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ABSTRACT

The human leukocyte antigen (HLA) class Il antigen-processing machinery (APM) presents to cognate
CD4" T-cells antigenic peptides mainly generated from exogeneous proteins in the endocytic
compartment. These CD41 T cells exert helper function, but may also act as effector cells, thereby
recognizing HLA class Il antigen-expressing tumor cells. Thus, HLA class Il antigen expression by tumor
cells influences the tumor antigen (TA)-specific immune responses and, depending on the cancer type, the
clinical course of the disease. Many types of human cancers express HLA class Il antigens, although with
marked differences in their frequency. Some types of cancer lack HLA class Il antigen expression, which
could be due to structural defects or deregulation affecting different components of the complex HLA
class Il APM and/or from lack of cytokine(s) in the tumor microenvironment. In this review, we have
summarized the information about HLA class Il antigen distribution in normal tissues, the structural
organization of the HLA class Il APM, their expression and regulation in malignant cells, the defects, which
have been identified in malignant cells, and their functional and clinical relevance.

Abbreviations: APC, antigen presenting cell; APM, antigen-processing machinery; CIITA, class Il transactivator; CLIP,
class Il associated invariant chain peptide; CRC, colorectal carcinoma; CREB, cAMP-responsive element binding pro-
tein; CTL, cytotoxic T lymphocyte; DAC, 5'-aza-2'-deoxycytidine; DC, dendritic cells; ER, endoplasmic reticulum; GILT,
gamma interferon inducible lysosomal thiolreductase; HLA, human leukocyte antigen; HNSCC, head and neck squa-
mous cell carcinoma; HPV, human papilloma virus; IFN, interferon; li, invariant chain; MHC, major histocompatibility
complex; MIIC, MHC class Il compartment; MSI, microsatellite instability; MSI-H, high level microsatellite instability;
PADRE, pan-HLA-DR reactive epitope; Rb, retinoblastoma; RFX, regulatory factor X; TAA, tumor-associated antigen;
TCR, T-cell receptor; TSA, trichostatin A; USF-1, upstream regulatory factor.
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Introduction

Malignant tumors, as a genetic disease, are caused by structural
alterations of the genome which can give rise to the expression
of tumor-associated antigens (TAA) in the form of either struc-
turally altered molecules or of overexpressed normal molecules.
TAA may be recognized by the host’s immune system and may
induce a T-cell-mediated immune response. Consequently, out-
growing cancers develop different strategies to evade potential
destruction by the host’s immune system. In particular,
immune evasion mechanisms affecting the expression and/or
function of human leukocyte antigens (HLA) are of special
interest to tumor immunologists, since these molecules play a
crucial role in the interaction of malignant cells with immune
cells. As summarized in Table 1, the two types of classical HLA
antigens, HLA class I and II antigens, share certain similarities,
but also substantial differences.

Analyses of tumor cell lines and of large numbers of surgi-
cally removed tumor lesions of distinct histology have demon-
strated defects in HLA class I surface expression in most of the
tumors tested. This was associated with a downregulation or loss

of components of the HLA class I antigen-processing machinery
(APM) as summarized in Table 1“* in solid and hematopoietic
tumors; however, the frequency of these defects strongly varied
among the different types of cancer. Multiple molecular mecha-
nisms have been shown to underlie these abnormalities, which
cause defective synthesis and/or expression of HLA class I anti-
gen/tumor antigen (TA)-derived peptide complexes. The latter
mediate the interactions of tumor cells with antigen-specific
cytotoxic T lymphocytes (CTL). The functional significance of
these defects is indicated by their negative impact on the CTL-
mediated elimination of tumor cells.” An impaired interaction of
immune cells with HLA class I antigen-deficient cancer cells also
accounts for the association between defective HLA class I APM
component expression in tumors and poor clinical course identi-
fied in various types of malignancies. Alterations of HLA class I
APM and their significance in malignant tumors have been
recently reviewed by various groups and we refer the interested
reader to these reviews.”®

In contrast, HLA class II antigens expressed by malignant
cells of solid tumors have been characterized only to a limited
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Table 1. Comparison of the major characteristics of the HLA class | and Il APM
pathway.

Steps of APM HLA class | APM HLA class Il APM

Antigen presentation HLA-A, -B, -C HLA-DR, -DQ, DP

Stabilization and loading Tapasin HLA-DM

Peptide generation Proteasome Lysosomal

subunits enzymes

Transactivation No Yes, CIITA

Assembly and Brm Invariant chain
stabilization

Peptide loading ER Mcli
compartment

Presentation to CD8* T cells CD4™ T cells

Regulation by cytokines IFNy IFNy

Expression by tumor cells Loss Loss

Downregulation Down- or upregulation

de Novo expression

extent, although the aberrant expression of HLA class II anti-
gens by melanoma cells was first described more than 30 y
ago.” Growing evidence indicates that HLA class II antigen
expression by tumor cells has a significant impact on their
immunogenicity.'” In addition, more information is available
about the molecular mechanisms leading to aberrant HLA class
IT antigen expression by tumor cells. In this review, we will pro-
vide an update about HLA class II antigens in cancer. We will
describe HLA class II antigen expression in normal tissues, the
physiological organization of components of the HLA class II
APM pathway, expression patterns of HLA class II antigens in
tumors related to the so far identified molecular and regulatory
defects as well as their functional and clinical relevance.

HLA class Il antigen expression in normal cells

It has been assumed for a long time that under physiologi-
cal conditions the constitutive expression of the gene prod-
ucts of HLA «class II loci is primarily restricted to
professional antigen presenting cells (APCs) and to thymic
epithelial cells in man and in other animal species."" With
the availability of HLA class II antigen-specific monoclonal
antibodies (mAb), the expression of these antigens could be
studied in a variety of normal tissues, revealing that HLA
class II antigens have a broader distribution in normal tis-
sues than originally postulated'''®: A weak to moderate
expression of HLA class II antigens has been shown in
skin, breast, lung and kidney tissues (www.proteinatlas.org
'), indicating that in addition to APC, other tissues are able to
constitutively express HLA class II antigens.

Organization of the HLA class Il antigen-processing
machinery

The increased availability of mAbs recognizing HLA class II
APM components during the last few years has greatly facili-
tated the characterization of the organization and functional
properties of this machinery '* (Fig. 1). HLA class I antigens
are heterodimers consisting of a 33 kDa « and a 29 kDa
chain. Both chains are glycosylated and polymorphic, although
to a different extent. They are synthesized in the endoplasmic
reticulum (ER), where they assemble with the invariant chain
(Ii) also known as CD74. The li, a 33 kDa polypeptide, is
involved in the stabilization and proper folding of HLA class II

antigens as well as in the prevention of binding cellular peptides
on HLA class II antigens, while it could also serve as vehicle to
load antigenic peptides on MHC class T molecules.'” In addi-
tion, the li facilitates the export of HLA class II molecules from
the ER and is responsible for directing the HLA class II com-
plexes into specialized endosomal/lysosomal antigen loading
compartments, termed MHC class II containing compartment
(MIIC). Here, the li is proteolytically degraded by cathepsin
into the 14 amino acid long class II-associated invariant chain
peptide (CLIP) occupying the HLA class II peptide-binding
groove.'

Exogeneous engulfed proteins delivered into the endosomal/
lysosomal network are also exposed to distinct endosomal/lyso-
somal aspartyl and cysteine proteases including cathepsin S,'°
peptidases and reductases, such as the gamma-interferon
inducible lysosomal thiol reductase GILT, yielding peptide
ligands for HLA class II molecules.'”'® In the MIIC, the
exchange of CLIP for such antigenic high-affinity peptides is
facilitated by low pH, endosomal proteases and the assistance
of the non-classical MHC class II molecule HLA-DM. The lat-
ter serves as a peptide editor.'® Following peptide loading, the
HLA class II/peptide complex is then transported via the trans-
Golgi to the cell surface and there presented to cognate CD4*
T cells. The CD4™ T cells have a helper function or display an
effector function with HLA class II bearing tumor cells. The
function of HLA class II proteins has been associated with the
regulation of immune responses by presenting antigenic pepti-
des to CD4" T cells and by controlling B-cell differentiation
into antibody-producing blasts. Efficient and long-lasting
TAA-specific immunity requires both CD8* CTL and CD4* T
lymphocytes during priming and effector phases of TAA-spe-
cific immune responses.””*' However, not only exogeneous,
but also endogeneous peptides can be loaded onto HLA class II
molecules; ** this process is mediated by an li-independent, but
proteasome- and peptide transporter-dependent presentation
pathway.”?

Regulation of HLA class Il antigen expression

The expression levels of HLA class II antigens are tightly regu-
lated to ensure an immune response directed against pathogens
as well as malignant or virally transformed cells.** The pro-
moters of HLA class II and related genes share a set of con-
served sequence elements, the W/S, X1, X2 and Y boxes, which
interact with transcription factors (TF) including members of
the regulatory factor X (RFX) family, the nuclear factor Y
and the cAMP-responsive element binding protein CREB.*>*
All these TF and co-factors bind to cis regulatory elements of
the HLA class II promoters to form a highly stable multimeric
complex known as MHC enhanceosome. Due to their ubiqui-
tous expression, the enhanceosome components fail to account
for the cell type specificity and/or IFNy inducibility of HLA
class IT antigen expression.”” In contrast, the HLA class I trans-
activator CIITA, the master key transcriptional activator inter-
acting with the DNA-binding proteins of the HLA class II
promoters, exhibits a cell type-specific, cytokine-inducible and
differentiation-specific expression pattern. This is controlled by
the alternative usage of the four distinct CIITA promoters
(CIITA-P) I, IL, IIT and IV. CIITA-PIV is involved in the IFNy-
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s interaction with
antigen effector cell (6.g.
CD4* T cell)
extraceliular endocytosis
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Figure 1. HLA class Il antigen-processing and presentation pathway. In APCs, newly synthesized HLA class Il molecules are assembled in the ER and bind the li. The li
direct the transport of HLA class Il molecules directly or indirectly into the MIIC, where the li is degraded by different proteases leaving the peptide fragment CLIP still
embedded in the HLA class Il binding groove. An HLA class II-like molecule, HLA-DM, facilitates the release of CLIP and assists in the exchange of CLIP with relevant exoge-
neous antigenic fragments. Then the HLA class Il peptide complex is transported to cell surface for presentation to CD4* T cells.

mediated induction of HLA class II surface expression. In add-
tion, to promote the binding of TF to CIITA-PIV, IFNy also
includes the acetylation of histones leading to an accessibility of
CIITA-PIV.*® Furthermore, a variety of signal transduction
pathways, such as PKA, upregulates CIITA expression, which,
in turn, enhances HLA class IT antigen cell surface expression.*

Expression of HLA class Il antigens
in malignant tumors

Malignant transformation of cells is not only associated with
changes in HLA class I, but also in HLA class II antigen expres-
sion.'* The frequency of these changes varies among the different
types of hematopoietic and solid tumors depending on their origin
and/or molecular phenotype *****": for example, more than 80%
of ductal breast carcinoma lesions analyzed lack HLA class II anti-
gen expression.”> In contrast, about 50% of papillary thyroid
carcinoma and 60% of primary melanoma express HLA class II
antigens > suggesting a gain of HLA class II antigen expression
in these tumor types. In addition, a heterogeneous intra-tumoral
HLA class II antigen expression pattern was detected in HLA class
II antigen-positive tumor lesions.”> While there is concordant
information in the literature about the frequency of HLA class II
antigen expression in some tumor types, in others the information
is conflicting. For example, the frequency of HLA class II positivity

in colorectal carcinoma (CRC) reported in the literature varied
between 21 and 55% depending on the study.>**® These different
results may reflect differences in the methodology and antibodies
used, in the characteristics of the patients’ population included in
the studies and in the molecular pathogenesis of the disease. In
this context, it is noteworthy that HLA class II antigen expression
in CRC is closely related to the high-level microsatellite instability
(MSI-H) phenotype **** underlining that a precise molecular clas-
sification is required to obtain reliable information about the fre-
quency of HLA class II antigen expression in defined tumor
subtypes.” This conclusion is further supported by the observation
in head and neck cancers, where HLA class II antigen expression
is related to human papillomavirus infection of the lesions.*’

Altered constitutive and IFNy inducible HLA class Il
antigen expression in cancer cells

So far, five distinct HLA class II phenotypes have been
described in human tumors, which are characterized by (i) a
strong cytokine-independent homogeneous overexpression, (ii)
total lack of expression, (iii) downregulation, (iv) altered IFNy
inducibility of basal HLA class II surface antigens in terms of
level and kinetics quantity and time and (v) lack of IFNy
inducibility. In addition, a novel, cytokine-independent mecha-
nism of HLA class II antigen upregulation has recently been
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detected in Schwann cells, which express high levels of HLA
class II antigens upon inactivation of the tumor suppressor
gene neurofibromin 1.*' The molecular mechanisms mediating
the selective lack or downregulation of constitutive as well as
IFNy-mediated upregulation of HLA class II antigens by malig-
nant cells have been characterized to a limited extent. They
appear to be mainly mediated by structural abnormalities, by
epigenetic, transcriptional and post-transcriptional regulation
of HLA class II molecules and/or APM components (Table 2)
*2 and by genomic instability.*”®> Furthermore, the function of
genes encoding IFNy as well as components of the IFNy signal
pathway, which regulate HLA class II antigen expression, may
be impaired by multiple mechanisms. They include either
gene-inactivating mutations, silencing through promoter meth-
ylation, transcriptional downregulation or post-translational
alterations, such as an altered phosphorylation pattern.**** In
the following section, we will focus on structural alterations
and de-regulation of HLA class II antigen expression since they
are the best characterized abnormalities affecting HLA class II
antigen expression in tumors.

Structural alterations of HLA class Il apm components
in malignant cells

Sequence abnormalities, such as mutations or rearrangements
in CIITA, RFX5, RFXAP and/or HLA class II alleles leading to
impaired constitutive or IFNy-inducible HLA class II

Table 2. Molecular mechanisms causing HLA class Il abnormalities in malignant
tumors.

Molecular mechanism Tumor type

Mutations in CIITA and RFX5 Colorectal cancer (MSI-H
subtype)®*

CIITA promoter polymorphism Melanoma %
A to G substitution

Transcriptional
downregulation of the
CIITA promoter due to
HASH-1, L-myc and c-myc
overexpression

SCLC, neuroblastoma *°
B cell tumors *°

Teratocarcinoma '%
Embryonal carcinoma "%
Lymphoblastic leukemia
Ocular melanoma '®
Head and neck squamous cell
carcinoma '%
B-cell lymphoma
Squamous cell carcinoma 8
Leukemia®®'%°
Head and neck squamous cell
carcinoma, ocular

Hypermethylation of CIITA

98,109

95,96
Histone acetylation of
CIITA
Post-transcriptional regulation
of HLA class Il antigens

[S—]

melanoma '°"1%2
Absence of AIRE Thymoma %
STAT1 defects associated with Thymoma %

impaired IFNy induction
Low expression of GILT
Decreased expression of
HLA-DM
Hypermethylation of HLA class
Il gene promoters
Low CLIP expression
Lack of HLA-DM

Melanoma, large B cell lymphoma
B-cell lymphoma *°

Esophageal squamous cell
carcinoma %

Acute myeloid leukemia "%’

Head and neck squamous cell
carcinoma '*'

B-cell lymphoma '3

B-cell lymphoma

CLIP occupation
CIITA gene fusion

expression have been described in particular in diffuse large B-
cell lymphoma, CRC and melanoma.***” These structural alter-
ations appear to occur at a low frequency, although this might
be underestimated due to the heterogeneity of clinical samples.
Mutations in the HLA class II-regulatory gene RFX5 were
found at frequency of about 30% of HLA class II antigen-nega-
tive microsatellite-unstable (MSI-H) CRC (28.9%), while
CIITA mutations were only found in about 5% of these
lesions.™

Also in tumor types distinct from CRGC, structural alterations
of HLA class II antigen-regulatory genes have been detected. In
melanoma A to G substitutions in the 5 flanking region of the
CIITA-PIII were found, which were associated with higher lev-
els of constitutive HLA-DR expression.*® Recently, CIITA has
been described as a recurrent gene fusion partner in B-cell lym-
phoma and Hodgkin’s disease.*® The presence of the CIITA
rearrangement was associated with HLA class II antigen down-
regulation and significantly correlated with a shorter disease-
specific survival, which is compatible with a reduced immuno-
genicity of the affected tumor cells.*®

Deregulation of HLA class Il APM components in
malignant cells

Impaired HLA class II antigen cell surface expression may be
also caused by the deregulation of APM components at each
step of this pathway. Suppression of CIITA transcription medi-
ated by the overexpression of HASH-1, c-Myc and N-Myc,
which competitively bind to the E-box in the CIITA-PIV has
been reported in neuroblastoma, in small cell lung carcinoma
(SCLC) and in B-cell tumors.**° In contrast, RET/PTC expres-
sion is correlated with increased CIITA expression associated
with an increased HLA class II antigen expression.”" The lack
of STATla and the retinoblastoma tumor suppressor gene
affects CIITA expression and consequently leads to an
impaired constitutive and IFNy-inducible HLA class II antigen
expression as demonstrated in breast carcinoma and NSCLC
cells.”>** Furthermore, a low frequency of mutations or down-
regulated expression of the interferon regulatory factor (IRF)-2
have been found in tumors, which is associated with impaired
CIITA expression and IFNy response.”> These data demon-
strate an important role of the IFNy signal pathway for both
the basal and IFNy-induced HLA class II expression.

In addition, an epigenetic control of different HLA class II
APM components including HLA-DR and CIITA due to altera-
tions in their chromatin accessibility and DNA methylation sta-
tus has been described; these abnormalities lead to a lack of
HLA class II antigen expression.*>** These abnormalities could
be reverted by treatment of tumor cells with pharmacologic
substances like 5-aza-2-deoxycytidine (DAC) and trichostatin
A (TSA), which induce DNA demethylation and block histone
deacetylation, respectively.”® The hypermethylation of the
CIITA promoter, in particular of CIITA-PIV was found at a
high frequency in gastric cancers, HNSCC and ocular mela-
noma, but not in CRC suggesting tumor type-specific CIITA
methylation.>*>>® Promoters of the HLA class II antigen-
encoding genes could also be directly silenced by methylation.
In RFX5-negative B-lymphoma cells, the HLA-DO, HLA-DR
and HLA-DQ promoters are methylated.”” Furthermore,



modification of histone deacetylation could be also associated
with CIITA silencing in some tumor types, like squamous cell
carcinoma and hematopoietic tumors.”®®" The clinical rele-
vance of the epigenetic control of HLA class II antigen expres-
sion was shown for esophageal squamous cell carcinoma and
adrenocortical tumors promoting their recurrence and
progression.®>®’

Impaired HLA class II-restricted TAA presentation due to
abnormalities in the processing pathway could limit CD4™ T-
cell help for the induction of CD8™" T-cell responses.®* Intracel-
lular li expression and occupancy of HLA class II antigen with
CLIP as well as low to basal levels of GILT negatively interfere
with the activation of CD4" T cells reactive against acute mye-
loid leukemia (AML) and lymphoma cells. This caused
immune tolerance or unresponsiveness to leukemia antigens
and lead to a significantly shortened disease-free survival of
patients with AML or diffuse large B-cell lymphoma.***>% In
contrast, some CLIP™ tumor cells were able to process li-inde-
pendent endogeneous antigens generated by the proteasome
for HLA class II-restricted presentation thereby activating
TAA-specific CD4" T cells.”>*’

Furthermore, it has recently been suggested that the differ-
ent HLA class II phenotypes in tumors can be controlled at the
post-transcriptional level, in particular by microRNAs
(miRs).*? Bioinformatic analyses have identified a number of
miRs binding to the 3’-untranslated region (3-UTR) of CIITA.
As an example, miR-150 was shown to abrogate CIITA expres-
sion in macrophages upon infection with pathogenic mycobac-
teria.®® However, a miR-mediated altered expression of HLA
class II pathway components in tumors has not yet been identi-
fied. Furthermore, HLA class II molecules could be regulated
by the interaction with ubiquitin ligases leading to their intra-
cellular sequestration and degradation.®>”°

Clinical significance of HLA class Il antigens in cancer

A functional role of HLA class II antigens on the tumor cell
surface is suggested by the observation that HLA class II anti-
gen expression is related to prognosis in several types of can-
cers. However, the available information about the prognostic
significance of HLA class II antigen expression in cancers is
conflicting (Table 3). While constitutive HLA class II antigen
expression was reported to be associated with a favorable prog-
nosis in some tumor types, e. g. CRC and larynx squamous cell
carcinoma,”" 7 it was associated with higher metastatic dissem-
ination, increased tumor stage and reduced patients’ survival in
other malignancies, such as melanoma and cervical carci-
noma.”>”” Conflicting is the information about the clinical
relevance of HLA class II antigen expression in osteosarcoma;
however, the number of tumors analyzed is too small to draw
conclusions.”®””

In addition, even within defined cancer types, the prognostic
value of HLA class II antigens is conflicting depending on the
studies. Immunohistochemically detectable HLA class IT antigen
expression was associated with a better prognostic outcome of
CRC patients in some studies,® but not associated with tumor
grade, stage and survival in other studies.””* A positive prog-
nostic effect of HLA class II antigen expression in CRC may
reflect the increased T-cell infiltration which is one of the
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strongest favorable prognostic biomarkers in CRC.*' Conse-
quently, high levels of IFNy might induce HLA class II antigen
expression in densely T cell-infiltrated tumors, which has a good
prognosis.

Immune selection of HLA class llI-deficient tumors

The role of immune selection in the generation of tumors with
defects in HLA class I antigen expression has been extensively
investigated. In vitro experiments, studies in animal models and
clinical investigations have convincingly shown that the selective
pressure imposed by HLA class I antigen-restricted, TAA-specific
T cells on a tumor cell population can facilitate the outgrowth of
tumor cells, which are not recognized by cognate CTL due to
defective synthesis and/or expression of HLA class I antigen-
TAA-derived peptide complexes. The latter mediate the interac-
tions of tumor cells with host’s immune system.”** In contrast,
limited information is available about the impact of immune
selection on HLA class II antigen expression by tumor cells. We
are aware of only one example suggesting that immune selection
facilitates the outgrowth of HLA class II antigen-negative tumor
cells: MSI-H CRCs are characterized by a pronounced antitu-
moral immune response, which is triggered by a high amount of
mutation-induced neoan‘(igens.83 In MSI-H CRCs, pronounced
CD4™" T-cell infiltration was associated with HLA class II antigen
loss induced by REX5 or CIITA mutations.”” The association
between CD4* T-cell infiltration and lack of HLA class Il antigen
expression by tumor cells may reflect the role of immune selection
in the generation of tumors without detectable HLA class II anti-
gen expression. The selective pressure imposed by CD4™* cells on
the tumor cell population may lead to the elimination of MSI-H
CRC cells expressing HLA class II antigens by cognate CD4" T
cells and may facilitate the outgrowth of tumor cells, which have
lost the ability to express HLA class II antigens. This possibility is
supported by the detection of mutations in HLA class II-regula-
tory genes in the tumor cells, which do not express HLA class II
antigens.”>* If our interpretation is correct, our results imply
that human TAA recognized by cognate CD4" T cells are effec-
tive in inducing a TAA-specific immune response and in mediat-
ing tumor rejection through an antigen-specific CD4" T-cell
response. This hypothesis is supported by recent studies in mouse
models reporting that the presence of MHC class II molecules on
the tumor cell surface can mediate efficient elimination of tumor
cells through direct recognition by CD4™ T cells.***°

Beyond conventional recognition of HLA class IT molecules
by CD4" T cells, the expression of HLA class II antigens may
have consequences for tumor/immune cell interactions and

Table 3. Clinical relevance of HLA class Il expression.

Tumor type HLA class Il level Prognosis Citation

CRC High Favorable 7274580

Larynx squamous cell High Favorable n
carcinoma

Oropharyngeal squamous High Favorable a0
arcinoma

Melanoma High Poor 76,77

Cervical cancer High Poor 73

Osteosarcoma High Controverse 78,79

Pediatric adrenocortical tumors  Low Poor 6
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tumor cell survival. For example, the interaction between
LAGS3, a surface molecule expressed on exhausted lymphocytes,
and HLA class II antigens can enhance survival and apoptosis
resistance of melanoma cells.”’

Concluding remarks and perspectives

Although there exist major differences in the HLA class I and II
APM pathways, interactions between both pathways have been
identified, which allow the cross-presentation of antigens as a key
feature for the induction of TAA- and viral antigen-specific
CDS8" T cell responses.*® However, the mechanisms underlying
antigen cross-presentation have not yet been defined, but an
escape of internalized proteins from the endosomes via an
unknown transporter is currently being discussed. Other possibil-
ities involve the TAP-mediated transport of cytosolic peptides
back to the phagosome or endosome **° and the escort of the
HLA class I antigens by the Ii to the endosomal compartment.”"**

The role of HLA class II antigen expression by tumors and
its clinical relevance remains controversial and appears to
depend on the tumor type including its genetic determinants.
There is increasing evidence that HLA class II antigens on
tumor cells shape the TAA-specific antitumoral immune
response suggesting that HLA class II antigens may represent a
novel therapeutic target.”> Thus, there are still many open ques-
tions, which have to be addressed in order to fully characterize
the function of HLA class I and class II antigens in tumors.
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