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Abstract

Objectives—This article aims to give Spectrum/EPP users and the scientific community a basic 

understanding of the underlying statistical model used to incorporate hierarchical structure in HIV 

sub-national estimation, and to show how it has been implemented in the Spectrum/ Estimation 

and Projection Package (EPP) interface for improving sub-epidemic estimation. The article also 

provides recommended default settings for this new model.

Methods—We apply a generalized linear mixed effects model (GLMM) on ANC prevalence data 

to get area-specific prevalence and uncertainty estimates, and transform those estimates to 

auxiliary data. We then fit the EPP model to both the observed data and auxiliary data.

Results—We apply the proposed methods to four countries with different levels of data 

availability. We compare the out-of-sample prediction accuracy of the proposed method with 

varying auxiliary sample sizes and EPP without auxiliary data.

Conclusion—We find that borrowing information from data-rich areas to data-sparse areas using 

our proposed method improves EPP fit in data-sparse areas. We recommend using the sample size 

estimated from GLMM as the default auxiliary sample size.
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1. Introduction

Every day roughly 5,700 people are newly infected with HIV according to UNAIDS 2016 

estimates [1]. The location and the characteristics of the people who are newly infected with 

HIV provide critical information for country programme managers to develop effective and 

efficient responses. Good understanding of epidemics at sub-national levels allows managers 

to re-allocate resources and respond more precisely and effectively to emerging epidemics.
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The most informative data source for monitoring an epidemic is incidence data, often 

measured as the proportion of recently infected individuals among the uninfected population 

of interest. However, determining whether an individual is recently infected by HIV is more 

difficult than determining whether an individual is HIV positive. Therefore, the prevalence 

data from surveillance systems, e.g., such as antenatal clinics (ANC) sites or cross-sectional 

surveys that include HIV testing among key populations, are the main data sources for 

estimating HIV epidemics. Figure 1 gives an example of the ANC prevalence data from the 

rural area of Angola with multiple surveillance sites (screenshot from the Spectrum software 

used by UNAIDS for constructing global, national and sub-national estimates). At each year 

and each site, the sample size and the percentage of HIV+ individuals are recorded.

When epidemiological data cannot be directly observed, mathematical models are used to 

estimate the new infections as well as AIDS deaths and other quantities that are not easily 

available through surveillance systems in low resource settings [2]. In recent years, UNAIDS 

and partners have been investigating models that provide a more detailed geographic 

understanding of the HIV epidemic. These models require extensive data at sub-national 

levels. In many countries, the detailed data are available only for limited areas and years. In 

regions where data are sparse, estimating the epidemic based merely on the data gathered 

within those regions will lead to unreliable and highly uncertain results. Figure 2 shows an 

example of fitting the EPP model in the Spectrum/EPP fitting engine to the ANC data (black 

dots) in the rural and the urban areas of Angola. The black curve is the posterior median of 

the estimated prevalence trend and the shaded area represents the uncertainty bounds around 

the median. We can see that in the rural area we do not have any ANC data until 2007, 

which leads to high uncertainty about the early period trend such as when the epidemic 

started and when it peaked.

To improve the estimation in the data sparse areas like Angola Rural, one option is to 

“borrow” data from other areas like Angola Urban. It is reasonable to assume some 

similarities in the epidemic trends among areas within the same country. For example, in 

Urban Angola with observations in the early 2000’s, we estimate the epidemic started in the 

1990’s and peaked after 2000. If we can incorporate such information into the rural area 

estimation, it may reduce the uncertainty in the rural area’s early epidemic and improve the 

overall trend estimation.

Bao et. al. [4] introduce the idea of sharing information across sub-epidemics (regions or 

high-risk groups) of a country in a hierarchical model, and creating one auxiliary data set for 

each sub-epidemic with prevalence and sample size estimates from the hierarchical model. 

For EPP fitting purposes this auxiliary data then serves as an additional site that transfers 

information from other regions; for simplicity this will be referred to as a pseudo-site in the 

software itself. EPP model is then fitted to both the actually observed data and the auxiliary 

data to estimate prevalence, incidence, and mortality for each area. Bao et. al. [4] apply their 

method to two countries as illustrative examples. The detailed implementation and 

connection with the UNAIDS supported software (Spectrum/EPP) are not discussed.

In this paper, we apply the Bao et. al. [4] approach to four countries with different data 

availability to demonstrate its varying degree of improvement over the original EPP model. 
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We discuss in detail the implementation of the method and its interface with Spectrum/EPP. 

We investigate the effects of the sample size assigned to the auxiliary prevalence data points. 

Finally, we recommend default settings for Spectrum/EPP users. This new model is being 

incorporated into Spectrum/EPP 2017.

2. Method

In this section, we introduce the hierarchical model used for joint modelling of prevalence 

data from multiple areas, explain the mechanism of incorporating the hierarchical structure 

via auxiliary data, and describe the procedure of utilizing the hierarchical model in 

Spectrum/EPP software.

2.1. Generalized Linear Mixed Model

The available data are observed prevalence rates at ANC sites in different areas. For each 

country, there are multiple areas, defined either by geographic regions or as urban and rural. 

Within each area, there are multiple observation sites. Due to the structure of the data, it is 

possible to use a hierarchical modeling framework to describe the relationships among 

different layers of the data. Bao et. al. [4] propose a generalized linear mixed effect model 

(GLMM) for the prevalence data as follows:

(1)

where Yait is the observed HIV+ cases in area a, clinic i, at time t, nait and ρait are the 

corresponding clinic size and prevalence rate, f(t) is the country-level flexible time trend, 

such as splines, ba is the area-level random intercept, bi(a) is the clinic-level random intercept 

nested within a specific area, and fa(t) is the area-specific random time trend which implies 

that each area’s time trend borrows some information from other areas.

One property of the binomial distribution is that the mean of the response Y is n × ρ and the 

variance has to be n × ρ × (1 − ρ). In real data, the situation that the mean and variance of 

the binomial outcome do not satisfy this relationship is called over-dispersion. To account 

for the additional dispersion parameter, one popular choice is a Beta-Binomial model, which 

allows the probability ρ to be a random variable from a Beta distribution. This additional 

hierarchical structure results in an over-dispersion parameter that measures the pairwise 

correlation between the observations within each clinic. When there is indeed some 

correlation among the samples within each site, the Beta-Binomial model describes the data 

pattern in a more accurate way. If this over-dispersion parameter is very small, the Beta-

Binomial distribution behaves similarly to a Binomial distribution, which implies that the 

samples are independent and the over-dispersion is negligible.

In this manuscript, we offer the Beta-Binomial model as an alternative to the Binomial 

model proposed in Bao et. al. [4]. We check the fitted over-dispersion parameter of the Beta-

Binomial model and diagnostic plots of the Binomial model to decide which model to use. 

We then use the selected model to generate the prevalence trend estimates for each area.
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2.2. Incorporating GLMM into EPP

As discussed in the Introduction, to estimate the unobserved incidence rates and AIDS 

deaths, we need to utilize a mathematical model grounded in the transmission and 

progression dynamics of HIV. Spectrum/EPP, which is used by most countries to develop 

HIV estimates, is based on the following Susceptible-Infected (SI) model for the age 15–49 

adult population:

(2)

In (2), at time t, Z(t) is the susceptible population, Y(t) is the infected population, E(t) is the 

number of people entering the population (who just turned 15), r(t) is the infection rate, ρ(t) 
is the prevalence rate, μ(t) is the non-HIV death rate, a50(t) is the population exit rate (who 

just turned 50), M(t) is the rate of net migration into the population, and HIVdeath(t) is the 

number of deaths in the infected population, which is calculated using a CD4 progression 

model [7]. Equation (2) is a dynamic system that calculates the HIV infections in the 

population. Given an initial value, the system generates a series of prevalence rates, 

incidence rates, and HIV mortality rates. The output prevalence of System (2), ρ(t), is then 

linked to the observed prevalence data and population survey data through a linear mixed 

effects model as follows:

(3)

where , Φ−1 is the inverse cumulative distribution function of the standard 

normal distribution, α is the bias of ANC data with respect to prevalence data from national 

population-based household surveys (NPBS), bi is the site-specific random effect, σ2 is 

assumed to have an inverse-Gamma prior which gets integrated out in the likelihood 

evaluation, and vit is a fixed quantity that depends on the clinic data and approximates the 

binomial variation. The shape of the prevalence curve is mainly determined by System (2) 

and ANC data, while the level of the prevalence needs to calibrate to the NPBS level as in 

Model (3). More details can be found in [8] and [9].

We adopt the framework of Bao et. al. [4] to incorporate the GLMM results as auxiliary data 

into the EPP model. For each area, we create a pseudo-site with the prevalence and sample 

size derived from the predictive distribution of the area prevalence estimated from GLMM. 

Specifically, let μat and vat be the posterior mean and variance of the prevalence in area a and 

year t. From the Binomial mean and variance relationship, the GLMM estimated sample size 

of this pseudo-site can be calculated by μat(1 − μat)/vat. The pseudo-site can be viewed as 

prior information of the area epidemic. The sample size of the pseudo-site can be rescaled to 

reflect varying strengths of this prior information. Given an average rescaled sample size, the 

distribution of sample sizes across years is proportional to the GLMM estimated size. Then 
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we add the pseudo-site as auxiliary data to the original data and fit the EPP model for each 

area as before.

The resulting model maintains EPP model’s epidemiological features and ability to estimate 

prevalence, incidence, and HIV mortality simultaneously. In the meantime, the shared 

information across areas within a country is incorporated into the dynamic system by the 

auxiliary data. The computational cost does not change much since we only need to fit the 

GLMM once for each country. The most time-consuming part, running the dynamic model, 

is still done area by area.

2.3. Model Evaluation

To evaluate the prediction accuracy, for each country, we define a five-year period that ends 

at the last data year as the test period. Data in the test period are removed from the model 

fitting process, and referred to as test data. The remaining data are used to estimate model 

parameters and make predictions, and they are called training data. For each sub-national 

area, we apply the EPP model with the added pseudo-site to the training data, predict the 

next 5 years of prevalence, and compare with the observed prevalence in the test set. We try 

different sample sizes (0, 10, 100, 1000, and GLMM estimates) of the auxiliary data. Sample 

size 0 corresponds to the original EPP approaches without using auxiliary data.

We introduce two measures to evaluate the prediction accuracy of different auxiliary data 

sample sizes. The first one is mean absolute error (MAE), defined as the absolute difference 

between the mean of predictive distribution and the observed value, averaged across all 

observations in the test period. The second measure is called continuous ranked probability 

score (CRPS) [11], which takes both the prediction accuracy and the width of the prediction 

interval into account.

where y is an observed prevalence rate in test set, P be its corresponding posterior predictive 

distribution, Y and Y′ are independent samples from distribution P. A smaller CRPS is 

preferred, and the CRPS reduces to the absolute error when the predictive distribution is a 

point mass. We summarize CRPS as an average over all observations in the test set. All of 

the above measures are calculated on the original prevalence scale for ease of comparison 

and interpretation.

2.4. The EPP interface for the hierarchical model

The approach of using a pseudo-site—drawing information from the trends in data rich areas 

to influence the shape of curve fits in sparse data areas—lends itself to fairly simple 

implementation in EPP. Fundamentally, three steps are required:

1. Put the surveillance data from all regions in a form that can be used to run the 

hierarchical model.
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2. Run the hierarchical model in R/RStudio and generate a set of pseudo-sites that 

can be used to inform fitting in the various sub-national projections that have 

sparse data.

3. Load those pseudo-sites, choose the projections in which they are to be used, and 

fit EPP.

These steps are implemented in EPP with a Hierarchical Model Panel, shown in Figure 3.

One writes the surveillance data, runs the hierarchical model on that surveillance data in 

RStudio, and then clicks on “Import pseudo-sites” to make the pseudo-sites available to any 

projection where the user chooses to use it for fitting. If a projection is to use the hierarchical 

model, the pseudo-site’s data will appear as a blue colored site in the graph on the EPP 

Project Page, as shown in Figure 4. The user only needs to run fit in EPP now to incorporate 

the hierarchical model effects into the fitting.

The amount of influence that the pseudo-site will have on the fit is determined by the sample 

sizes. In EPP those can be altered by clicking on the “scale data” button on the Hierarchical 

Model panel. This will bring up the scaling dialogue shown in Figure 5. By simply typing 

the desired average sample size into the “Scale” column, the user can alter the sample sizes 

of the data points from the pseudo-site. Larger sample sizes will increase the influence of the 

pseudo-site on the fitting.

3. Results

In this section, we present an empirical study of the proposed model. We first describe the 

data we use and how we split the data into training and test sets. Then we discuss the 

selection of GLMM. After that we evaluate the performance of Spectrum/EPP with and 

without using auxiliary data. Finally, we show the fitted curves of the data.

3.1. Data description

We select the following four countries to demonstrate the empirical results of the proposed 

method: Liberia, Angola, Swaziland and Ghana. The data are provided by UNAIDS. Those 

four countries are selected as representatives of different data richness and prevalence level 

scenarios. Table 1 lists the data availability by years and number of sites for each of the four 

countries.

In Angola and Liberia, compared to the urban sites the rural areas have fewer sites and 

insufficient years of data to indicate a clear trend in prevalence. In Liberia, the data is 

anchored by a survey, while Angola is not. In Ghana, all areas have relatively rich data and 

population survey data. In Swaziland, there are four areas of sparser data rather than just 

rural and urban, each of which has only 5 or 6 sites plus a single year of surveys. Moreover, 

Swaziland’s national prevalence level is above 20% while the other three countries are under 

or around 5%.
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3.2. GLMM selection

We fit both the Binomial GLMM and Beta-Binomial GLMM within each country. The 

model is estimated using R INLA package [10]. The estimated over-dispersion parameters of 

the Beta-Binomial models are all close to zero, ranging from 0.00192 to 0.00902. For the 

Binomial model, we visually inspect the QQ plot of the standardized Pearson residuals 

versus the theoretical standardized Pearson residuals of the Binomial distribution, and find 

they line up very well along each other. Both the magnitude of the over-dispersion 

parameters in the Beta-Binomial models and the residual diagnostics of the Binomial models 

suggest that there is not much evidence of over-dispersion. Moreover, the Binomial model 

runs 2 to 20 times faster than the Beta-Binomial model. Therefore, we use the Binomial 

GLMMs to generate the area-specific prevalence estimates and create pseudo-sites.

3.3. Model Prediction Accuracy

We summarize the test data evaluation results in Table 2, with the minimum MAE and CPRS 

for each area highlighted in bold. We have the following observations:

a. Out of the 10 areas in the 4 countries, 8 areas show improvements in out-of-

sample prediction by adding auxiliary data regardless of the auxiliary sample 

size. The original EPP is preferred in 2 areas of Swaziland.

b. In the areas where auxiliary data improve the prediction, the optimum sample 

size varies.

c. The most improvement lies in the data sparse areas borrowing information from 

data rich areas, as in Angola Rural and Liberia Rural. The auxiliary data with 

sample size 1000 offers the minimum MAE and CRPS in both cases. The MAE 

is increased by 8.5% and 17.1% for Rural Angola and Rural Liberia, and the 

CRPS is increased by 5.1% and 14% for the two areas. The GLMM estimated 

sample size is the next best scenario and provides similar improvements.

d. In data rich areas, such as Urban Angola, Urban Liberia, and both areas in 

Ghana, we see marginal improvement using auxiliary data.

e. In Swaziland, each area has about only 2 sites. The effects of adding a pseudo-

site is mixed. In two of the areas, adding a pseudo-site with a small sample size 

(10) shows significant improvement. In the other two areas, no auxiliary data is 

preferred. One possible explanation is that due to the small number of existing 

sites (2 per area), the results highly depend on whether the samples and trends in 

the 8 sites are similar, since changing the number of sites from 2 to 3 can have a 

large impact on estimating the site effects.

f. Finally, we observe that higher prediction error is related to higher prevalence 

rates, as seen in the comparison between Swaziland and the other 3 countries.

Based on the above findings, we believe adding auxiliary data has benefits in most situations 

and recommend the GLMM estimated sample size as the default setting.
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3.4. Data results

We compare the entire prevalence trajectories of the EPP fits between no auxiliary data and 

using auxiliary data with GLMM estimated size. For Ghana and Swaziland, the national 

prevalence trends look the same. Therefore, in Figure 6, we only present the national 

prevalence estimates for Angola and Liberia. We notice that the national trends and 

uncertainties with (red) and without (black) auxiliary data are similar in urban areas. Using 

auxiliary data provides much narrower uncertainty bounds than not using auxiliary data in 

rural areas. Moreover, with auxiliary data, the projected trend stabilizes from 2008 to 2010 

in Rural Angola, and slightly declines in Rural Liberia after 2010. Both trends are more 

consistent with the observed data when the auxiliary data trends are included.

4 Discussion

In this paper, we apply the methodology in Bao et. al. [4] to four countries with different 

data availability. We discuss in detail the implementation of the method and its interface in 

Spectrum/EPP. We examine the effects of different auxiliary data sample sizes on the 

model’s prediction accuracy using several measures. The empirical results suggest that, for 

areas with sparse data and existence of relatively richer data in other areas, adding auxiliary 

data could improve the EPP fit. We allow EPP users to specify the auxiliary data sample 

sizes, and recommend using the default sample size provided by GLMM. Though we use the 

Binomial GLMM as the prior model in our empirical study, we propose the Beta-Binomial 

GLMM that accounts for sample correlations within a clinic as an alternative.

We find the most improvement lies in Angola and Liberia, where data are sparse in the rural 

areas and richer in the urban areas. As countries move to sub-national estimations, this 

pattern of sparsity is particularly true in settings where some regions had surveillance 

introduced early on and have long time trends, but numerous other regions have only been 

added to the surveillance system in recent years. The ability of the hierarchical model 

approaches described here to share data from the data-rich regions with longer time trends 

can lead to more realistic fits sub-nationally and, thus, improve aggregated national 

estimates.

In countries where all areas have limited data, especially small numbers of sites, we do not 

recommend using the auxiliary data. In those settings, the EPP trends can be highly affected 

by adding the auxiliary data and the outcomes are not guaranteed.

One potential further improvement for rich data situation is to add social, economic, and 

environmental factors as covariates in the hierarchical model. For countries without data rich 

areas, we would consider applying the hierarchical model to multiple neighboring countries 

so that information can be borrowed across countries. Although careful consideration would 

be needed to take into account the potential similarities and differences in the epidemics 

among the countries before applying such a model.

While beyond the scope of this paper, the same approach can be extended to model multiple 

high-risk groups in a country. The combination of a sub-national region and a particular 

high-risk group can have sparse data. In the GLMM, we have one more layer of data 
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structure that makes the observation yagit, where g is the high-risk group indicator. We can 

simply treat the groups the same way as we treat areas, and introduce group-specific 

intercept and time trends. We will then generate area and group specific pseudo-sites. Any 

general sub-epidemic can be estimated in a similar manner.
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Figure 1. 
ANC prevalence data in Rural Angola
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Figure 2. 
The EPP model fitted to Angola rural (left) and urban (right) datasets. The black dots are 

ANC data. The black curve is the posterior median of the prevalence and the shaded area 

represents the uncertainty bounds.
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Figure 3. 
The Hierarchical Model panel in EPP. Here the user conducts the simple steps needed to 

generate pseudo-sites for use in the fitting (numbered buttons at the bottom) and determines 

if the currently selected projection is to use the pseudo-site in its fitting (“Projection uses 

HM” radio buttons).
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Figure 4. 
An example of the pseudo-site (blue site in the graph on the left) in an area with relatively 

little data, and the effect of fitting with (center) and without (right) the pseudo-site active. 

Note how the pseudo-site draws the fit to a slower initial rise and a later peak.
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Figure 5. 
The scaling panel activated by the “Scale Data” button on the Hierarchical Model panel. By 

altering the value in the scale column, one changes the average sample size for the years 

where there are pseudo-site data. In this example, the top figure shows the default sample 

size of 4901 on average for the urban projection, while the lower figure shows the effect of 

changing this sample size to 300.
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Figure 6. 
The EPP model fitted to sub-national datasets from Angola and Liberia. The black curves 

and grey shaded areas show the posterior median and 95% uncertainty bounds estimated 

without using auxiliary data; the red curves and pink shaded areas show the posterior median 

and 95% uncertainty bounds estimated using auxiliary data with the GLMM estimated 

sample size; the black dots are the antenatal clinic prevalence; the blue dot is the survey 

prevalence; the red dots are the auxiliary data.
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