VIRULENCE
2017, VOL. 8, NO. 2, 211-221
http://dx.doi.org/10.1080/21505594.2016.1235653

Taylor & Francis
Taylor &Francis Group

REVIEW

Antifungal therapeutics for dimorphic fungal pathogens

Kristie D. Goughenour and Chad A. Rappleye

Department of Microbiology, Ohio State University, Columbus, OH, USA

ABSTRACT

Dimorphic fungi cause several endemic mycoses which range from subclinical respiratory infections
to life-threatening systemic disease. Pathogenic-phase cells of Histoplasma, Blastomyces,
Paracoccidioides and Coccidioides escape elimination by the innate immune response with control
ultimately requiring activation of cell-mediated immunity. Clinical management of disease relies
primarily on antifungal compounds; however, dimorphic fungal pathogens create a number of
challenges for antifungal drug therapy. In addition to the drug toxicity issues known for current
antifungals, barriers to efficient drug treatment of dimorphic fungal infections include natural
resistance to the echinocandins, residence of fungal cells within immune cells, the requirement for
systemic delivery of drugs, prolonged treatment times, potential for latent infections, and lack of
optimized standardized methodology for in vitro testing of drug susceptibilities. This review will
highlight recent advances, current therapeutic options, and new compounds on the horizon for
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treating infections by dimorphic fungal pathogens.

Introduction

Within the Ascomycetes phylum, members of the genera
Histoplasma, Blastomyces, Coccidioides, and Paracocci-
dioides are dimorphic fungi which are responsible for hun-
dreds of thousands of infections, many thousands of which
require clinical intervention. Given similarities in their path-
ogenesis, the disease manifestations they produce, their clin-
ical management, and particularly the resemblance of their
antifungal susceptibility profiles, these 4 genera will be the
subject of this review. Two additional dimorphic fungi,
Talaromyces marneffei and Sporothrix schenkii, will not be
covered. Neither dimorphic fungi nor human pathogens are
monophyletic groups within the Onygenales as closely
related non-pathogenic and non-dimorphic species exist for
several of these genera. While once designated as a single
Coccidioides species, Coccidioides immitis, advances in
sequence analyses and phylogenetics have separated it into
2 species: Coccidioides immitis and Coccidioides posadasii."
Other dimorphic fungi have similarly been separated into
different species with Paracoccidioides braziliensis now com-
prised of Paracoccidioides brasiliensis and Paracoccidioides
lutzii* and Blastomyces dermatitidis as the 2 species Blasto-
myces dermatitidis and Blastomyces gilchristii.” From a clini-
cal standpoint, management of these diseases does not rely
on knowing the precise species. Thus, throughout this
review, the dimorphic fungal pathogens will be referred to

by their genus name without regard to the specific taxo-
nomic species designation. Both current antifungals and
potential new drugs for treating infections by dimorphic
fungal pathogens will be discussed.

Dimorphism and endemicity

The hallmark of the dimorphic fungal pathogens is their
dual, yet distinct lifestyles. These lifestyles are correlated
with separate fungal morphologies with filamentous
growth (i.e., hyphae) characterizing the saprobic phase
in the environment and yeasts (or spherules in the case
of Coccidioides) characterizing the human pathogenic
phase. This contrasts with polymorphic fungi (e.g. Can-
dida albicans) which exhibit both yeast and hyphal mor-
phologies in human tissues. Temperature appears to be
the central factor that determines the form/lifestyle of
the dimorphic fungi with exposure to mammalian body
temperature triggering adoption of the pathogenic
mode.*” Yeasts of the dimorphic fungi (or Coccidoides
spherules) are not efficiently eliminated by immune cells.
Preventing the transition into yeasts through pharmaco-
logic®® or genetic interventions'®'® renders dimorphic
fungal pathogens avirulent indicating the necessity of the
dimorphic transition for pathogenesis. Unlike many par-
asites which must cycle between human and non-human
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environments to complete their lifecycle, the dimorphic
fungi have no such requirement for infection of mamma-
lian hosts. Rather, infection of mammals by the dimor-
phic fungi is accidental, yet when these fungi transition
to the yeast/spherule phase, they express efficient mecha-
nisms that enable their survival and proliferation within
this secondary environment.

The dimorphic fungal pathogens are endemic to
particular geographic regions rather than being found
ubiquitously in the environment. These areas have
been largely defined by clinical case prevalence,'* iso-
lation from soils,"”” or skin-reactivity tests to specific
antigens of the dimorphic fungi.'®'® Ecological
aspects of soils that favor growth of the hyphal forms
and/or animal or bird patterns for dispersal are
thought to wunderlie dimorphic fungal pathogen
endemicity. Histoplasma is endemic to the Midwest
and Eastern parts of the United States (chiefly around
the Ohio and Mississippi River valleys),'® and is also
found in Latin America (particularly Brazil, Vene-
zuela, Colombia, and Argentina;'’), parts of Africa,*
and some cases have been reported in China*"** and
India."® Blastomyces overlaps with many of the Histo-
plasma-endemic regions in the United States (Mid-
west, Southeast, and South-central) and also includes
Canadian provinces around the Great Lakes®>** and
parts of Africa.’® In contrast to the moist environ-
ments with decaying organic material supporting His-
toplasma and Blastomyces, Coccidioides is found in
the more arid environments of the Southwest of the
United States (Southern California, Arizona, New
Mexico, Texas;*®), Central America, and parts of
South America (Northern Brazil, Venezuela, Argen-
tina, and Paraguay’’). Paracoccidioides species are
endemic to South America, particularly areas of Bra-
zil, Colombia, Venezuela, Argentina, and Uruguay.28

The annual incidence of infections by dimorphic
fungi is likely inaccurate as under-diagnosis and under-
reporting of infections is common. Furthermore, most
infections are self limiting without requiring clinical
intervention. Nevertheless, estimates of over a half mil-
lion infections by Histoplasma and Coccidioides occur
each year.”>* Paracoccidioides and Blastomyces infec-
tion estimates are more difficult due to regional differ-
ences, however reports suggest the incidence ranges
from 0.05 to 3 per 100,000 individuals in endemic
regions.”>*'"** Together these 4 dimorphic fungal
pathogens infect hundreds of thousands each year, a
number which does not include veterinary infections.
The number of clinical cases typically range from 5-
30% of infections, although in some outbreaks over
50% of infections can result in clinical disease.”*>° One
survey of hospital records in the United States tallied

over 6000 hospitalizations in one year: 3360 cases of
histoplasmosis, 771 cases of blastomycosis, and 2194
cases of coccidiodomycosis.'* Less than half of these
were in immunocompromised individuals. A case series
analysis of Latin America countries showed over 750
annual reported cases of paracoccidioidomycosis.*®

Dimorphic fungal pathogen disease and treatment

Inhalation of conidia initiates infection by the dimorphic
fungi***”** The conidia (or arthroconidia in the case of
Coccidioides) are produced solely by the environmental
mycelia. The small size of these propagules facilitates
aerosolization upon environmental disturbance and
deposition into alveoli once inhaled. Thus, occupational
and recreational activities that contribute to soil and
environmental disruption are a primary risk factor for
infection by dimorphic fungal pathogens.”*** Most
infection outbreaks can be traced back to specific events
that led to conidia release from soils and their subse-
quent inhalation.”**>*>**” Therefore, practices to avoid
or reduce the potential for aerosolization and inhalation
of conidia are prescribed for high risk areas®**!*%*

Within the lungs, conidia transition into pathogenic-
phase cells which survive innate immune defenses. For His-
toplasma, Blastomyces, and Paracoccidioides, the conidia
germinate into yeasts. The yeasts can be internalized by host
phagocytes (e.g.,, alveolar macrophages) to varying degrees
with Histoplasma yeasts residing almost exclusively within
these host cells. This intracellular residence creates an addi-
tional barrier to antifungal drug penetration which must be
considered in antifungal development. For Coccidioides, the
inhaled arthroconidia become spherules that are exclusively
extracellular. The spherules enlarge into endosporulating
structures within the lung tissue and release endospores for
propagation of the infection. Whether phagocytosed or not,
the dimorphic fungal pathogens are not controlled by the
innate axis of the immune system unlike the opportunistic
fungal pathogens. Thus, Histoplasma, Blastomyces, Cocci-
dioides species, and Paracoccidioides infections are not
restricted to immunocompromised hosts, but also cause dis-
ease in immunocompetent individuals. Control of the infec-
tion requires activation of CD4" cells and consequently
individuals lacking aspects of cellular immunity (e.g,, HIV,
immunosuppression due to tissue or organ transplantation,
TNFo blockade, etc.) typically progress to severe and dis-
seminated disease. Elimination of symptoms has been
assumed to indicate clearance of the infection, but evidence
is now suggesting that at least in some individuals, the infec-
tion can enter a latent state, which can re-emerge later when
the balance between pathogen and host immunity is altered
(e.g., immunosuppression of the host).”*>°



Since inhalation is the route of exposure, mycoses
caused by dimorphic fungal pathogens are initially pul-
monary diseases. In immunocompetent individuals, mild
disease is mostly subclinical, often going undiagnosed.
Infection causes varying degrees of pneumonia and influ-
enza-like symptoms. For the majority of individuals,
symptoms typically resolve without requiring interven-
tion. Roughly 5% of Histoplasma infections are estimated
to require clinical management® and up to 30% for Coc-
cidioides infections.”® For individuals inhaling a larger
inoculum, or those that have some deficiency in cellular
immune response, disease is more severe and the infec-
tion typically disseminates to extrapulmonary sites via
the hemolymphatic system. Extrapulmonary disease pre-
sentation varies, but can include oral and pharyngeal
mucosa (Paracoccidioides), cutaneous lesions (Histo-
plasma, Blastomyces, Paracoccidioides, and Coccidioides),
and bone (Blastomyces).”"***>>° The systemic nature of
infections by dimorphic fungi thus precludes any topical
antifungal options for management, and the required
systemic drug administration significantly elevates the
potential for problems with host toxicities.

Current antifungal options

In vitro activities of current antifungal drugs used clinically
have been established for the dimorphic fungi. These
include drugs of the polyene, azole, and echinocandin clas-
ses. In general, reference methods for antimicrobial suscep-
tibility tests follow those established by the Clinical and
Laboratory Standards Institute (CLSI). Notably missing
from these reference methods are procedures specifically
designated for dimorphic fungi leading to confusion as to
whether macro- and microdilution test methods for yeasts

Table 1. In vitro antifungal MICs for dimorphic fungal pathogens.
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(M27-A3)% or for filamentous fungi (M38-A2)°" should be
followed. This is not an insignificant question as the yeast
and hyphal forms of the dimorphic fungi can have dramati-
cally different susceptibilities.®**® For example, early studies
with echinocandins showed antifungal effects on the hyphal
form of Histoplasma.”” However, subsequent tests against
the yeast form indicated that caspofungin was anywhere
from 20- to 1000-fold less effective.****% It is now well rec-
ognized that the echinocandins have poor antifungal activity
on pathogenic phase cells of the dimorphic fungi. This situa-
tion underscores the need to use the form most relevant to
human infection when establishing the antifungal suscepti-
bility profile of dimorphic fungal pathogens. Unfortunately,
some antifungal studies continue to ignore the pathogenic
forms and instead limit studies to mycelial-phase cells.”’”>
Further complicating antifungal susceptibility profiling are
the lack of standardized methods addressing complications
for dimorphic fungi. While the CLSI methods for yeasts
(M27-A3)* work well for Candida and Cryptococcus yeasts,
they are inadequate for testing yeast-phase cells of the
dimorphic fungal pathogens, which have longer generation
times and require higher inocula for efficient and consistent
growth in broth culture. A more appropriate microdilution
method has recently been established for antifungal testing
of Histoplasma yeasts,” and this methodology produces
more accurate data for Histoplasma susceptibility.”?

Despite these caveats, a general profile of the antimicro-
bial susceptibilities of dimorphic fungi has been developed
for amphotericin B and azole-class drugs. Each of the
dimorphic fungal pathogens exhibit a similar susceptibility
profile for current antifungals with both amphotericin B
and azole drugs generally showing potent activity (low mini-
mum inhibitory concentrations; MIC) with some variability
in MICs reported for fluconazole (Table 1). Unfortunately,

MIC range (tg/mL)

Drug class Antifungal Histoplasma Blastomyces Paracoccidioides Coccidioides References
Polyenes Amphotericin B Y: <0.03-2.0 Y:<0.03-2.0 Y: 0.06-2.0 Y:0.25-2.0 68,69,109-119
M: 0.26-2.5 M: M: M: 0.03-0.50
Imidazoles Ketoconazole Y: Y: <0.01-0.25 Y: <0.01-0.03 Y: 72110,114-116,120
M:0.17 M: 0.1-0.4 M: M: 0.03-0.16
Triazoles Fluconazole Y:0.25-8.0 Y: 0.06-32 Y:0.13-0.50 Y: 6869,109.110112-114,116,117,119-123
M: 2.0-32 M: 0.06-32 M: M: 2.0-64
Itraconazole Y: <0.01-0.5 Y:<0.01-0.13 Y: <0.01-0.06 Y: <0.03-0.50 68,109-115,120-122
M: 0.03-1.0 M: 0.03-4 M: M: 0.03-1.0
Voriconazole Y: 0.03-0.50 Y:<0.03-0.25 Y: Y: <0.03-2.0 109-111,113,121,123
M: <0.01-2.0 M: 0.06-2.0 M: M: 0.03-1.0
Posaconazole Y: <0.01-0.50 Y: <0.02-0.06 Y: Y: 67,109.112121,123
M: 0.02-2.0 M: <0.02-2.0 M: M: 0.06-1.0
Echinocandins Micafungin Y: >64 Y: 32-64 Y: >64 Y: 8
M: 0.03-0.06 M: <0.01-0.03 M: 4-16 M: 0.02
Caspofungin Y: 8-32° Y: Y: Y: 6769113117118
M: 0.02-4.0 M: 0.5-8.0 M: M: 8-64

Note. 2 studies reported low caspofungin MICs for yeast which disagree with the majority of studies based on clinical isolates in India (0.03-1.0 z.g/mL
a single laboratory Histoplasma strain (MIC <0.125 z.g/mL).'*

)19 and for
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the echinocandins, which have dramatically decreased host
toxicity, have poor antifungal activity against the patho-
genic-phase cells of dimorphic fungal pathogen yeast cells.
The reasons underlying this natural resistance of yeasts to
the B-glucan synthase inhibitors is currently unknown.

The in vitro antifungal susceptibilities for amphotericin B
and azole-class drugs have been validated in murine models
of dimorphic fungal disease and/or in clinical trials. As a
consequence, the Infectious Disease Society of America has
released treatment guidelines for infections with Histo-
plasma,74 Blastomyces,75 and Coccidioides.”® Despite its
potential for host toxicity, amphotericin B is recommended
for severe disseminated disease, with one of the liposomal
formulations preferred. For less severe situations, for follow
up after amphotericin B, or for possible prophylaxis of
highly susceptible individuals (e.g. AIDS), IDSA guidelines
recommend treatment with an oral azole (i.e., itraconazole)
with monitoring of serum concentrations to ensure suffi-
cient absorption and bioavailability. To ensure sufficient
clearance of the dimorphic fungal infection, treatments typi-
cally involve protracted regimens. For mild disease, treat-
ment durations can range from several months to a year
depending on the specific dimorphic fungus. Treatment of
disseminated disease and disease in immunocompromised
hosts can be a year or longer. Beyond the prolonged treat-
ment times, the potential for latency, rather than clearance
of the infection, further complicates antifungal management
of dimorphic fungal infections.

New and alternative antifungal developments

With the known host toxicity risks of current antifun-
gals,”””” and the endogenous resistance of dimorphic
fungi to the lower toxicity echinocandins, new and alter-
native antifungal drug options have been explored. The
eukaryotic nature shared by both the dimorphic fungal
pathogens and the host is recognized as a significant
obstacle to antifungal drug development. Consequently,
many molecules with promising antifungal activity fail
due to lack of adequate selectivity.

One approach to improve the selectivity of existing anti-
fungal molecules, is to test modifications to the structure
that decrease drug affinity to host targets. The oral availabil-
ity of azole-class antifungals is a great benefit to manage-
ment of dimorphic fungal infections. However, the heme
iron-binding action of the imidazoles and triazoles that
inhibits fungal cytochrome CYP51 (Ergl1) also targets host
P450 cytochromes leading to hepatotoxicity and problem-
atic drug-drug interactions. Exploration of other metal
binding azole groups in combination with structure-guided
improvement of affinity for fungal CYP51 outside of the
active site led to the design of compound VT-1161.%° As pre-
dicted from structure affinity calculations, the molecule has

low affinity for mammalian CYP3A4 but is highly potent
against C. albicans. Subsequent testing against Coccidioides
arthroconidia in vitro showed VT-1161 has an MIC around
1.5 ug/mL.*" Oral administration of VT-1161 in a murine
model of coccidioidomycosis demonstrated VT-1161
reduced spherule burden in the lungs by 100- to 1000-fold,
leading to improved mouse survival.*' While VT-1161 had
similar effectiveness as fluconazole in vivo, it is hoped the
better selectivity of the molecules will decrease potential
host toxicity.

Following the goal of reduced host toxicity, some anti-
bacterial compounds have been investigated due to their
established safety profile to the host. Drugs targeting the
folate pathway have been effective against microbes from
bacteria to parasites,82 are orally available, and have a mod-
erately safe host toxicity profile. These drugs have already
been a means of prophylaxis against Pneumocystis fungal
infections in HIV+ individuals. Sulfonamides in combina-
tion with dihydrofolate reductase inhibitors (e.g., cotrimox-
azole) have activity against Histoplasma yeasts (8-14 g/
mL and 2-3 pg/mL, respectively)® and Coccidioides (MICs
of 1000 ug/mL and 200 ug/mL, respectively),*® although
only the mycelial phase has been tested for Coccidioides.
The sulfonamides/antifolate combination has been one of
the traditional treatments for Paracoccidioides™®®> but
they have not been advanced clinically for the other dimor-
phic fungal pathogens.

Using a similar rationale, ciprofloxacin, a fluoroquin-
olone antibacterial with very low host toxicity, has been
tested for antifungal potential. The fluoroquinolones
inhibit bacterial type II topoisomerases (e.g., DNA gyr-
ase) and were suggested to potentially also inhibit fungal
topoisomerase. While not effective against mycelial
forms of Histoplasma and Coccidioides, tests against His-
toplasma yeast showed ciprofloxacin has an in vitro MIC
of 62.5-250 Mg/mL.86 While not considered a low MIC,
the lack of significant host toxicity for ciprofloxacin cre-
ates a good selectivity index and raises its potential, at
least as an adjunct therapy for fungal infections. Addi-
tion of ciprofloxacin to amphotericin B or itraconazole
indicated some additive effects could be gained through
drug combinations.

Anti-tuberculosis drugs show some, albeit low potency,
antifungal activity for dimorphic fungal pathogens. When
tested in vitro against Coccidioides mycelia, rifampicin, iso-
niazid, and ethambutol had very high MICs (8500 pg/mL,
500 p1g/mL, and 2500 j.g/mL, respectively’). Effectiveness
against spherules was not determined but tests against His-
toplasma yeasts similarly had high MICs”" arguing these
antibacterial compounds lack any significant antifungal util-
ity. However, using isoniazid as the core, chemical structure
modification improved its antifungal potential; 3 of 9 isonia-
zid derivatives had significantly lower MICs against



Histoplasma yeasts with one having inhibitory activity at
concentrations as low as 7.8 ;1g/mL.°> Extending the in vitro
tests of the isoniazid-hydrazone derivative to Coccidioides
demonstrated it had an MIC of 50 j1g/mL against mycelia
of this dimorphic fungal pathogen.*” Although Coccidioides
spherules were not tested, there is a reasonable possibility
that the MIC will be lower since Histoplasma yeasts were 8—
16X more sensitive to the isoniazid-hydrazone than were
mycelia.*?

Antiretroviral protease inhibitors have inhibitory activity
against Histoplasma. Saquinavir is active against both fila-
mentous and yeast forms with an MIC around 0.4 ;1g/mL.%*
Another protease inhibitor, ritonavir, has an MIC of 1.0 g/
mL against Histoplasma mycelia but is 7-fold more potent
against yeast cells. As HIV+ individuals comprise a signifi-
cant portion of clinical Histoplasma cases, this raises the
possibility that management of HIV through protease inhib-
itor cocktails could simultaneously directly combat infection
by dimorphic fungal pathogens.

Surprisingly, farnesol can inhibit growth and morpho-
logical transitions of Paracoccidioides and Coccidioides.
Farnesol is an alcohol present in some essential oils but
is also produced by C. albicans as a quorum sensing mol-
ecule. When tested on Paracoccidioides yeasts, farnesol
had an MIC of 30 #1M.*® Farnesol also inhibited the tran-
sition from yeast cells to hyphae, although this morpho-
logical defect has questionable relevance to the situation
in mammalian hosts. Against Coccidioides mycelia, far-
nesol was nearly 100-fold more potent (MIC approxi-
mately 0.3 uM;”%). Farnesol was also reported to inhibit
Histoplasma yeast growth with an average MIC of
0.02 uM.* As a caution, tests with Histoplasma yeasts
followed the CLSI methodology (M27-A3) and this has
been shown to be inferior for reliable testing of Histo-
plasma yeast susceptibility.”’

Repurposing of anti-cancer drugs has also been fruit-
ful in the search for new antifungal prospects. AR-12 is a
celecoxib-derivative that has been shown to have antimi-
crobial properties against microbes ranging from bacte-
ria to parasites to fungi and even viruses.””** Early
mechanistic studies in cancer cells suggested AR-12
inhibited cellular phosphoinositide-dependent kinase-1
(Pdkl), however this does not appear to be the case in
fungi. Recently, it was shown that AR-12 inhibits acetyl-
CoA synthetase, an essential enzyme in fungi.”> AR-12
has antifungal activity against a broad collection of fungi,
including the dimorphic fungal pathogens at concentra-
tions around 4-8 p1g/mL.” In vitro, AR-12 is fungicidal
against Histoplasma yeasts (Rappleye CA, personal com-
munication). These antifungal characteristics combined
with AR-12s safety as established in Phase I trials make
AR-12 an attractive antifungal candidate for further
development.
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Both phenotypic and target-based screening approaches
have been used to identify novel compounds that inhibit
dimorphic fungal pathogens. Genome analyses for potential
antifungal targets focused on those genes that were (i) dem-
onstrated to be essential for fungal growth and (ii) conserved
among diverse fungi (Basidiomycetes to Ascomycetes;”).
From this thioredoxin reductase (Trr) was selected as a can-
didate target for computational screening of a library of
3000 compounds. Three compounds were identified and
tests against purified Paracoccidioides Trr protein confirmed
the compound inhibited Trr enzymatic activity.”” Pheno-
type tests demonstrated that 2 compounds had significant
biological activity against Paracoccidioides yeasts with MICs
of 8-16 pug/mL (compounds F1806-0122 and F3307-0100).
This study validates target based screening as an approach
to identification of potential antifungal compounds.

Phenotypic screening of small molecule libraries has
identified a group of aminothiazoles with antifungal
activity toward Histoplasma. To enable rapid quantita-
tive screening of yeast growth, yeasts were engineered to
express a red-fluorescent protein, which could be used as
a surrogate indicator of the number of yeast cells.”® Fur-
thermore, fluorescence-based growth analysis facilitated
efficient monitoring of Histoplasma within macrophages,
and thus the determination of the effectiveness of com-
pounds on inhibition of Histoplasma within its host cell
environment. The top hit aminothiazole (41F5) was
effective against yeasts in culture (MIC 2-4 uM) and
effectively inhibited proliferation of yeasts resident
within macrophages.”® Importantly, the aminothiazole
compound had low toxicity to cultured mammalian cells,
including macrophages. Unfortunately, the aminothia-
zole was not active against Blastomyces yeasts despite the
very close phylogenetic relationship between Histo-
plasma and Blastomyces. The molecular target of the
aminothiazole remains to be determined, and this may
facilitate structure optimization to broaden its activity
for other dimorphic fungal pathogens.

The most advanced new antifungal option for clinical
development to manage dimorphic fungal pathogens is
nikkomycin Z. The polyoxins (from which the nikkomy-
cins are derived) are peptide modified-nuceloside analogs
which were originally identified by screening Streptomyces
products for antifungal and insecticidal activities.”” These
compounds were later shown to be inhibitors of chitin
synthesis.'*’ Since chitin synthase is absent from mamma-
lian cells, these compounds have very high selectivity for
fungi. Following polyoxin studies on C. albicans, the nik-
komycins were demonstrated to have good potency in
vitro against dimorphic fungal pathogens,'®' "' with the
most potency against Coccidioides cells (MIC of 0.125 g/
mL for spherules).'”” Examination of treated Coccidioides
spherules showed lack of endosporulation and even lysis
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of the spherules consistent with impairments in cell wall
structure.'” The nikkomycins are orally available, simpli-
fying extension of studies to animal models of mycoses
caused by dimorphic fungal pathogens. Administration of
nikkomycin Z in murine models of lethal histoplasmosis
resulted in decreased organ fungal burdens (3- to 28-fold)
and a concomitant enhancement of mouse survival at
doses from 20 to 100 mg/kg per day.'*>'** Significant pro-
tection from lethal infection was realized, however, only at
moderate inocula suggesting nikkomycin antifungal activ-
ity may not be sufficiently rapid to curb severe infections.
Similar results were found for treatment of blastomycosis
with reduction in fungal burdens ranging from 10-fold (at
a dose of 50 mg/kg)'* to apparent lung tissue sterilization
(over 3500-fold reduction at higher doses of 400-
1000 mg/kg).'” The ability to safely administer such
doses is a testament to the high selectivity gained by tar-
geting the fungi-specific molecule chitin synthase. Nikko-
mycin Z is also effective in treating pulmonary
coccidioidomycosis with over 10,000-fold reduction in
lung fungal burdens and complete protection from lethal
infection of mice at a dose of 20 mg/kg.'” Recently, a
small clinical trial in dogs with Coccidioides infection was
completed. Dogs with mild to moderate disease had sig-
nificant improvement but those with severe disease had
little or poor responses to treatment, again suggesting nik-
komycin may not act rapidly enough to quickly curtail
disease progression in high fungal burden situations.
Nonetheless, nikkomycin Z shows good promise as a
highly selective (low host toxicity) antifungal for develop-
ment against dimorphic fungal pathogen infections.

Conclusions

Current clinical management of infections by dimorphic
fungal pathogens is limited to azole-class antifungal
drugs and amphotericin B. While orally available, the
azoles are not without host toxicity issues and the treat-
ment course is lengthy for infections by dimorphic fungi.
Development of resistance to azoles is not widespread,
although treatment failures due to azole resistance have
occurred,!06-108 Unfortunately, the better tolerated echi-
nocandin antifungals lack efficacy against the patho-
genic-phase of the dimorphic fungal pathogens raising
the need for alternative or second-line treatment options.

While a number of strides have been made in repur-
posing existing drugs and development of new inhibitors
of fungal growth, careful attention must be paid to chal-
lenges posed by dimorphic fungi. As the yeasts/spherules
of the dimorphic fungi are the state present within the
mammalian host, antimicrobial susceptibilities need to
be performed with these pathogenic-phase cells, not the
mycelia which has led to erroneous conclusions. Testing

of the pathogenic-phase in vitro should follow recently
optimized procedures as the CLSI methodology for
yeasts is inadequate for the dimorphic fungi. Since yeast
cells of the dimorphic fungi reside within host phago-
cytes, it is also advisable for in vitro tests to be followed
with tests on drug effectiveness on intracellular yeasts, at
least during initial drug development stages.

The overall selectivity of antifungal drug candidates is
critical for progression of drugs through the development
pipeline. Structure-guided rational design is one approach
that has improved the selectivity of an azole structure
(VT-1161). Many of the repurposed drugs have relatively
high MICs (greater than 100 ug/mL) questioning their
therapeutic utility, however if their selectivity is suffi-
ciently high, formulations may be developed to facilitate
sufficiently high serum and tissue levels. Lower MICs have
been found for drugs targeting the folate pathway, an iso-
niazid-hydrazone derivative, antiretroviral protease inhib-
itors, and the anti-cancer drug AR-12, all of which are
expected to be reasonably well-tolerated by the mamma-
lian host. Novel drugs with good in vitro MICs and good
selectivity include thioredoxin-reductase inhibitors, an
aminothiazole compound, and nikkomycin Z. Since nik-
komycin Z targets an enzyme absent from the host, nikko-
mycin has an excellent basis for high selectivity for fungi.
In addition, nikkomycin Z has maintained antifungal
effectiveness against multiple dimorphic fungal pathogens
in animal models of disease. While the current antifungal
armament is limited, there are exciting prospects on the
horizon for treating dimorphic fungal infections.
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