21 48 2.8 17

Salmon (Oncorhynchus
nerka)

9250 13 711 – – –
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assays utilized and differences in tissue receptor
densities.

During the time iteroparous female mammals are
fertile, the ratio of 17β-estradiol/FSH varies between
12 and 50 and is indicative of non-dyotic signaling
(Table 4). However, once they enter their post-
reproductive phase, the ratio declines to between 0.4
and 10, indicative of dyotic signaling. Thus, the cut-
off for female dyotic signaling (for mammalian spe-
cies) is around 10–12. Similarly, the ratios for 17β-
estradiol/LH vary between 3 and 113 (non-dyotic)
and 0.6–100 (dyotic) in reproductive and post-
reproductive species, respectively (Table 4). The
large overlap in ratios of 17β-estradiol/LH between
mammalian species makes this ratio less predictive of
dyotic signaling compared to the 17β-estradiol/FSH
ratio. In salmon, the reproductive 17β-estradiol/go-
nadotropin ratio was 9250 and fell dramatically to 13
post-reproduction.

In iteroparous males, the ratio of testosterone/FSH in
fertile and post-reproductive animals was between
6 × 10−3–11 and between 6 × 10−4–1, respectively
(Table 5). The ratios for testosterone/LH in fertile and
post-reproductive male animals were between 0.1 and
11 and between 0.025 and 2.4, respectively. In salmon,
the reproductive testosterone/gonadotropin ratio was 37
and fell dramatically to 0.45 post-reproductive.

The larger the change in mitogenic:differentiation
(dyotic) signaling (i.e., the more dysregulated the HPG
axis), the faster an organism’s tissues are predicted to
degenerate leading to death. Examination of the repro-
duct ive to post-reproduct ive 17β -est radiol /

gonadotropin ratio in semelparous salmon as compared
to mammals/birds indicates salmon have a far greater
dyotic signaling index (711) than mammals/birds (1.7 to
34) post-reproduction (Table 4). Likewise in males,
there is a larger reproductive to post-reproductive
testosterone/gonadotropin ratio in semelparous salm-
on (82) as compared to mammals/birds (1.3–11;
Table 5). Although post-reproduction gonadotropin
data for other semelparous species is not available,
the decline in circulating testosterone by 7-fold
post-reproduction in Rattus fuscipes is suggestive of
dyotic signaling promoting rapid senescence in this
semelparous-like species.

In male rodents, it is interesting to note that circulat-
ing LH levels are not increased post-reproduction, but
rather decreased (0.1 and 0.6-fold decreases in rat and
mouse, respectively) while circulating FSH is modestly
elevated (1.4 and 1.1, respectively; Table 3). Thus, in the
case of the mouse, dyotic signaling is driven by the
decreases in testosterone relative to the gonadotropins
resulting in a reproductive to post-reproductive ratio of
1.3–2 for FSH and 21-1.7 for LH (Table 5), and
explaining why they have a relatively long post-
reproductive lifespan (Table 1).

These differences in the concentration of LH, FSH,
GnRH, various sex steroids, activins, and inhibins
post-reproduction will provide a unique dyotic signal-
ing pattern that may dictate tissue-specific degenera-
tion and the development of specific, different, age-
related diseases between (and within) species. For
example, elevations in post-reproductive LH may
drive neurological and vascular diseases while

Table 5 Male reproductive and post-reproductive circulating sex hormone ratios

T/FSH ratio T/LH ratio

Reproductive Post-reproductive Reproductive to
Post-reproductive
ratio

Reproductive Post-reproductive Reproductive to
Post-reproductive
ratio

Human (Homo sapiens) 11 1 11 11 1.2 9

Rat (Rattus norvegicus) 0.2 0.1 2 0.1 0.7 0.1

Mouse (Mus musculus) 0.017 0.013 1.3 0.16 2.4 0.07

Japanese quail (Coturnix
coturnix japonica)

0.006 0.00056 11 0.1 0.025 4

Salmon (Oncorhynchus
nerka)

37 0.45 82 – – –
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elevations in FSH drive immunological (cancer) and
bone diseases.

Dyotic signaling, tissue degeneration, and functional
decline

The large dyotic signaling in salmon (and other semel-
parous species) post-reproduction leads to dramatic and
rapid (within 1–3 weeks) changes in tissue structure and
function (phenoptosis) that are similar to the degenera-
tive changes found in other aging vertebrates, including
humans: the brain (amyloidosis), liver, stomach (peptic
ulcers), spleen, thymus, thyroid, pituitary, kidney, and
cardiovascular system exhibit degenerative changes, the
adrenocortical tissue and pancreas display hyperplasia,
and immune system collapse results in skin infections
(Dickhoff et al. 1989; Maldonado et al. 2000, 2002a, b;
Robertson and Wexler 1960, 1962). At this time, the
suppression by 17β-estradiol on the utilization of preg-
nenolone as a substrate for cortisol synthesis by the
interrenals (adrenals) is lost (McQuillan et al. 2003).
Together with the marked elevation in circulating go-
nadotropins (Tables 2 and 3; Hruska et al. 2010; Jeffries
et al. 2011), which are known to upregulate tumor
necrosis factor (Clark and Atwood 2011) and subse-
quently glucocorticoid synthesis (Villar et al. 2013),
there is a large growth of the adrenal glands that produce
very high concentrations of glucocorticoids which has
been postulated to drive tissue degeneration/dysfunction
and death of salmon (Carruth et al. 2000; Finch 1990;
Hruska et al. 2010). A similar adrenocortical mechanism
impacting immune function has been proposed for the
post-mating deaths of males from dasyurid marsupials
(Antechinus stuartii and A. favipes) of eastern Australia
(Bradley et al. 1980; McDonald et al. 1981), although in
the larger dasyurid Dasyurus hallucatus, there is no
evidence of elevated corticosteroid levels during male
die-off (Oakwood et al. 2001). These results do not
however support the primacy of cortisol as the trigger
of death suggested by others. Rather, the loss of male
gonadal cells (germ and somatic cells) with mating
might be predicted to drive endocrine dyscrasia of
HPG hormones (as a consequence of the loss of gonadal
sex hormones) that subsequently signal elevations in
circulating glucocorticoids as described in iteroparous
species (Alevizaki et al. 2006). Indeed, Carruth and
colleagues (Carruth et al. 2000) concluded that Bthe
presence of elevated plasma cortisol in upstream

migrating, landlocked Pacific salmon suggests that
stressors previously considered to cause cortisol in-
creases, such as long-distance migration and changes
in salinity, may not be primary causes of the
hypothalamic-pituitary-interrenal axis activation.^ Cor-
tisol in individual O. nerka has been demonstrated to
already be high in seawater prior to their upstream
migration, and has been suggested to play a role in
ionoregulation in the gill as they adapt to freshwater
(Flores et al. 2012). Cortisol is a well-known
osmoregulator (Bradford et al. 2010; Milla et al. 2009;
Mommsen et al. 1999; Shrimpton et al. 2005); regula-
tion of osmolarity is crucial for the survival of migrating
salmon, there being a close correlation between the loss
of osmoregulation and death (Jeffries et al. 2012). This
study by Jeffries and colleagues further examined tem-
poral biochemical/endocrine changes in O. nerka over
the final 6 weeks of maturation and senescence (in
2008) and demonstrated that dyotic signaling (low
17β-estradiol in females, low testosterone in males)
was present in all fish that died, irrespective of the
timing of death (at first sampling, second sampling, third
sampling, and final sampling (~week 6)). Cortisol levels
were only excessively elevated in those fish near death;
control fish did not demonstrate altered sex hormones,
cortisol, or death. Thus, alterations in the HPG axis upon
spawning (or at least maturation of eggs/sperm to the
point of limited steroid or inhibin production) appear to
upregulate cortisol, and together this dyotic signaling
leads to O. nerka death. In iteroparous species, chronic
stresses such as starvation (caloric restriction) that mod-
erately elevate circulating cortisol (Qiu et al. 2012)
extend, not shorten, lifespan. The upregulation of glu-
cocorticoids during the estrous cycle, pregnancy, and
lactation also supports a critical role for these steroids in
reproductive success (Fanson et al. 2014).

This post-reproductive corticosteroid response also is
seen in humans later in post-menopause (Rozenberg
et al. 1988), and has been postulated as the cause of
death in other semelparous species such as the dasyurid
and didelphid marsupials (Fisher et al. 2013; Fisher et al.
2006; Oakwood et al. 2001; Schmidt et al. 2006). How-
ever, in contrast to smaller dasyurid and didelphid mar-
supial species, the larger dasyuridD. hallucatus species,
which shows complete male die-off after mating, do not
display elevated corticosteroid levels. Elevated cortisol
levels also were not detected in the male Virginia opos-
sum (Didelphis virginiana) which exhibits a life history
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akin to semelparity. Together, these results suggest that
the dysregulation of hormones of the HPG axis, those
hormones that normally maintain tissue structure and
function, is more likely driving semelparous species
from the gene pool (Oakwood et al. 2001; Woods and
Hellgren 2003). However, which changes in sex hor-
mones drive death remains to be elucidated; elevations
in testosterone have been reported for dasyurid and
didelphid marsupial species (Bradley et al. 1980;
McDonald et al. 1981; Oakwood et al. 2001), while
there is a precipitous decline in testosterone concentra-
tions and survivability of male R. fuscipes, which do not
live long beyond the breeding season (Table 3;
McDonald et al. 1988b). Further research in other
iteroparous species is required to validate the elevated
post-reproductive dyotic signals observed in male and
female sockeye salmon. Moreover, the exact endocrine
dyscrasia and dyotic signaling that follows mating in
semelparous species warrants closer investigation.

Reproductive strategies that regulate the survival
of the species are mediated via HPG hormones

When adult sockeye salmon O. nerka migrate upriver to
their natal spawning area they have already ceased feed-
ing and have begun rapid gonadal maturation in prepara-
tion for a single spawning (Jeffries et al. 2011). The above
discussed hormonal changes occur rapidly in O. nerka
over a 2–3 week period around the time of spawning.
Interestingly, the reproductive development of the salmon
varies from year to year, with sea temperature being one
variable that determines the speed with which salmon
mature (Onuma et al. 2009). This can result in the devel-
opment and maturation of the gonadal germ and somatic
cells that leads to the gonadal cells no longer being able to
synthesize sex steroids and inhibins, initiating dyotic
signaling, and leading to the death of salmon before
reaching the spawning grounds (Gilhousen 1990). This
Binflexible schedule^ could have dire consequences for
species survival given spawning success of only 3–24%
in certain years (Gilhousen 1990), and might be why
salmon have a 2–5 year growth phase in the ocean prior
to spawning, mitigating the negative effects of any one
year where the timing of maturation is not matched time-
wise to reaching their spawning grounds.

The dyotic signaling around the time of spawning
appears to be responsible for the rapid demise of salm-
on. This rapid demise has been demonstrated to be
important for the survival of the individuals in this

species since mineral nutrients from the adult salmon
are released back into ponds which help support the
developing salmon fry/parr ecosystem (Field and
Reynolds 2011). Or, put another way, since semelparous
salmon and marsupials do not need to maintain their
tissues post-reproduction, they have not evolved suffi-
cient non-gonadal (peripheral) tissue sex hormone and/
or gonadal sex hormone (steroid and inhibin) synthesis
(as indicated by the low circulating levels post-
reproduction; see Tables 2 and 3). Conversely,
mammals/birds have evolved post-reproductive non-go-
nadal/gonadal tissue steroidogenesis to maintain tis-
sue health and function (brain, adipocytes, immune
system, fibroblasts, adrenals; Bain et al. 1991;
Deshpande et al. 1967; Lubik et al. 2013; MacKenzie
et al. 2008; Martini and Melcangi 1991; Slominski et al.
2004) since this is advantageous to the individuals of the
species. In summary, we propose that post-reproduction
in iteroparous species, tissue production of sex steroids
and inhibins is greater and results in less dyotic signal-
ing compared with semelparous species, where periph-
eral tissue steroid and inhibin production is lower (based
on circulating hormone concentrations post-reproduc-
tion), relative to reproductive levels. The loss of the
gonadal contribution to total circulating sex steroids/
inhibins results in dyotic signaling; the greater the loss
of gonadal sex steroids/inhibins relative to peripheral
sex steroid/inhibin sources, the greater the dyotic sig-
naling and speed of senescent decline. In this way,
reproduction and longevity are coupled in all species
(Bowen and Atwood 2004), with the degree of periph-
eral tissue hormone production dictating the rate of
somatic tissue demise and thereby allowing for different
reproductive strategies (i.e., length of post-reproductive
period) and lifespans for different species. The longer
post-reproductive period in humans for example has
been evolutionarily advantageous to those members of
the species, while the short post-reproductive period in
salmon has been evolutionarily advantageous to the
individuals in that species. Animal species that have
longer parental care have a reproductive hormone axis
that dysregulates later and/or a higher capacity for post-
reproductive hormone production by non-gonadal tis-
sues to maintain somatic tissue function. Conversely,
semelparous species that provide no parental care have
a reproductive hormone axis that dysregulates after re-
production and insufficient post-reproductive hormone
production by non-gonadal tissues to maintain somatic
tissue function.
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Conclusion

The data and arguments presented in this paper suggest
that longevity is regulated not only by the timing of
HPG axis initiation (puberty) and dysregulation (i.e.,
menopause and andropause; Yonker et al. 2013), but
also by the contribution post-reproduction of non-go-
nadal/gonadal tissues to sex hormone production to
compensate for the loss of sex steroid/inhibin produc-
tion and the maintenance of structure and function of
non-gonadal tissues. Those organisms that have limited
post-reproductive tissue sex hormone production rela-
tive to reproductive gonadal sex hormone production
will die sooner than those with greater post-reproductive
tissue sex hormone production, explaining why salmon
die quickly around the time of spawning and why
humans can live 30–60 years post-reproduction. In
humans and rodents, all non-gonadal tissues studied to
date produce sex steroids (Bain et al. 1991; Deshpande
et al. 1967; Lubik et al. 2013; MacKenzie et al. 2008;
Martini and Melcangi 1991; Slominski et al. 2004),
albeit at levels insufficient to allow for the rebalancing
of the axis. These observations also provide a biological
rationale for the increase in circulating cortisol post-
reproduction, one that is secondary to the HPG axis
changes that lead to dyotic signaling. These data and
insights will hopefully promote further research into
strategies to maintain the HPG axis in balance longer
to further extend human post-reproductive lifespan.
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