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Abstract

The human dopamine transporter gene (gene symbol: SLC6A3) is considered as a candidate risk 

factor for Parkinson’s disease because dopamine transporter accumulates cytotoxic dopamine or 

other toxins in the dopamine neurons. However, findings from numerous association studies in 

different populations have been inconsistent with each other. In this study, we performed a 

combined analysis of published case–control genetic association data between SLC6A3 and 

Parkinson’s disease. The results indicate that SLC6A3 confers a modest but significant risk for 

Parkinson’s disease in various populations. Allele 10-repeat of the 40-base pair variable number 

tandem repeat, a well studied polymorphism in the 3′ untranslated region of SLC6A3, confers 

neuroprotection in East Asian (OR: 0.78, 95% CI: 0.65, 0.94 and p = 0.009) but not in Caucasian 

populations. Genotype GG and allele G of the promoter single nucleotide polymorphism 

rs2652510 is associated with a risk in Caucasians (allelic G, OR: 1.26, 95% CI: 1.04–1.54, and p = 

0.018; genotypic GG OR: 1.37, 95% CI: 1.03–1.84 and p = 0.032). Such information implies a 

population-dependent involvement of SLC6A3 in the etiology of Parkinson’s disease.
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1. Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disorder with 

incidence of 8–18 per 100,000 person-years and prevalence of 0.3% in the whole population 

of industrialized countries [4]. Epidemiology studies showed PD prevalence could be 

ethnicity-dependent. In particular, the prevalence seems slightly lower in Asian than in 
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Western countries [4,6,32]. The etiology of PD is attributable to three main factors, aging, 

environment (dietary and pesticides, etc.) and genetics (e.g., DNA sequence 

polymorphisms). The estimated sibling risk ratio for Parkinson’s disease increases from 1.7 

for all ages into around 12 for those younger than 66 years [6], implying a significant 

genetic contribution to disease risk.

Since loss of dopaminergic neurons (DA neurons) is the hallmark of PD, genes especially 

those expressed exclusively in these neurons are candidate contributors to the genetic 

etiology of PD [1,30]. In this regard, the dopamine transporter (DAT or DAT1, gene symbol: 

SLC6A3) plays a critical role in maintaining the integrity of DA neurons. First, DAT is 

expressed exclusively in DA neurons, at the highest levels in substantia nigra that happens to 

be the most vulnerable brain region in patients with PD. Second, DAT takes up dopamine 

from the synaptic cleft into the presynaptic neurons, terminating DA transmission as the 

principal function of DAT in the brain [11,43]. However, this uptake activity accumulates 

DA and confers vulnerability in the DA neurons because oxidation of DA causes 

neurotoxicity by, for instance, producing free radical species [10,15,37,41,42]. Third, DAT 

could also take up neurotoxins such as 1-methyl-4-phenylpyridinium [MPP+, a metabolite of 

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)] that may damage the DA neurons as 

well [21,44]. Accordingly, genetic variation in DAT expression levels is well positioned to 

explain the selective vulnerability of nigrostriatal DA neurons observed in patients with PD.

Based on its unique candidacy, SLC6A3 has been investigated extensively by association 

studies but the results have not reached a consensus for its genetic relevance to PD. To 

systematically evaluate those association results, a combined analysis, or meta-analysis [12], 

of published findings on SLC6A3 association with PD was carried out to assess whether 

lack of consistency was underlain by a small effect size in each study or by potential 

confounders among these studies.

2. Material and methods

2.1. Literature search

To find publications suitable for this analysis, we searched the PubMed and the Chinese 

National Knowledge Infrastructure Database (CNKI) from 1995 to October 2012 by using 

the keywords ‘dopamine transporter’, ‘DAT’, ‘SLC6A3’, combined with ‘Parkinson’s 

disease or PD’. From the references cited in these publications, additional original reports 

were identified.

2.2. Criteria for inclusion

Studies on at least one genetic marker in the SLC6A3 gene were included in this meta-

analysis [2,3]. In addition, selected studies met all of the following criteria [47]: (1) from a 

peer-reviewed journal; (2) reporting original data on allele/genotype frequencies, and no 

genotype frequencies deviated from Hardy–Weinberg equilibrium (HWE) among control 

subjects (p > 0.01); (3) independence from other studies (without sharing of any data with 

another reported studies, all that included and re-analyzed a previously published data set 

were not regarded as independent and in such cases, only the study composed of the largest 
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sample size and the most detailed information was included in the meta-analysis); and (4) 

case–control studies. From each study, we collected information on publication year and 

authors, sample location, demography including age-at-diagnosis and -onset, cohort size, 

and genetic (allele and genotype) composition.

2.3. Statistic analysis

Estimation of statistic power calculations was based on the G*Power program [9]. Meta-

analysis was performed when the sample size used had >80% power to detect a positive 

signal (p < 0.05) for the given marker in allelic as well as genotypic analysis, given an effect 

size index of 0.1 corresponding to ‘weak’, for a low risk of a type II error under the 

predefined weak effect size.

The meta-analysis was carried out via Stata 11.0 (Stata Corporation, College Station, TX, 

USA). Every selected study was given a contingency table where subjects were categorized 

by case vs. control and allelic or genotypic frequency. A combined log-odds ratio (OR) and 

its 95% confidence interval (CI) were estimated by random effects method for each marker. 

We used the z-test to evaluate the significance of the combined OR. The heterogeneity 

among different cohorts used in these studies was estimated by χ2-based Q-testing. 

Sensitivity analysis of the effect of each study on the combined OR was completed by 

excluding the study, followed by re-estimation of the combined OR and 95% CI 

sequentially. The effect of publication bias was weighed by the Egger test [8]. Stratified 

meta-analyses were performed to examine possible moderating effects of ethnicity on 

combined OR. Two-tailed p values below 0.05 were recognized as statistical significance.

3. Results

The criteria-based search identified 29 studies. After estimation of statistic power, a variable 

number of tandem repeat located in 3′untranslated region (3′VNTR) and four SNPs 

(rs6347, rs3756450, rs2652510, rs2550956) were included in current combined-analysis, as 

listed in Table 1 [5,7,13,16,18–20,22–27,31,33–36,38–40,46,48,49]. There was lack of 

power for combined-analysis of other SLC6A3 polymorphisms.

With 3′VNTR, 18 studies have been performed, seven in Caucasians and another seven in 

East Asians (Table 1). The combined ORs and 95% CIs from the case–control studies were 

not statistically significant (for 9-repeat allele: OR = 1.10, 95% CI: 0.996–1.220, z = 1.885, 

p = 0.059, Fig. S1A; for 10-repeat allele: OR = 0.91, 95% CI: 0.82–1.01, z = −1.738, p = 

0.082, Fig. S1B). No significant heterogeneity was observed during these analyses (for 9-

repeat allele: heterogeneity Q = 17.512 (d.f. = 17), p = 0.420; for 10-repeat allele: 

heterogeneity Q = 21.94 (d.f. = 17), p = 0.187). Egger’s tests did not suggest publication 

bias among the studies (for 9-repeat allele: p = 0.346, Fig. S2A; for 10-repeat allele: p = 

0.167, Fig. S2B). Results of the sensitivity analysis indicated certain extents of biasing 

(Table S1, shown in bold). Given potential influences of ethnicity on the combined results, 

the analyses were stratified by the two main populations, Caucasian and East Asian.

After stratification, positive signals are revealed with the 10-repeat allele only in 1158 East 

Asian cases vs. 1361 controls (Fig. 1A) but not in 1195 Caucasian cases vs. 1350 controls 

Zhai et al. Page 3

Neurosci Lett. Author manuscript; available in PMC 2017 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Fig. 1B). The stratified analytic results are for 10-repeat allele: OR = 0.78, 95% CI: 0.65–

0.94, z = −2.615, p = 0.009 in East Asians and OR = 0.92, 95% CI: 0.81–1.04, z = −1.337, p 
= 0.181 in Caucasians (Table 2). No publication bias was found among Caucasian and East 

Asian studies. Sensitivity analysis showed no individual study was significantly biasing the 

combined results in the Caucasian and East Asian studies (Table 3).

We have also shown the combined effects of the four SNPs (rs6347, rs3756450, rs2652510 

and rs2550956) ìn the SLC6A3 gene locus on risk for PD (Table 4). For rs2652510, we 

found positively combined results for genotype-wise recessive genetic model in both overall 

involved studies and two Caucasian studies, and allele-wise in two Caucasian studies (shown 

in bold). Genotype GG is associated with the higher PD risk in both overall involved studies 

and Caucasian studies, compared to genotype AG+AA, with G as the Caucasian risk allele. 

For rs6347, rs3756450 and rs2550956, the combined allele-wise and genotype-wise ORs 

lack any statistical significance in either overall involved studies or particular ethnicity (if 

applicable). For rs2652510 and rs2550956, there was significant heterogeneity (shown in 

italics), when the ethnicity is mixed, indicating that the effects of rs2652510 and rs2550956 

on the risk of PD may be confounded by ethnicity. For rs6347, the sensitivity results are 

shown in Table S2. In general, no individual study was found to be significantly biased from 

the combined results. For rs3756450, rs2652510 and rs2550956, given the involved studies 

no more than three, the sensitivity analysis is not well applicable. There is no publication 

bias in each of those combined studies on the four SNPs.

4. Discussion

This meta-analysis reveals that the 10-repeat allele of 3′VNTR is protective against PD in 

East Asians but not in Caucasians. A number of factors may have contributed to this racial 

disparity. First, this allele has higher frequency in Asians than in Caucasians. Several studies 

have demonstrated ethnic differences in the SLC6A3 3′VNTR frequency distributions 

[17,29]. The 10-repeat allele is more common in East Asian populations (about 87%) and 

less common in Caucasian populations (about 70%). Linkage disequilibrium (LD) patterns 

and genetic structure of the SLC6A3 locus appear different between Caucasian and East 

Asian populations (Fig. S3). In Caucasian populations, the 3′VNTR is located in the first 

haplotype block; while in East Asian population, the surrounding region of the 3′VNTR is 

highly recombinant. Studies with 3′VNTR have revealed some associations with the risk for 

PD. However, the association results have been conflicted [13,16,19,20,22–

24,26,27,33,36,38]. The confliction may underscore ethnic differences and poor power of 

detection in individual samples especially when the genetic effect is small. Second, 

functional studies have shown that this allele is associated with lower DAT availability [45]. 

These genetic and functional findings are consistent with the notion that low DAT levels 

may prevent DA from entering the DA neurons, resulting in low cytosolic concentration of 

toxic DA.

Third, the positive signals may be attributed to the environment in East Asia. In developing 

countries such as China, agricultural use of pesticides and herbicides, daily use of well 

water, air pollution and less drink of coffee, etc. all could contribute to the pathogenesis of 

PD [28]. A combination of these factors, high frequency of neuroprotective 10-repeat allele 
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for low DAT availability and low cytosolic DA concentration, and the interaction of 

oxidative small molecules and heavy metals with DA could explain the 10-repeat allele as a 

protective factor against Asian PD. Positive signals with rs2652510 in Caucasians suggested 

that the SLC6A3 promoter confers risk as well, perhaps in an additive model for PD. Such 

information encourages replication of these findings in more samples and investigation of 

the functionality of this SNP.

Among the meta-analyses available on the PDGene website [http://www.pdgene.org/], our 

meta-analysis has the following advantages: (1) We checked with the corresponding authors, 

if important information was not mentioned in the original articles. (2) We searched multiple 

databases to cover as many available studies as possible in this analysis, whereas the 

PDGene meta-analyses rely on the PubMed. (3) We went through a rigorous analytical 

process that included repeating tests for HWE in genotype distributions among the controls 

of all included studies, evaluation of possible sources of heterogeneity, sensitivity analysis, 

stratified meta-analysis, and assessment of publication bias. For the above reasons, our 

results are reliable and robust. However, this study has certain limitations as well. For 

instance, there were not enough data available for stratifications with age of onset, gender 

and subtypes of PD. Other regions of SLC6A3 that appear to modulate transcriptional 

activity (e.g. intron 8 VNTR) [14] and other genes (COMT, MOA, VMAT, etc.) involved in 

dopaminergic system should be considered in future studies as well. Moreover, like many 

other chronic diseases, PD is multifactorial [4], with multi-genetic factors, epigenetic 

regulation, gene–gene interaction, environmental factors (such as environment pollution, 

pesticide exposure), life style (smoke, nutrition status and exercise activities), and 

environment–gene interaction playing integral roles. Hence, these multifactors should be 

considered in future studies as well.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• We performed a combined analysis of published case–control genetic 

associations between SLC6A3 and Parkinson’s disease.

• SLC6A3 confers a modest but significant risk for Parkinson’s disease in 

various populations.

• Polymorphism in the 3′ untranslated region of SLC6A3 confers 

neuroprotection in East Asian but not in Caucasian populations.
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Fig. 1. 
Forest plots of meta-analysis for the 3′ VNTR polymorphism in Caucasian (A) and East 

Asian (B) populations. Allele 10 vs. others.
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