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Abstract

Objectives—This article aims to give Spectrum/EPP users and the scientific community a basic
understanding of the underlying statistical model used to incorporate hierarchical structure in HIV
sub-national estimation, and to show how it has been implemented in the Spectrum/ Estimation
and Projection Package (EPP) interface for improving sub-epidemic estimation. The article also
provides recommended default settings for this new model.

Methods—We apply a generalized linear mixed effects model (GLMM) on ANC prevalence data
to get area-specific prevalence and uncertainty estimates, and transform those estimates to
auxiliary data. We then fit the EPP model to both the observed data and auxiliary data.

Results—We apply the proposed methods to four countries with different levels of data
availability. We compare the out-of-sample prediction accuracy of the proposed method with
varying auxiliary sample sizes and EPP without auxiliary data.

Conclusion—We find that borrowing information from data-rich areas to data-sparse areas using
our proposed method improves EPP fit in data-sparse areas. We recommend using the sample size
estimated from GLMM as the default auxiliary sample size.

Keywords
HIV Epidemic; Hierarchical Model; Bayesian Model

1. Introduction

Every day roughly 5,700 people are newly infected with HIV according to UNAIDS 2016
estimates [1]. The location and the characteristics of the people who are newly infected with
HIV provide critical information for country programme managers to develop effective and
efficient responses. Good understanding of epidemics at sub-national levels allows managers
to re-allocate resources and respond more precisely and effectively to emerging epidemics.
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The most informative data source for monitoring an epidemic is incidence data, often
measured as the proportion of recently infected individuals among the uninfected population
of interest. However, determining whether an individual is recently infected by HIV is more
difficult than determining whether an individual is HIV positive. Therefore, the prevalence
data from surveillance systems, e.g., such as antenatal clinics (ANC) sites or cross-sectional
surveys that include HIV testing among key populations, are the main data sources for
estimating HIV epidemics. Figure 1 gives an example of the ANC prevalence data from the
rural area of Angola with multiple surveillance sites (screenshot from the Spectrum software
used by UNAIDS for constructing global, national and sub-national estimates). At each year
and each site, the sample size and the percentage of HIV+ individuals are recorded.

When epidemiological data cannot be directly observed, mathematical models are used to
estimate the new infections as well as AIDS deaths and other quantities that are not easily
available through surveillance systems in low resource settings [2]. In recent years, UNAIDS
and partners have been investigating models that provide a more detailed geographic
understanding of the HIV epidemic. These models require extensive data at sub-national
levels. In many countries, the detailed data are available only for limited areas and years. In
regions where data are sparse, estimating the epidemic based merely on the data gathered
within those regions will lead to unreliable and highly uncertain results. Figure 2 shows an
example of fitting the EPP model in the Spectrum/EPP fitting engine to the ANC data (black
dots) in the rural and the urban areas of Angola. The black curve is the posterior median of
the estimated prevalence trend and the shaded area represents the uncertainty bounds around
the median. We can see that in the rural area we do not have any ANC data until 2007,
which leads to high uncertainty about the early period trend such as when the epidemic
started and when it peaked.

To improve the estimation in the data sparse areas like Angola Rural, one option is to
“borrow” data from other areas like Angola Urban. It is reasonable to assume some
similarities in the epidemic trends among areas within the same country. For example, in
Urban Angola with observations in the early 2000’s, we estimate the epidemic started in the
1990’s and peaked after 2000. If we can incorporate such information into the rural area
estimation, it may reduce the uncertainty in the rural area’s early epidemic and improve the
overall trend estimation.

Bao et. al. [4] introduce the idea of sharing information across sub-epidemics (regions or
high-risk groups) of a country in a hierarchical model, and creating one auxiliary data set for
each sub-epidemic with prevalence and sample size estimates from the hierarchical model.
For EPP fitting purposes this auxiliary data then serves as an additional site that transfers
information from other regions; for simplicity this will be referred to as a pseudo-site in the
software itself. EPP model is then fitted to both the actually observed data and the auxiliary
data to estimate prevalence, incidence, and mortality for each area. Bao et. al. [4] apply their
method to two countries as illustrative examples. The detailed implementation and
connection with the UNAIDS supported software (Spectrum/EPP) are not discussed.

In this paper, we apply the Bao et. al. [4] approach to four countries with different data
availability to demonstrate its varying degree of improvement over the original EPP model.
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We discuss in detail the implementation of the method and its interface with Spectrum/EPP.
We investigate the effects of the sample size assigned to the auxiliary prevalence data points.
Finally, we recommend default settings for Spectrum/EPP users. This new model is being
incorporated into Spectrum/EPP 2017.

In this section, we introduce the hierarchical model used for joint modelling of prevalence
data from multiple areas, explain the mechanism of incorporating the hierarchical structure
via auxiliary data, and describe the procedure of utilizing the hierarchical model in
Spectrum/EPP software.

2.1. Generalized Linear Mixed Model

The available data are observed prevalence rates at ANC sites in different areas. For each
country, there are multiple areas, defined either by geographic regions or as urban and rural.
Within each area, there are multiple observation sites. Due to the structure of the data, it is
possible to use a hierarchical modeling framework to describe the relationships among
different layers of the data. Bao et. al. [4] propose a generalized linear mixed effect model
(GLMM) for the prevalence data as follows:

Yie~Binomial (N4, pait),
1Ogit(pait):60+f(t>+ba+fa(t)+bi(a)7 (1)

where Y, is the observed HIV+ cases in area 4, clinic / at time ¢ ng:and pgjare the
corresponding clinic size and prevalence rate, J) is the country-level flexible time trend,
such as splines, b, is the area-level random intercept, by is the clinic-level random intercept
nested within a specific area, and 72 is the area-specific random time trend which implies
that each area’s time trend borrows some information from other areas.

One property of the binomial distribution is that the mean of the response Y'is 77x p and the
variance has to be 7x p x (1 - p). In real data, the situation that the mean and variance of
the binomial outcome do not satisfy this relationship is called over-dispersion. To account
for the additional dispersion parameter, one popular choice is a Beta-Binomial model, which
allows the probability o to be a random variable from a Beta distribution. This additional
hierarchical structure results in an over-dispersion parameter that measures the pairwise
correlation between the observations within each clinic. When there is indeed some
correlation among the samples within each site, the Beta-Binomial model describes the data
pattern in a more accurate way. If this over-dispersion parameter is very small, the Beta-
Binomial distribution behaves similarly to a Binomial distribution, which implies that the
samples are independent and the over-dispersion is negligible.

In this manuscript, we offer the Beta-Binomial model as an alternative to the Binomial
model proposed in Bao et. al. [4]. We check the fitted over-dispersion parameter of the Beta-
Binomial model and diagnostic plots of the Binomial model to decide which model to use.
We then use the selected model to generate the prevalence trend estimates for each area.
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2.2. Incorporating GLMM into EPP

As discussed in the Introduction, to estimate the unobserved incidence rates and AIDS
deaths, we need to utilize a mathematical model grounded in the transmission and
progression dynamics of HIV. Spectrum/EPP, which is used by most countries to develop
HIV estimates, is based on the following Susceptible-Infected (SI) model for the age 15-49
adult population:

LO=E(t)—r(t)p(t) Z(t)—n(t)Z(t)—aso (t) Z()+M (1) Z (1),
DO —p(t)p(t) Z (t)—HIVdeath (t)—aso (t)Y (t)+M ()Y (t). 2

dt

In (2), at time ¢, Z(?) is the susceptible population, Y{%)is the infected population, £(?)is the
number of people entering the population (who just turned 15), r(?) is the infection rate, o(?)
is the prevalence rate, 4(9 is the non-HIV death rate, asg(#) is the population exit rate (who
just turned 50), M(?)is the rate of net migration into the population, and HIVdeath(t) is the
number of deaths in the infected population, which is calculated using a CD4 progression
model [7]. Equation (2) is a dynamic system that calculates the HIV infections in the
population. Given an initial value, the system generates a series of prevalence rates,
incidence rates, and HIV mortality rates. The output prevalence of System (2), (9, is then
linked to the observed prevalence data and population survey data through a linear mixed
effects model as follows:

Wi = @ Yp)+at+bi+eq,
b; ~ N(0702)7
it~ N(0,vit), (3)

where ;=o' (F50), @~ is the inverse cumulative distribution function of the standard
normal distribution, a is the bias of ANC data with respect to prevalence data from national
population-based household surveys (NPBS), 4;is the site-specific random effect, o2 is
assumed to have an inverse-Gamma prior which gets integrated out in the likelihood
evaluation, and vj;is a fixed quantity that depends on the clinic data and approximates the
binomial variation. The shape of the prevalence curve is mainly determined by System (2)
and ANC data, while the level of the prevalence needs to calibrate to the NPBS level as in
Model (3). More details can be found in [8] and [9].

We adopt the framework of Bao et. al. [4] to incorporate the GLMM results as auxiliary data
into the EPP model. For each area, we create a pseudo-site with the prevalence and sample
size derived from the predictive distribution of the area prevalence estimated from GLMM.
Specifically, let y5and v, be the posterior mean and variance of the prevalence in area aand
year £ From the Binomial mean and variance relationship, the GLMM estimated sample size
of this pseudo-site can be calculated by p,A1 — 129/ V4 The pseudo-site can be viewed as
prior information of the area epidemic. The sample size of the pseudo-site can be rescaled to
reflect varying strengths of this prior information. Given an average rescaled sample size, the
distribution of sample sizes across years is proportional to the GLMM estimated size. Then
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we add the pseudo-site as auxiliary data to the original data and fit the EPP model for each
area as before.

The resulting model maintains EPP model’s epidemiological features and ability to estimate
prevalence, incidence, and HIV mortality simultaneously. In the meantime, the shared
information across areas within a country is incorporated into the dynamic system by the
auxiliary data. The computational cost does not change much since we only need to fit the
GLMM once for each country. The most time-consuming part, running the dynamic model,
is still done area by area.

2.3. Model Evaluation

To evaluate the prediction accuracy, for each country, we define a five-year period that ends
at the last data year as the test period. Data in the test period are removed from the model
fitting process, and referred to as test data. The remaining data are used to estimate model
parameters and make predictions, and they are called training data. For each sub-national
area, we apply the EPP model with the added pseudo-site to the training data, predict the
next 5 years of prevalence, and compare with the observed prevalence in the test set. We try
different sample sizes (0, 10, 100, 1000, and GLMM estimates) of the auxiliary data. Sample
size 0 corresponds to the original EPP approaches without using auxiliary data.

We introduce two measures to evaluate the prediction accuracy of different auxiliary data
sample sizes. The first one is mean absolute error (MAE), defined as the absolute difference
between the mean of predictive distribution and the observed value, averaged across all
observations in the test period. The second measure is called continuous ranked probability
score (CRPS) [11], which takes both the prediction accuracy and the width of the prediction
interval into account.

CRPS(P,y)=B,|Y —y|~1E, [V -Y'|,

where yis an observed prevalence rate in test set, Pbe its corresponding posterior predictive
distribution, Yand Y’ are independent samples from distribution 2. A smaller CRPS is
preferred, and the CRPS reduces to the absolute error when the predictive distribution is a
point mass. We summarize CRPS as an average over all observations in the test set. All of
the above measures are calculated on the original prevalence scale for ease of comparison
and interpretation.

2.4. The EPP interface for the hierarchical model

The approach of using a pseudo-site—drawing information from the trends in data rich areas
to influence the shape of curve fits in sparse data areas—Iends itself to fairly simple
implementation in EPP. Fundamentally, three steps are required:

1. Put the surveillance data from all regions in a form that can be used to run the
hierarchical model.
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2. Run the hierarchical model in R/RStudio and generate a set of pseudo-sites that
can be used to inform fitting in the various sub-national projections that have
sparse data.

3. Load those pseudo-sites, choose the projections in which they are to be used, and
fit EPP.

These steps are implemented in EPP with a Hierarchical Model Panel, shown in Figure 3.

One writes the surveillance data, runs the hierarchical model on that surveillance data in
RStudio, and then clicks on “Import pseudo-sites” to make the pseudo-sites available to any
projection where the user chooses to use it for fitting. If a projection is to use the hierarchical
model, the pseudo-site’s data will appear as a blue colored site in the graph on the EPP
Project Page, as shown in Figure 4. The user only needs to run fit in EPP now to incorporate
the hierarchical model effects into the fitting.

The amount of influence that the pseudo-site will have on the fit is determined by the sample
sizes. In EPP those can be altered by clicking on the “scale data” button on the Hierarchical
Model panel. This will bring up the scaling dialogue shown in Figure 5. By simply typing
the desired average sample size into the “Scale” column, the user can alter the sample sizes
of the data points from the pseudo-site. Larger sample sizes will increase the influence of the
pseudo-site on the fitting.

In this section, we present an empirical study of the proposed model. We first describe the
data we use and how we split the data into training and test sets. Then we discuss the
selection of GLMM. After that we evaluate the performance of Spectrum/EPP with and
without using auxiliary data. Finally, we show the fitted curves of the data.

3.1. Data description

We select the following four countries to demonstrate the empirical results of the proposed
method: Liberia, Angola, Swaziland and Ghana. The data are provided by UNAIDS. Those
four countries are selected as representatives of different data richness and prevalence level
scenarios. Table 1 lists the data availability by years and number of sites for each of the four
countries.

In Angola and Liberia, compared to the urban sites the rural areas have fewer sites and
insufficient years of data to indicate a clear trend in prevalence. In Liberia, the data is
anchored by a survey, while Angola is not. In Ghana, all areas have relatively rich data and
population survey data. In Swaziland, there are four areas of sparser data rather than just
rural and urban, each of which has only 5 or 6 sites plus a single year of surveys. Moreover,
Swaziland’s national prevalence level is above 20% while the other three countries are under
or around 5%.
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We fit both the Binomial GLMM and Beta-Binomial GLMM within each country. The
model is estimated using R INLA package [10]. The estimated over-dispersion parameters of
the Beta-Binomial models are all close to zero, ranging from 0.00192 to 0.00902. For the
Binomial model, we visually inspect the QQ plot of the standardized Pearson residuals
versus the theoretical standardized Pearson residuals of the Binomial distribution, and find
they line up very well along each other. Both the magnitude of the over-dispersion
parameters in the Beta-Binomial models and the residual diagnostics of the Binomial models
suggest that there is not much evidence of over-dispersion. Moreover, the Binomial model
runs 2 to 20 times faster than the Beta-Binomial model. Therefore, we use the Binomial
GLMMs to generate the area-specific prevalence estimates and create pseudo-sites.

3.3. Model Prediction Accuracy

We summarize the test data evaluation results in Table 2, with the minimum MAE and CPRS
for each area highlighted in bold. We have the following observations:

a.

Out of the 10 areas in the 4 countries, 8 areas show improvements in out-of-
sample prediction by adding auxiliary data regardless of the auxiliary sample
size. The original EPP is preferred in 2 areas of Swaziland.

In the areas where auxiliary data improve the prediction, the optimum sample
size varies.

The most improvement lies in the data sparse areas borrowing information from
data rich areas, as in Angola Rural and Liberia Rural. The auxiliary data with
sample size 1000 offers the minimum MAE and CRPS in both cases. The MAE
is increased by 8.5% and 17.1% for Rural Angola and Rural Liberia, and the
CRPS is increased by 5.1% and 14% for the two areas. The GLMM estimated
sample size is the next best scenario and provides similar improvements.

In data rich areas, such as Urban Angola, Urban Liberia, and both areas in
Ghana, we see marginal improvement using auxiliary data.

In Swaziland, each area has about only 2 sites. The effects of adding a pseudo-
site is mixed. In two of the areas, adding a pseudo-site with a small sample size
(10) shows significant improvement. In the other two areas, no auxiliary data is
preferred. One possible explanation is that due to the small number of existing
sites (2 per area), the results highly depend on whether the samples and trends in
the 8 sites are similar, since changing the number of sites from 2 to 3 can have a
large impact on estimating the site effects.

Finally, we observe that higher prediction error is related to higher prevalence
rates, as seen in the comparison between Swaziland and the other 3 countries.

Based on the above findings, we believe adding auxiliary data has benefits in most situations
and recommend the GLMM estimated sample size as the default setting.
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3.4. Data results

We compare the entire prevalence trajectories of the EPP fits between no auxiliary data and
using auxiliary data with GLMM estimated size. For Ghana and Swaziland, the national
prevalence trends look the same. Therefore, in Figure 6, we only present the national
prevalence estimates for Angola and Liberia. We notice that the national trends and
uncertainties with (red) and without (black) auxiliary data are similar in urban areas. Using
auxiliary data provides much narrower uncertainty bounds than not using auxiliary data in
rural areas. Moreover, with auxiliary data, the projected trend stabilizes from 2008 to 2010
in Rural Angola, and slightly declines in Rural Liberia after 2010. Both trends are more
consistent with the observed data when the auxiliary data trends are included.

4 Discussion

In this paper, we apply the methodology in Bao et. al. [4] to four countries with different
data availability. We discuss in detail the implementation of the method and its interface in
Spectrum/EPP. We examine the effects of different auxiliary data sample sizes on the
model’s prediction accuracy using several measures. The empirical results suggest that, for
areas with sparse data and existence of relatively richer data in other areas, adding auxiliary
data could improve the EPP fit. We allow EPP users to specify the auxiliary data sample
sizes, and recommend using the default sample size provided by GLMM. Though we use the
Binomial GLMM as the prior model in our empirical study, we propose the Beta-Binomial
GLMM that accounts for sample correlations within a clinic as an alternative.

We find the most improvement lies in Angola and Liberia, where data are sparse in the rural
areas and richer in the urban areas. As countries move to sub-national estimations, this
pattern of sparsity is particularly true in settings where some regions had surveillance
introduced early on and have long time trends, but numerous other regions have only been
added to the surveillance system in recent years. The ability of the hierarchical model
approaches described here to share data from the data-rich regions with longer time trends
can lead to more realistic fits sub-nationally and, thus, improve aggregated national
estimates.

In countries where all areas have limited data, especially small numbers of sites, we do not
recommend using the auxiliary data. In those settings, the EPP trends can be highly affected
by adding the auxiliary data and the outcomes are not guaranteed.

One potential further improvement for rich data situation is to add social, economic, and
environmental factors as covariates in the hierarchical model. For countries without data rich
areas, we would consider applying the hierarchical model to multiple neighboring countries
so that information can be borrowed across countries. Although careful consideration would
be needed to take into account the potential similarities and differences in the epidemics
among the countries before applying such a model.

While beyond the scope of this paper, the same approach can be extended to model multiple
high-risk groups in a country. The combination of a sub-national region and a particular
high-risk group can have sparse data. In the GLMM, we have one more layer of data
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structure that makes the observation yg, where g is the high-risk group indicator. We can
simply treat the groups the same way as we treat areas, and introduce group-specific
intercept and time trends. We will then generate area and group specific pseudo-sites. Any
general sub-epidemic can be estimated in a similar manner.
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Figure 1.
ANC prevalence data in Rural Angola
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The EPP model fitted to Angola rural (left) and urban (right) datasets. The black dots are
ANC data. The black curve is the posterior median of the prevalence and the shaded area

represents the uncertainty bounds.
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The Hierarchical Model panel in EPP. Here the user conducts the simple steps needed to

generate pseudo-sites for use in the fitting (humbered buttons at the bottom) and determines
if the currently selected projection is to use the pseudo-site in its fitting (“Projection uses
HM?” radio buttons).
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Figure 4.
An example of the pseudo-site (blue site in the graph on the left) in an area with relatively

little data, and the effect of fitting with (center) and without (right) the pseudo-site active.
Note how the pseudo-site draws the fit to a slower initial rise and a later peak.
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Figure5.

Page 14

The scaling panel activated by the “Scale Data” button on the Hierarchical Model panel. By
altering the value in the scale column, one changes the average sample size for the years
where there are pseudo-site data. In this example, the top figure shows the default sample
size of 4901 on average for the urban projection, while the lower figure shows the effect of
changing this sample size to 300.
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Figure 6.

The EPP model fitted to sub-national datasets from Angola and Liberia. The black curves
and grey shaded areas show the posterior median and 95% uncertainty bounds estimated
without using auxiliary data; the red curves and pink shaded areas show the posterior median
and 95% uncertainty bounds estimated using auxiliary data with the GLMM estimated
sample size; the black dots are the antenatal clinic prevalence; the blue dot is the survey

prevalence; the red dots are the auxiliary data.
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