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Trehalose as antifungal target: The picture is still incomplete

Juan-Carlos Arg€uelles

�Area de Microbiolog�ıa, Facultad de Biolog�ıa, Universidad de Murcia, Murcia, Spain

ARTICLE HISTORY Received 13 July 2016; Accepted 18 July 2016

KEYWORDS antifungals; pathogenic fungi; trehalose

A recently published review in Virulence by Perfect et al.,
surveys important topics regarding the use of the path-
ways involved in the metabolism of the non-reducing
disaccharide trehalose, as a promising candidate in the
search of new, safer and more potent antifungals. Much
of the reported experimental data have mainly been
taken from studies on Crytptococcus sp.1 However, in my
view, other crucial clues should be borne in mind for a
better understanding of the reasons behind this proposal.

The critical control of the intermediate compound
trehalose-6P (T6P) over glycolysis through the inhibition
of hexokinase II initially reported in S. cerevisiae has
been seen to be a common feature shared by many path-
ogenic fungi, including the opportunistic yeast Candida
albicans,2 which still remains the most prevalent fungal
pathogen in humans. This significant finding opens
alternative avenues for the development of new fungi-
cidal strategies. The genetic evidence is also convincing,
and the 2 essential genes involved in trehalose biosynthe-
sis, namely T6P-synthase (TPS1) and T6P-phosphatase
(TPS2) are themselves factors of virulence, while the cor-
responding tps1D and tps2D null mutants show a pheno-
type of hypersensitivity to severe oxidative stress, which
is critical for in vivo tissue colonization.3,4

In fact, the involvement of trehalose as part of the fun-
gal defensive response against antibiotics has already
received consistent support. Thus, treatment with
Amphotericin B induces a marked increase in trehalose
synthesis in C. albicans, while the tps1D mutant is highly
susceptible to the polyene.5 A similar increase in treha-
lose was induced by miconazole and ciclopirox, but not
by micafungin6 (unpublished results).

More intensive research is required in order to lend
weight to the proposal of incorporating trehalose into
the antifungal chemotherapy arsenal, and conclusive in-
depth clinical studies are particularly necessary. Another

drawback is our still incomplete knowledge of the entire
set of fungicidal mechanisms evolved by the families of
chemotherapeutics currently used in medical practice.
Interestingly, some compounds that interfere with treha-
lose metabolism have successfully been applied against
phytopathogenic fungi. However, they failed to control
infectious human yeasts. Furthermore, the regulatory
roles played by tps1 protein in the central carbon metab-
olism, as well as the participation of trehalose in key
physiological processes like the resumption of active
growth from resting states and as defensive component
against environment stress,2,7 might complicate its puta-
tive fungicidal activity. In addition, the experimental evi-
dence obtained from animal models is only suggestive
and quantitatively insufficient.1

We need to focus on trehalose biosynthetic enzymes
for future antifungal designs, since large amounts of intra-
cellular trehalose are synthesized by many infective fungi
(e.g. C. albicans, Cryptococcus, Aspergillus or Magna-
porthe, among others) during in vivo tissue coloniza-
tion.1,2,7 In contrast, trehalose-hydrolyzing enzymes
appear to play only minor roles in the fungal virulence
composite, apart from a clear attenuation phenotype dis-
played by null mutants in mouse models.1 It is worth not-
ing, however, that the fungal cell wall confers a high
degree of selective toxicity for new chemotherapeutic tar-
gets. In fact, clinical echinocandins act as potent inhibitors
of b-glucan synthases. A close connection between treha-
lose metabolism and cell wall formation seems to be rele-
vant in several pathogenic fungi. Thus, the so-termed acid
trehalase (Atc1) must be considered a preferential antifun-
gal target, since this enzyme is linked to the external cell
wall in C. albicans and C. parapsilosis, and is involved in
the hydrolysis of exogenous trehalose.8,9 Furthermore, a
C. albicans tps1D mutant shows high vulnerability to oxi-
dative stress and diminished resistance to phagocytosis,
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but more importantly, it also displays serious defects in
the cell-wall architecture.10

On the other hand, the potential use of trehalose
metabolism as antifungal target mainly relies on the
intriguing fact that the capacity to biosynthesize treha-
lose, strictly conserved throughout evolution in prokar-
yotes, lower eukaryotes, plants and invertebrates, has
been absolutely abrogated in mammals.7 This fascinating
evolutionary hallmark makes the disaccharide an attrac-
tive antifungal target, but, at the same time, questions
the strategy of using trehalase inhibitors applied inside
the human body,1 which contains 2 trehalase isozymes
located as glycoproteins in the microvillus intestinal
mucosa and renal brush-border membranes, respec-
tively. This dual trehalase activity rapidly and completely
degrades trehalose ingested in the diet, preventing its
accumulation even in transitory or low levels.7 Although
far from conclusive, some evidence indicates that the
disaccharide cannot be assimilated directly in the blood
stream and its accumulation causes toxicity. Indeed, mal-
absorption due to altered intestinal trehalase gives rise to
abdominal perturbations, diarrhea and other transitory
digestive problems.11 Additional analysis based on die-
tary trehalose would help clarify this matter.
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