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NIR hyperspectral imaging and multivariate image analysis
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Abstract Commercial mushroom growth on substrate material
produces a heterogeneous waste that can be used for bioenergy
purposes. Hyperspectral imaging in the near-infrared (NHI) was
used to experimentally study a number of spent mushroom sub-
strate (SMS) packed samples under different conditions (wet vs.
dry, open vs. plastic covering, and round or cuboid) and to ex-
plore the possibilities of direct characterization of the fresh sub-
strate within a plastic bag. Principal components analysis (PCA)
was used to remove the background of images, explore the im-
portant studied factors, and identify SMS and mycelia (Myc)
based on the pixel clusters within the score plot. Overview
PCA modeling indicated high moisture content caused the most
significant effects on spectra followed by the uneven distribution
of Myc and the plastic cover. There were well-separated pixel
clusters for SMS andMyc under different conditions: dry, wet, or
wet and plastic covering. The loading peaks of the related com-
ponent and the second derivative of the mean spectra of pixel
clusters of SMS and Myc indicated that there are chemical dif-
ferences between SMS and Myc. Partial least squares discrimi-
nant analysis (PLS-DA) models were calculated and classifica-
tion of SMS andMycwas successful, whether thematerials were
dry or wet. Peak shifts because of high moisture content and
unexpected peaks from the plastic covering were found.
Although the best results were obtained for dried cylinders, it
was shown that almost equally good results could be obtained
for the wet material and for the wet material covered by plastic.
Furthermore, PLS-DA prediction showed that a side face

hyperspectral image could represent the information for the entire
SMS cylinder when Myc was removed. Thus, the combination
of NHI and multivariate image analysis has great potential to
develop calibration models to directly predict the contents of
water, carbohydrates, lignin, and protein in wet and plastic-
covered SMS cylinders.
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Introduction

The mushroom industry has expanded rapidly since 1990, lead-
ing to a growth in mushroom production [1]. The production of
spent mushroom substrate (SMS) has also increased significant-
ly. Starch, hemicellulose, and cellulose are the major carbohy-
drates of the initial substrate and are gradually degraded by
mycelia during cultivation. While the mycelia grow inside and
through the substrate, they build up new carbohydrates and pro-
tein in their tissues. During these processes, the substrate and
mycelia are all changing in composition, depending on substrate
raw material, mushroom species, and cultivation environment.
SMS has been used as a potential feedstock for bioenergy [2, 3],
fertilizer/soil conditioner [4, 5], and other uses [6]. The utilization
of SMS is largely based on its chemical character and composi-
tion (e.g., moisture content and major organic components).
Therefore, efficient methods for SMS chemical characterization
can be helpful for strategic decision-making.

Near-infrared (NIR) analysis is one of the most effective
methods for biological material characterization, owing to its ra-
pidity, cost-effectiveness, non-destructive nature, and low require-
ments with respect to sample preparation [7]. Characterization of
food products, for example, can be done by NIR spectroscopy, as
water, fat, proteins, carbohydrates, and other organic matter
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containingC–H,O–H,C=O, andN–Hbonds has high absorbance
in the NIR wavelength regions (780–2500 nm) [7–9]. NIR spec-
troscopic analysis is usually conducted on bulk materials, from
which a single NIR spectrum is obtained, and the goal is to min-
imize sampling errors by using averages [7, 9]. Therefore, homo-
geneous samples are needed for bulkNIR analysis. As for SMS of
many mushroom species, they are often packed at a fixed density
in containers such as the plastic bags of cylindrical shape used in
this study. A direct online NIR characterization of such packed
SMS cylinders would be ideal, but some technical barriers must
first be tackled. The mushroom substrate in the current study
(SMS of Pleurotus ostreatus) is wet and held together with sub-
strate mycelia (or vegetative mycelia), which is covered by a
Bshell^ of unevenly distributed aerial mycelium (Myc) inside the
plastic cylinder bag. Some cylinders may still have fruiting bodies
that emerge during the SMS-preservation period.

There are a number of factors to take into account: (1) com-
positional differences of the substrate, (2) errors caused by plastic
and moisture, (3) distribution of Myc, and (4) shape (round or
flat). Any of these factors would influence an NIR spectrum, and
it is necessary to study the importance of all these factors.

NIR hyperspectral imaging (NHI) is another NIR technology
for chemical characterization and has been shown to be a useful
tool in food research and the characterization of other biological
materials [9, 10]. The image has spatial coordinates in two di-
mensions as well as a wavelength coordinate, yielding a three-
dimensional hypercube. This hypercube includes some depth
information and allows the description of differences and gradi-
ents in the sample. Multivariate image analysis (MIA) can be
used to detect and minimize background and shading errors.
After this, identification and classification of the SMS and Myc
regions can be done. This would be possible with little or no
sample preparation. The current study investigated the potential
of combined NHI and MIA for the characterization of SMS
under wet and the plastic cover conditions, being the first step
for a further development of the calibration modeling.

Materials and methods

Material origin

The substrate material was used as cylinders (average diameter
about 10 cm) prepared by a small-scale P. ostreatus cultivation
plant in Umeå in 2015. The mushroom substrate was initially
composed of 75% birch sawdust and 25% wheat grain and well
mixed. After harvesting, the last flush mushroom, three SMS
cylinders were collected from the same batch at the same time
and preserved in plastic packing bags in a cool room before
imaging (Fig. 1a). Several fruiting bodies (mushrooms) emerged
from the cylinders during preservation and were collected as
mushroom samples (Fig. 1e). Therefore, the studied SMS is ma-
terially composed of three fractions: substrates (remains of the

degraded form of the initial substrates and inner mycelia), Myc,
and mushroom. The moisture content was 64% (by drying at
105 °C for 16 h) for the fresh SMS and 90% for the fresh
mushroom.

Experimental design

The experimental design is summarized in Table 1, including
four setups, 13 experiments (Exp.), and 24 runs in total. SMS
and Myc were included to distinguish the influences of mois-
ture, plastic, uneven distribution of Myc, and cylinder shape.
Setup I (Exp. 1 and 2) was designed to investigate the chemical
difference between SMS and Myc and the scattering effect that
might be caused by the arc surface of the cylinder, while setup II
(Exp. 3, 4, 5, and 6) was used to explore the influences of
moisture and the plastic cover. When examining the effects of
profiling on sampling representativeness that might be induced
by the light penetration depth of imaging, setup III (Exp. 7, 8, 9,
and 10) was used to compare the pixel spectra for SMS between
the cylinder’s lateral face, cross section, and bulk mixed mate-
rials. Mushrooms (Exp. 11, 12, and 13) were applied as setup
IV for use as a chemical reference to confirm the assigned

Fig. 1 Digital images of the materials. The spent mushroom substrate
(SMS) cylinder within a plastic bag (a) and without the plastic cover (b),
and the aerial mycelia (the white spots at the surface of the cylinders);
cross section of the cylinder (c); the bulk mixed SMS (d); and the
mushrooms (e). The average diameter of the cylinders is 100 mm
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spectral bonds based on widely available chemical information
from previous studies [11–13].

Instrumentation, sample preparation, and imaging

The instrument used for imaging was a line-scanning camera
from Specim, modified by Umbio (Umbio AB, Umeå,
Sweden) for measuring samples on a belt. The camera made
line images of 320 pixels wide at 256 wavelengths (900 to
2500 nm). Line illumination was achieved with two rows of
quartz halogen lamps. The images were corrected for camera
dark current. Based on a measured Spectralon white reference,
absorbance in each pixel was calculated. The OLES22 lens
was provided by Specim. Synchronization of the belt speed
gave square pixels. The line width of the scans was 180 mm,
which resulted in pixel size of 0.6 × 0.6 mm.

The imaging process was separated into two sections, and all
the images of the fresh samples were taken first. Exp. 3 was
conducted by taking images from the arc surface of the first
SMS cylinder, repeated for three different parts of the cylinder
through rotation (Fig. 1a). The flat surface for imaging was ob-
tained by pressing the second cylinder into a cuboid mold, which
allowed three images (on different sides) to be taken for Exp. 4.
After that, the plastic that covered one side of the flat surface of
the cuboid was removed for Exp. 5 but replaced to cover the
exposed flat surface for Exp. 6 after the removal of some de-
tached Myc. The third cylinder was cut into three cross sections,

and a flat surface on each was kept for imaging (Exp. 9, Fig. 1c);
the rest of the material from the same cylinder was crumbled and
mixed to yield a homogeneous sample (Fig. 1d). To conduct
Exp. 10, Myc collected from the plastic bag was put on top of
the mixed sample. To minimize disturbances, such as shadows
and the background, efforts were made to display the fruiting
bodies (mushroom) on one flat surface during imaging (Exp.
12 and 13, Fig. 1e). After drying all the materials at 45 °C with
a 90% airflow rate for 96 h, the images of the dried samples
(about 10% moisture content, determined at 105 °C for 16 h)
were taken for Exp. 1, 2, 7, 8, and 11.

NIR hyperspectral image analysis

Some noisy spectrum parts were removed, and 246 wavelengths
from 949 to 2476 nm were used. Principal components analysis
(PCA) was used to remove image background and outliers (dead
or nonlinear camera pixels) [10]. PCAmodelingwas also used to
overview the studied factors and compare their influences based
on a multiple image from Exp. 1, 2, 5, and 6. After that, pixel
clusters of SMS and Myc of the images were studied in a pixel
score plot. By interactive brushing, score plots and score images
could be related to each other. This allowed for the selection of
useful components and pixel clusters and their interpretation. The
averaged and cleaned spectra could be extracted by selecting and
averaging the correct clusters. Mean centering and standard nor-
mal variate transformation (SNV) were chosen for the data

Table 1 The experimental design

Setup Exp. Factor Replicate

Material Moisture The plastic cover Imaging profile Surface imaged

I

1 SMS (Inc. Myc) Dry No Longitudinal Arc 2

2 SMS (Inc. Myc) Dry No Longitudinal Flat 3

II

3 SMS (Inc. Myc) Wet Yes Longitudinal Arc 3

4 SMS (Inc. Myc) Wet Yes Longitudinal Flat 3

5 SMS (Inc. Myc) Wet No Longitudinal Flat 1

6 SMS (Inc. Myc) Wet Yes Longitudinal Flat 1

III

7 SMS Dry No Cross section Flat 3

8 SMS + Myc Dry No Bulk mixture Flat 1

9 SMS Wet No Cross section Flat 3

10 SMS + Myc Wet No Bulk mixture Flat 1

IV

11 Mushroom Dry No N/A N/A 1

12 Mushroom Wet Yes N/A N/A 1

13 Mushroom Wet No N/A N/A 1

Total runs 24

SMS spent mushroom substrate, Myc mycelia, N/A not applicable
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preprocessing. Partial least squares discriminant analysis (PLS-
DA) was consequently applied to confirm the cluster selection
based on the results of PCA modeling [14, 15], and the models
were used to verify the effect caused by the plastic cover and the
representativeness of SMS spectra. Mean centering and SNV
were applied here also. To explore the comparable spectra peaks
that could be assigned as chemicals, the second derivative of the
average spectra of SMS, Myc, and mushroom were calculated
using a cubic polynomial order with 15 points in each sub-model
and a distance of one point between points [16].

The Evince 2.7.0 hyperspectral image analysis software
package (Prediktera AB, Umeå, Sweden) was used for image

analysis (PCA and PLS-DA modeling) and mean spectrum
extraction. SIMCA 13.0 (Umetrics AB, Umeå, Sweden) was
used for second derivative-corrected spectrum calculation.

Results and discussion

PCA modeling and pixel cluster identification of SMS
and Myc based on spectral information

To compare the effects of high moisture content, the plastic cov-
er, uneven distribution of Myc, and arc or flat imaging surfaces,

Fig. 2 Overview principal components analysis (PCA) modeling for the
comparison of studied factors. One run from Exp. 1 and 2 (dry materials),
Exp. 5 (wet materials), and Exp. 6 (wet and plastic covered materials)
were used to merge this multiple mosaic for the PCA modeling. a, b The
pixel score plots. c The scores plot of the related principal components

(PC). d The loading plot of the first (blue), the second (red), and the third
(dark) components. e The average spectra of the pixel clusters of the dry,
the wet, and the wet and plastic covered materials, including spent
mushroom substrate (SMS) and mycelia (Myc)
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four images from setup I and setup II (Exp. 1, 2, 5, and 6; one run
from each experiment) were merged as a multiple image for
overview PCA modeling by calculating the percentage of total
variance explained by each component. Five components were
calculated and moisture (high absorbance at 1400 and 1900 nm)
dominated the first component, which explained 77.9% of total
variance (Fig. 2a, c, d). The difference between SMS and Myc
dominated the second component (9.2%) and clusters of SMS
andMycwere found, whether thematerials were dry, wet, or wet
and plastic covered. The effect caused by the plastic cover was
explained by the second and the third (5.1%) components
(Fig. 2b, c) which is consistent with the loading peaks (2298,
2335, 2373, and 2447 nm) of the second and the third compo-
nents and the additive peaks within the average spectral of the
wet and plastic covered material (Fig. 2e). The scattering caused
by the round shape was explained by the fifth component, which
in total explained 0.44% of the total variance (data not show).
Therefore, moisture, uneven distribution of Myc, and plastic
covering caused significant effects on the spectra.

To explore the difference between clusters SMS andMyc, one
run of Exp. 1 and two runs of Exp. 2 from setup I were merged
into a multiple mosaic for PCA modeling for the dry material

(Fig. 3), while two runs of Exp. 3 and 4 from setup II were
merged into another multiple mosaic for the wet and plastic
covered material (Fig. 4). The results show that there were clear
pixel clusters for SMS andMyc and better separation for clusters
was found in the dry material (Fig. 3a) than the wet and plastic-
covered setups (Fig. 4a). Clear pixel clusters for SMS and Myc
were also found for the wet material (Exp. 5 and 10, data not
shown). According to the pixel score plots (Figs. 3a and 4a),
SMS andMyc clusters were separated by the second component.
High loading values of wavelengths in the loading plots (Figs. 3c
and 4c) played an important role for the pixel clustering, which
means the loading peaks of the second component were very
important for SMS and Myc separation. The strongest positive
loading peak for the dry material was approximately 1959 nm,
the negative one was at 2246 nm, and the positive and negative
loading peaks for the wet and plastic covered material were ap-
proximately 1922 and 2240 nm, respectively.

Classification of SMS and Myc via PLS-DA modeling

PLS-DA, as one of the approved methods for classification, was
used to detect and confirm the results of PCAmodeling based on

Fig. 3 The principal components analysis (PCA) modeling for spent
mushroom substrate (SMS) and mycelia (Myc) identification of the dry
material. One run from Exp. 1 and two runs from Exp. 2 of setup I were
applied to merge this multiple mosaic. a The pixel score plot. b The

contour plot showing the result of class identification by selecting the
pixel clusters within A. c The loading plot of the related components. d
The mean spectra of the pixel clusters of SMS and Myc in a
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images from setups I and II (Figs. 3 and 4). The training sets and
prediction sets constructed for modeling are listed in Table 2. No
cross-validation method was chosen because the data cube is
very big and test prediction sets were used from the same exper-
iment. The pixel clusters of SMS andMyc within the score plots
(Figs. 3a and 4a) were selected as two classes and set to have
equal size. Within the training sets, 72,808 and 276,655 pixels
were chosen for model 1 and model 2, respectively. Three com-
ponents were calculated for PLS-DAmodels, and they explained
85 and 77% of SS (the sum of squared differences from the
mean) of the y-variables (SMS and Myc) for setup I and setup
II, respectively.More than 99%of supervised pixels for SMS and
Myc within the training sets were predicted correctly by two
models (Table 2). Only 0.6% of pixels from model 1 and 0.3%
frommodel 2weremisclassified. Better separationwas found for
the dry material (model 1, Fig. 5a) than the wet and plastic
covered material (model 2), and two classes of model 1 were
slightly overlappingwithin the prediction histogram of the super-
vised pixels. The region extended from 0.375–0.75 (Fig. 5a),
while the overlap was found at 0.4–0.75 for model 2 (not shown
in figures). When the models were used to predict the unknown
samples from the same experiment, 99% of pixels from Exp. 1

and 2 and 98% of pixels from Exp. 3 and 4 were correctly
predicted (Table 2, Fig. 5b, c) by models 1 and 2, respectively,
which confirmed that the correct pixel clusters for SMS andMyc
were chosen by PCA modeling. The loading peaks in Figs. 3c
and 4c indicated that there was chemical variation between them.

Chemical differentiation between SMS and Myc

Comparable peaks of the mean spectra for SMS and Myc clus-
ters of the dry materials were identified by calculating their
second derivative. The literature data was used from Osborne
et al. [8] and Schwanninger et al. [17] for the chemical assign-
ment of wavelengths of specific negative peaks of the second
derivative in Fig. 6. To confirm the assigned peaks, mushroom
was adopted as a reference because of widely available associat-
ed chemical information. SMS, Myc, and mushroom shared
same absorbance peaks assigned to carbohydrates (1184–1200,
1358, and 1703–1721 nm) and protein (1439–1446, 1577–1590,
and 2065–2090 nm) (Fig. 6). According to the peak intensity,
mushroom had a higher protein content (2065, 2177, 2294, and
2308 nm), while SMS had higher hemicellulose/organic acid
(1922 nm) and lignin contents (1790 and 2258 nm). Similar

Fig. 4 The principal components analysis (PCA) modeling for spent
mushroom substrate (SMS) and mycelia (Myc) identification of the wet
and plastic covered materials. Two runs of Exp. 3 and 4 were applied to
merge this multiple mosaic. a The pixel score plot. b The contour plot

showing the result of class identification by selecting the pixel clusters
within a. c The loading plot of the related components. d The mean
spectra of the pixel clusters of SMS and Myc in a
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trends were found for Myc and mushroom, but less protein was
found inMyc than mushroom. Less hemicellulose and lignin but
higher protein content was found in Myc than in SMS, and this
was consistent with the strong peaks (positive effects caused by
Myc at 1922–2046 nm and negative effects caused by SMS at
2233–2265 nm) for the second loading of PCA modeling in
Fig. 3c, which successfully separated SMS and Myc into differ-
ent pixel clusters. These findings are considerably consistent with
the results from previous scientific reports [11–13, 18].
Laminarin was found as the major component of fruit bodies
and mycelia cell walls in P. ostreatus, and the main chemical
compounds of fruit bodies and pure mycelia were carbohydrates
(55–69 and 50% of total dry weight, respectively), protein (18.8–
24.3 and 23.3%), ash (6.1–8.0 and 5.8%), and fatty acids (1.6–
3.5 and 1.5%) [11, 12]. There were comparable glycogen [13]
and chitin [18] contents inmushroom andmycelia, and glucoside
was the major unit of cellulose, laminarin [19], and chitin [20].
Thus, it is not difficult to understand why SMS,Myc, and mush-
room shared absorbance peaks associated with carbohydrates.

Effects of moisture and the plastic covering

Mushroom substrates were packed within plastic bags during the
mushroom cultivation process and the moisture content of spent

substrates is about 65%. To characterize the chemical compound
of the spent substrate with less sample preparationwould be ideal
for its utilization in decision-making. According to the results of
PCAmodeling, highmoisture content caused the strongest effect
on the SMS spectra. Thus, it is important to investigate how
moisture affects the spectra. The effects of moisture were identi-
fied by comparing the negative peaks of the second derivative of
average spectra for SMS and Myc under wet (Exp. 5) and dry
(setup I) conditions, respectively, while the dry materials were
treated as an ideal case for substrate chemical characterization.
Using mushroom as a chemical reference, the spectra of the wet
materials were illustrated by strong negative peaks at 1400 and
1920 nm (Fig. 7), which could be assigned as water molecular
bonds shared with other bonds shown in Fig. 6. Furthermore, the
comparison of the dry and the wet SMS and Myc (Fig. 7) indi-
cated that apparent peak shifting at wavelengths of 1000–
2000 nm caused by moisture was observed while there was little
influence on the wavelengths above 2000 nm. This is consistent
with the results of PCA modeling (Figs. 2 and 3) and explains
why the strong loading value peaks of the wavelength in Figs. 2c
and 3c were slightly different (1959 and 2246 nm for the dry
material and 1922 and 2240 nm for the wet and plastic covered
materials). However, with regard to the driedmaterials (red arrow
in Fig. 7), the negative peaks assigned as carbohydrates, protein,

Table 2 Summary of PLS-DA
models Content Model 1: dry materials Model 2: wet and plastic covered

materials

Training set Exp. 1 and 2 (3 runs) Exp. 3 and 4 (4 runs)

Classes identification Pixel clusters in the PCA score plot Pixel clusters in the PCA score plot

Classes 2 (SMS and Myc with equal data
size)

2 (SMS and Myc with equal data size)

Number of pixels 72,808 276,655

No. of wavelength 246 (949–2476 nm) 246 (949–2476 nm)

Pre-processing SNV + center SNV + center

Cross validation Null Null

No. of PCs 3 3

R2y_cum 0.851 0.772

Model sensitivity

SMS Pixel num.: 36,400; correct: 99.0% Pixel num.: 135,462; correct: 99.8%

Myc Pixel num.: 36,374; correct: 99.5% Pixel num.: 137,754; correct: 99.5%

Misclassified 0.6% 0.3%

Prediction set Predicted pixel (%)

Test prediction Exp. 1 (1 run: 99.1) Exp. 3 (1 run: 98.0)

Exp. 2 (1 run: 99.7) Exp. 4 (1 run: 98.5)

The plastic cover effect – Exp. 5 (1 run: 94.8)

– Exp. 6 (1 run: 94.2)

Spectra
representativeness

Exp. 7 (3 runs: 99.8) Exp. 9 (3 runs: 90.1)

Exp. 8 (1 run: 99.9) Exp. 10 (1 run: 81.3)

PCA principal components analysis, PCs calculated principal component, SMS spent mushroom substrate, Myc
mycelia, SNV standard normal variate transformation
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and lignin can still be clearly identified (blue arrow, Figs. 6 and
7). For the calibration of chemical content in wet materials, good

NIR calibration models have been established to predict water,
fat, and protein contents in lamb meat under 70–76% moisture

Fig. 5 Partial least squares discriminant analysis (PLS-DA) modeling
and prediction based on the dry material in setup I. a The histogram of
the model prediction of the supervised pixels for spent mushroom
substrate (SMS, blue) and mycelia (Myc, green) from the training set.
Two classes were well separated, and the slight overlap ranged from

0.375 to 0.75. Misclassified pixels accounted for 0.6% of the whole
data set. The second run of Exp. 1 (b) and the third run of Exp. 2 (c)
were used as prediction sets. SMS and Myc were predicted correctly by
the model

Fig. 6 The second derivative of mean spectra of spent mushroom
substrate (SMS) and mycelia (Myc) based on pixel cluster identification
of the dry materials in Fig. 2. The mushroom (Mus) was adopted as a

chemical reference. The chemical assignments of the wavelengths are
from previous studies [8, 17]

2456 M. Wie et al.



content conditions by Kumruzzaman et al. [21] via an NHI sys-
tem in the NIR spectral range of 900–1700 nm. Thus, an NHI
systemwith a larger spectral range of 900–2500 nm,which could
explain more chemical information with no moisture effect at
2000–2500 nm than the one with wavelengths 900–1700 nm,
has great potential for making calibration models to predict the
water, carbohydrate, lignin, and protein contents of the wet SMS.

To investigate the effect of the plastic cover on the wet sub-
strate, the second PLS-DA model in Table 2 was applied to
predict the SMS mosaic for the same object’s surface without
and with the plastic cover treatments (Exp. 5 and 6). About 94%
of SMS and Myc was predicted successfully, and there were
comparable predicted results for both experiments (Table 2,
Fig. 8a). The result indicated that the plastic cover caused less

influence on spectra than the difference in SMS andMyc, which
was consistent with the loading peaks (1715, 2298, 2335, and
2373 nm) of overview PCA modeling (Fig. 2d). The plastic
cover effect was examined by comparing the second derivative
of the mean spectra of SMS under the wet and plastic covered
conditions (Fig. 8b). Although four unexpected peaks were
caused by plastic chemical contamination, the important peaks
for water, carbohydrates, protein, and lignin can still be identified
for SMS covered by plastic. Similar results were gained for Myc
and mushroom as well (not shown in figures). As indicated by
the PCA modeling (Fig. 2), moisture caused stronger effects on
the spectral data set than the chemical difference between SMS
and Myc and the influence caused by the plastic cover when the
moisture content was approximately 65%. All these results

Fig. 7 The second derivative of average spectra of spent mushroom
substrate (SMS) and mycelia (Myc) based on pixel cluster identification
of the dry (Exp. 1 and 2) and the wet (Exp. 5) materials. The mushroom

(Mus, Exp.13) was adopted as a chemical reference. Peak shifts were
found at a wavelength range of 1000–2000 nm
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suggested great potential for water and other organic compound
calibration modeling for SMS by using NHI without removing
the plastic cover of the wet SMS cylinder. However, the Myc
should be removed in advance via MIA.

The representativeness of SMS spectra

Research on embryo visibility in the maize kernels by NHI [9]
indicated that the penetration depth of the NIR radiation is about
1–2mm under the object’s surface. This implies a possibility that
the representativeness of the SMS information gained is not good
enough due to the heterogeneous surface, which might influence
the NIR penetration when imaging on the side surface of the
cylinder. In the current study, the cross section of the cylinder
and the bulk-mixture treatments are considered as good repre-
sentative samples of the SMS cylinder, and their NIR spectra
were compared with those from the side surfaces. To compare
the spectra of different profiles, PLS-DA models constructed on
the images taken on the side surfaces of the cylinder under the
dry and the wet and plastic-covered conditions (Table 2) were
applied to predict the mosaics from the cross section (Exp. 7 and

9) and the bulk mixture (Exp. 8 and 10), respectively. The results
showed that more than 99% of pixels of the dry materials were
predicted, and 81–90% of pixels of wet material were predicted
correctly (Table 2). The prediction result for the wet materials
was not as good as the result for the dry material because the
plastic cover effects were included within the training set of the
PLS-DA modeling. These results suggest that the penetration
depth of light radiation is enough, and making images on the
side surface could represent the information for the whole SMS
cylinder, as long as the substrate is reasonably homogenized.
Therefore, it is possible to get a representative spectrum for
SMS when making hyperspectral images on the side surface of
the SMS cylinder, even when it covered with plastic.

It is important to consider that the chemical composition of
the substrate is changing while mushrooms are growing, and
suitable moisture content of the substrate is one of the most
essential factors for mushroom growing. The carbohydrate
and lignin levels of SMS will affect feedstock quality for bio-
fuel production. Thus, collecting SMSon time is very important
for avoiding the excessive degradation of substrates by myce-
lium respiration, which could maintain the feedstock quality of

Fig. 8 Effects caused by the plastic cover on wet material. a The digital
image (left) and predicted mosaics of the same material under the wet
(middle) and the wet and plastic covering (right) conditions by the partial
least squares discriminant analysis model based on setup II. Most of the
spent mushroom substrate (SMS) and mycelia (Myc) were predicted

correctly. b The second derivative of the mean spectra of SMS under
different conditions. Even though four unexpected peaks were created
by the plastic chemical contamination, the important peaks for water,
carbohydrates, protein, and lignin can still be identified for the plastic
cover SMS
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SMS for bioenergy. Compared to wild mushrooms, mushroom
cultivated on the substrate is a controllable system. Building up
a good system for creating an optimal environment for mush-
room growing and preserving the energy of the substrate as
much as possible would be ideal for the mushroom industry.
It is important and worth trying to develop NHI on-line tech-
nology, not only to analyze moisture content but also for chem-
ical composition, controlling substrate quality for mushroom
cultivation and biofuel production. To achieve this in the future,
a number of responses, such as protein, carbohydrate, and lig-
nin, should be analyzed via wet chemical analysis and recorded
for quantitative calibration modeling.

Conclusion

This study aimed to investigate the possibilities of using NHI
and MIA as an on-line and nondestructive method for chem-
ically analyzing SMS, which is very heterogeneous in struc-
ture with highmoisture content and plastic packing. Overview
PCA modeling indicated high moisture content caused the
most significant effects on spectra followed by the uneven
distribution of Myc and the plastic cover. Both PCA and
PLS-DA modeling were applied to classify SMS and Myc
clusters and the classification showed similar trends, whether
the materials were wet or dry. The loading peaks from PCA
modeling and the second derivative-corrected spectra for SMS
and Myc clusters also showed similarities in most peaks with
rather clear differences in chemical composition. MIA can be
used to spatially remove the effect caused by chemical differ-
ences between SMS and Myc by easily excluding the Myc
pixel cluster within the PCA score plot. The best results for
classification and the chemical identification of SMS were
obtained for dried cylinders, but it was shown that almost
equally good results could be obtained for wet material and
for wet material covered by plastic. Therefore, the combina-
tion of NHI and MIA has great potential to make calibration
models, using side surface images after the removal of Myc to
predict the contents of water, carbohydrates, lignin, and pro-
tein in wet and plastic-covered SMS cylinders.
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