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Motor Learning Enhances Use-Dependent Plasticity
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Motor behaviors are shaped not only by current sensory signals but also by the history of recent experiences. For instance, repeated
movements toward a particular target bias the subsequent movements toward that target direction. This process, called use-dependent
plasticity (UDP), is considered a basic and goal-independent way of forming motor memories. Most studies consider movement history
as the critical component that leads to UDP (Classen et al., 1998; Verstynen and Sabes, 2011). However, the effects of learning (i.e.,
improved performance) on UDP during movement repetition have not been investigated. Here, we used transcranial magnetic stimula-
tion in two experiments to assess plasticity changes occurring in the primary motor cortex after individuals repeated reinforced and
nonreinforced actions. The first experiment assessed whether learning a skill task modulates UDP. We found that a group that success-
fully learned the skill task showed greater UDP than a group that did not accumulate learning, but made comparable repeated actions. The
second experiment aimed to understand the role of reinforcement learning in UDP while controlling for reward magnitude and action
kinematics. We found that providing subjects with a binary reward without visual feedback of the cursor led to increased UDP effects.
Subjects in the group that received comparable reward not associated with their actions maintained the previously induced UDP. Our
findings illustrate how reinforcing consistent actions strengthens use-dependent memories and provide insight into operant mecha-
nisms that modulate plastic changes in the motor cortex.
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Introduction
Repetitions of simple motor actions lead to plastic reorganiza-
tional changes in the primary motor cortex (M1). This phenom-
enon, known as use-dependent plasticity (UDP), has been

demonstrated by the presence of changes in transcranial mag-
netic stimulation (TMS)-evoked movement direction after train-
ing (Classen et al., 1998; Bütefisch et al., 2000; Celnik et al., 2006;
Stefan et al., 2008). Similarly, behavioral investigations have
shown that consistent repetition of movements induces direc-
tional biases toward the repeated direction (Diedrichsen et al.,
2010; Huang et al., 2011; Verstynen and Sabes, 2011). This form
of learning has been interpreted as the result of Hebbian changes
in the motor cortex (Orban de Xivry et al., 2011). Although UDP
seems to decay quickly with time, it has been suggested to be
helpful to reduce movement variability (Verstynen and Sabes,
2011). How then can we enhance or prolong this use-dependent
memory?

An important clue might be the observation from recent re-
ports showing that repetition of successful movements when
dealing with perturbations elicits larger directional biases—the
hallmark of UDP—than movement repetitions alone (Diedrich-
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Significance Statement

Performing consistent motor actions induces use-dependent plastic changes in the motor cortex. This plasticity reflects one of the
basic forms of human motor learning. Past studies assumed that this form of learning is exclusively affected by repetition of
actions. However, here we showed that success-based reinforcement signals could affect the human use-dependent plasticity
(UDP) process. Our results indicate that learning augments and interacts with UDP. This effect is important to the understanding
of the interplay between the different forms of motor learning and suggests that reinforcement is not only important to learning
new behaviors, but can shape our subsequent behavior via its interaction with UDP.
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sen et al., 2010; Huang et al., 2011; Bernardi et al., 2015). Addi-
tionally, evidence from human neuropharmacology studies
suggests that administration of levodopa, which increases the
presynaptic availability of endogenous dopamine, enhances UDP
(Flöel et al., 2005; Floel et al., 2008). These results suggest a
hidden process, likely driven by success-related reinforcement
signals that might modulate UDP. In contrast to UDP, reinforce-
ment is another form of learning based on the presence of success
or failure (Knowlton et al., 1996; Schultz, 2006; Ramayya et al.,
2014), has longer-lasting effects (Shmuelof et al., 2012b; Therrien
et al., 2016), and is mediated by circuits involving the basal gan-
glia and motor cortex (Huntley et al., 1992; Ziemann et al., 2001;
Luft and Schwarz, 2009; Hosp et al., 2011; Kawai et al., 2015). In
this manner, learning new motor behaviors is driven in part by
reward-prediction errors that allow the selection of actions based
on their likelihood of reinforcement (Sutton and Barto, 1998; Lee
et al., 2012). Although the foregoing reports suggested potential
interactions between the different forms of learning (Diedrichsen
et al., 2010; Abe et al., 2011; Huang et al., 2011; Bernardi et al.,
2015), these studies did not completely clarify the effects of learn-
ing (i.e., improvement in performance) on UDP. Therefore, the
extent to which UDP and learning per se interact both at the
behavioral and neural level remains poorly understood.

The aim of the current study was to better understand whether
successful goal achievement interacts with and enhances UDP.
To do so, we designed two experiments. In Experiment 1, we
hypothesized that action repetition while learning a motor task
would enhance the magnitude of UDP. Thus, we examined the
effect of task success during motor skill learning on UDP. In this
experiment, we applied single pulses of TMS over the thumb area
on M1 before and immediately after participants trained an iso-
metric pinch-force skill task. We manipulated the amount of
learning by controlling trial by trial the mapping between the
force transducer and the visual display of the cursor. One group
of participants was trained on a consistent map, which allowed
performance improvement, whereas a second group of partici-
pants was exposed to trial-by-trial randomized maps, which
prevented accumulation of learning. In Experiment 2, we manip-
ulated explicit reinforcement signals during repetitions to inform
subjects about their performance while controlling the variability
of kinematics and magnitude of reward. Here, participants in one
group were provided a binary reward feedback associated with
the performance, whereas a second group received comparable
feedback that did not correspond to their actions. Understanding
the interplay between these forms of learning is important for
designing better training paradigms that can lead to more effi-
cient and longer-lasting training effects in healthy people and in
the context of neurorehabilitation.

Materials and Methods
Subjects
We recruited 52 healthy adult subjects for the study [23.02 � 4.9 years old
(mean � SD), including 34 females] who were right-handed and naive to
the purpose of the study. Subjects gave written consent to participate in
the study, which was approved by the Johns Hopkins University School
of Medicine Institutional Review Board. None of the subjects had a his-
tory of neurological disease or psychological disorders. All subjects de-
nied the use of acute or chronic CNS-acting medication, said they
refrained from drinking alcohol in the previous 24 h, and reported to
have had �5 h of sleep the previous night.

Recording and brain stimulation
Subjects sat comfortably in a chair while their right forearm was re-
strained in a molded armrest in a semipronated position. Each subject’s

four fingers were in a slightly extended position and his or her thumb was
left entirely unconstrained. Use of the armrest allowed for consistent
positioning of the arm and hand across the different sessions of the
experiment. We recorded thumb movements using a highly sensitive
three-dimensional accelerometer (Kistler Instruments) positioned on
the distal interphalangeal joint of the thumb (Fig. 1a). We determined
the direction and amplitude of each TMS-evoked thumb movement and
calculated the first peak acceleration vector in both the horizontal (ab-
duction/adduction) axis and vertical (flexion/extension) axis, as done in
previous studies (Classen et al., 1998; Bütefisch et al., 2000; Galea and
Celnik, 2009). We recorded, amplified, and filtered surface electromyog-
raphy (EMG) activity (Bortec Biomedical) from the right flexor pollicis
brevis (FPB) and right extensor pollicis brevis (EPB) muscles (we iden-
tified FPB as agonist and EPB as antagonist), both known to be activated
during thumb movements.

To elicit focal, isolated, and consistent right thumb movements (Fig.
1a), we delivered TMS using a 70 mm figure-eight coil (Magstim) over an
optimal scalp position of the left M1. The coil was placed tangentially on
the scalp with the handle pointing backward and laterally at a 45° angle
away from the midline, approximately perpendicular to the central
sulcus. To ensure accurate positioning and consistency of the TMS coil
throughout training and test sessions, we used a frameless neuronaviga-
tion system (RRID:SCR_009539, BrainSight, Rogue Research) and
coregistered the subject’s head to a default Talairach template provided
by Brainsight software. In this optimal spot, we determined the resting
motor threshold, a measure of neuronal excitability, as the minimum
TMS intensity that evoked motor-evoked potential (MEPs) of 50 �V in 5
of 10 trials at rest (Pascual-Leone et al., 1994; Rossini et al., 1994). The
intensity of the TMS required to elicit isolated and mild thumb move-
ments in a consistent direction was set above the resting motor threshold
(Table 1). We kept the stimulation intensities similar across conditions,
and there were no statistical differences between the TMS intensities of all
groups ( p � 0.33). We sampled all signals at 1 kHz. These were displayed
on-line for the experimenter and analyzed off-line with custom-built
Matlab R2014b program (RRID:SCR_001622, MathWorks).

Experimental procedure
Experiment 1: UDP in skill learning task. The first experiment included 22
participants and was designed to examine the effect of the task’s success
during motor skill learning on UDP. The behavioral task and stimulation
procedure have been previously described (Classen et al., 1998; Bütefisch
et al., 2000; Galea and Celnik, 2009; Reis et al., 2009; Cantarero et al.,
2013). Briefly, subjects participated in three consecutive sessions: pre-
training (baseline), motor training, and post-training. During pre-
training, 65 TMS single pulses were delivered at 0.2 Hz to the optimal
scalp position that evoked isolated thumb movements. Although subjects
might feel some contractions of their thumb muscles following each
stimulus, they could not determine the direction of the movements and
subjects had no direct view of their hand. Baseline-consistent TMS-
evoked movement direction in the abduction direction was identified
(Fig. 1b). After this, subjects were trained to perform the sequential visual
isometric pinch skill task (Reis et al., 2009; Cantarero et al., 2013). To this
end, subjects were seated in front of a computer monitor and were in-
structed to pinch against an isometric force transducer using their right
thumb (adduction movement direction) to perform the sequential visual
isometric pinch task (SVIPT). In this manner, the direction of pinching
force during training was carefully controlled by the experimenter and
was set to a direction almost opposite to the baseline direction elicited by
TMS. At baseline, the participants displayed TMS-evoked movements in
an abduction direction. In this skill task, subjects’ applied forces were
mapped to lateral on-screen cursor displacement. In each trial, subjects
were instructed to navigate the cursor as accurately and quickly as possi-
ble between a HOME position and five different targets in ascending
order (i.e., HOME-1, HOME-2, HOME-3, HOME-4, HOME-5) by al-
ternating the pinch force exerted onto the transducer, and thus learning
the sequence of contractions to move the cursor as fast and accurately as
possible (Fig. 1b). The order and position of the targets did not change
during the experiment, and subjects were able to see the cursor on the
screen. The training session lasted �30 min. During post-training, 65
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TMS single pulses at 0.2 Hz were delivered over the same area as in the
pre-training session.

We randomly assigned participants to one of two groups: the Skill
group or the Random group. Each group was exposed to a different
mapping between the force transducer and the visual display. In the Skill
group (n � 11; age: mean � SD, 23.7 � 4.4 years; seven females), subjects
trained on a consistent map that logarithmically transferred forces to

actual cursor displacement, allowing performance improvement (Fig. 1c,
left), as previously described (Reis et al., 2009; Cantarero et al., 2013). In
the Random group (n � 11; age: mean � SD, 22.6 � 5.3 years; eight
females), subjects were exposed to a trial-by-trial randomized force
transducer-visual display mapping that markedly reduced the number of
successful trials and thus prevented accumulation of learning (Fig. 1c,
right; Cantarero et al., 2013). The random maps included different
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Figure 1. Experimental setups. a, We delivered TMS over the left M1 to elicit thumb movements before and after training and measured the percentage of TMS-evoked thumb movements falling
in the training direction zone (TDZ). b, Protocol of Experiment 1. For each subject, we first delivered 65 TMS single pulses to assess baseline mean direction of the thumb movement (pre-training
session). Subjects then performed four blocks of 30 trials of the SVIPT task. We then redelivered 65 TMS-evoked isolated thumb movements as done in the pre-training session. c, The Skill group was
trained in a consistent map that logarithmically transfers forces to actual cursor displacement (left), whereas the Random group was exposed to trial-by-trial randomized force transducer-visual
display mapping (right). d, Protocol of Experiment 2. The pre1-training and post-training procedures were similar to those in Experiment 1. Following the pre1-training session, subjects performed
10 trials of the single-target SVIPT task with full feedback of the cursor position. We then delivered 15 TMS-evoked thumb movements to ensure similar level of performance and use-dependent
plasticity (UDP; pre2-training session). In the training session, subjects performed four blocks of 100 trials of the single-target SVIPT task with identical transformation as the familiarization session.
The feedback of the cursor was switched off and only reinforcement binary visual feedback was provided. e, The Reinforced group performed the task and was reinforced by the explicit binary
feedback associated with task success (left), whereas the Random-reinforced group was presented with random reinforcement independent of task success (right). The visual feedback was
represented either by a smiley face image accompanied with a positive score of one point (�1), indicating target hit, or a red cross accompanied with zero score (0), indicating target missed.
Accumulated score across the trial was also presented to the subjects.
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shapes of linear, logarithmic, exponential, sigmoid, and double-sigmoid
functions in which the cursor movement to the right increases monoton-
ically as a function of the force (Fig. 2d). All random maps included
transfer functions of consistent direction of force with regard to the
cursor movement. We carefully chose those functions to control for
mean force across trials. Both groups performed four blocks of 30 trials
(120 trials in total). During the training session, the between-trials inter-
val was 2 s and the between-blocks interval was 10 s. All subjects— but
not the experimenter—were blinded to their group assignment. Overall,
the first experiment examined the effect of learning on UDP. Although
subjects in this experiment did not receive explicit reinforcement feed-
back, it is possible that observing trial success or failure may have served
a similar role as an implicit reinforcement (Izawa and Shadmehr, 2011;
Krakauer and Mazzoni, 2011).

Experiment 2: UDP in reinforcement learning task. The second experiment
included 24 participants and was designed to investigate the effect of learning
a reinforcement task on UDP and to control for the magnitude of reward and
for the potential kinematic changes associated with the skill performance of
Experiment 1. Here, subjects participated in five consecutive sessions: pre1-
training (baseline), task familiarization, pre2-training, motor training, and
post-training. In pre1-training, we identified the baseline direction of the
thumb by applying 65 TMS single pulses at 0.2 Hz to the optimal scalp
position (hotspot) that evoked isolated thumb movements. The familiariza-
tion session consisted of 10 trials in a form simpler than that of the original
skill task described above (i.e., SVIPT). Here, the sensor had a linear trans-
duction of pinch force to cursor movement. In this experiment, we in-
structed the subjects to pinch against the isometric force transducer to
navigate the cursor as accurately as possible between a HOME position and
a single target, located 20 cm to the right of the HOME position (Fig. 1d). As
in Experiment 1, the direction of the pinching force during the training
session was carefully controlled by the experimenter and was set to a direc-
tion almost opposite to the baseline (i.e., pre1-training session) direction
elicited by TMS. Full feedback of the cursor was provided in this session. To
test whether the familiarization session induced UDP changes, we delivered
15 TMS single pulses at 0.2 Hz to the same hotspot (i.e., pre2-training ses-
sion) while subjects were at rest. There were two reasons for including the
second baseline test (i.e., pre2-training). First, it allowed us to determine
whether very brief exposure to the task induced TMS-evoked thumb move-
ment in the repeated direction. Second, we needed to rule out the possibility
that any differences we might observe between the groups after training
(during the post-training) was due to differences elicited during the brief
familiarization. In the motor training session, subjects performed four
blocks of 100 trials of the single-target modified SVIPT task with transfor-
mation identical to the familiarization session but with the following chang-
es: once the cursor had moved a quarter of the distance (5 cm), the
continuous cursor feedback was switched off and only binary visual feedback
was provided for 1.5 s at the end of the trial. Trials were terminated when the
force amplitude descended below 0.01 N. The binary visual feedback was

represented either by a smiley face image accompanied by a positive score of
one point (�1), indicating target hit, or a red sign accompanied with zero
score (0), indicating a target miss. The accumulated score across trials was
also presented to the subjects. After the training session, which lasted �30
min, participants underwent the post-training session, which was identical
to the baseline session in which 65 TMS pulses were delivered. During the
brain stimulation parts (i.e., pre1-training, pre2-training, and post-training),
we monitored muscle relaxation by EMG signals.

To dissociate reinforced repeated actions from nonreinforced repeated
actions, we divided subjects into two groups. The Reinforced group (n � 12;
age: mean � SD, 24.1 � 5.1 years; eight females) performed the task while
receiving the explicit binary feedback-associated task success (Fig. 1e, left).
The Random-reinforced group (n � 12; age: mean � SD, 22.4 � 4.8 years;
seven females) was presented with random feedback (both positive and neg-
ative) independent of task success (Fig. 1e, right). To ensure that this group
received the same amount of feedback (i.e., magnitude of reward) as the
Reinforced group, we provided the same schedule of reinforcement that
individual subjects had in the Reinforced group, but presented the feedback
randomly within blocks and independently of task success. To maintain
subjects’ motivation and to reduce frustration, both groups received occa-
sional refresher trials (randomly inserted into the sequence of trials) with
continuous cursor feedback (12 of 100 of the trials). In addition, we included
a third group with six subjects (Time group; n � 6; age: mean � SD, 21.3 �
3.8 years; four females) to control whether simple repetitions are important
to maintain UDP level. This group underwent the same protocol as the
previous two groups, but instead of training in the task after pre2-training,
subjects rested for 30 min. Following the idle 30 min, participants underwent
the post-training session, which was identical to the session for previous
groups. All subjects were blinded to the group assignment. In our experi-
ments, we chose independent samples of subjects to avoid generalization and
after-effects commonly observed when performing similar motor skill tasks
that shared the same behavioral structure (Braun et al., 2009, 2010). In both
experiments, the range of forces applied to the force transducer during the
training session was 0 � f(t) � 8 N (Fig. 2e).

Data analysis
UDP measure. To explore the effect of the learning on UDP, we first defined
the training direction zone (TDZ) as a window of �20° centered on the
mean training direction (Classen et al., 1998; Bütefisch et al., 2000; Galea and
Celnik, 2009). We then calculated the proportion of the TMS-evoked thumb
movements that fell within the TDZ before and after training. We calculated
this primary outcome measure for pre-training and post-training sessions in
the two experiments. We then calculated the change in the proportion of the
TMS-evoked thumb movement that fell within the TDZ (i.e., bias) as the
change between post-training and pre-training in Experiment 1 and post-
training and pre1-training in Experiment 2.

Force direction during training. To rule out differences in the quality of
training, we calculated the direction of the isometric contractions used to
compress the force transducer during the training session by integrating
the accelerometer (obtained from a highly sensitive 3-D piezoelectric
accelerometer) and EMG data. During each training session, we recorded
EMG and accelerometer data continuously for 2.5 min (10 min total for
the training session). For analysis, we first filtered the EMG data using a
second-order infinite impulse response (IIR) 60 Hz Notch filter to re-
move the electrical noise. This filtered signal was then low-pass filtered
using fifth-order Butterworth filter with 10 Hz cutoff frequency. We then
calculated the root mean square of the net EMG signal to detect the peaks
of the contractions. Our assumption was that the actual direction of the
force applied to compress the force transducer would be best estimated
by calculating the direction of the net acceleration at the time point when
the contraction reached the peak. Mathematically, the direction of the
action, �training, was calculated in each trial using the following formula:

�Acc � �training � tan�1�Accy�tmax	

Accx�tmax	
�,

�Acc� � 2�Accy�tmax	
2 � Accx�tmax	

2

where Accy(tmax) represents the y component of the acceleration at the
peak contraction and Accx(tmax) represents the x component of the ac-

Table 1. Resting motor threshold, TMS intensity, and cortical excitability measures
for the pre-training and pre1-training sessions (i.e. baseline) in Experiments 1 and
2, respectively

Skill group
Mean � SEM

Random group
Mean � SEM

Group difference

t(20) P value

Experiment 1
Motor threshold (%) 44.09 � 2.74 46.09 � 2.52 0.26 0.61
TMS intensity (%) 58.63 � 2.52 60.27 � 2.51 0.19 0.66
MEP agonist (mV) 1.38 � 0.28 1.5 � 0.2 0.12 0.73
MEP antagonist (mV) 1.4 � 0.18 1.11 � 0.15 1.32 0.26

Reinforced group
Mean � SEM

Random-reinforced
group Mean � SEM

Group difference

t(22) p value

Experiment 2
Motor threshold (%) 41.5 � 1.55 45.58 � 2.03 2.33 0.14
TMS intensity (%) 56.25 � 2.02 59.25 � 2.03 1.00 0.33
MEP agonist (mV) 1.74 � 0.28 2.06 � 0.44 0.33 0.57
MEP antagonist (mV) 1.32 � 0.19 0.99 � 0.14 1.69 0.21
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celeration at the same time point. 
Acc
 represents the amplitude of the
acceleration. Although the magnitude of the signal was small, due to
the nature of the isometric force task, we were able to accurately detect
the direction of the actions during the training session (Fig. 2).

Neurophysiological measures. We assessed cortical excitability by mea-
suring the peak-to-peak amplitudes (in mV) of the MEPs for the agonist
and antagonist muscles in all stimulation sessions.

Kinematic measures. In addition to measuring the force direction dur-
ing the training session, we also measured the amplitudes of the first-
peak acceleration of the involuntary TMS-evoked thumb movements
during the stimulation portions of the experiment and the mean force
applied to the force transducer in each trial during the learning session.

Skill learning measure. In Experiment 1, we quantified the amount of
skill learning by determining the change in the speed–accuracy trade-off
function (SAF). In particular, we used the proposed estimate of this
change, �, as follows:

� �
1 	 error rate

error rate � �ln(movement time	b)

where error rate was calculated as the proportion of unsuccessful
trials (unsuccessful trial being defined as the trials with �1 over-
shooting or undershooting movement), and movement time was cal-
culated as the time interval between movement onset and the time
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point when the cursor reached target five. We averaged these two
measures over period of 30 consecutive trials. The parameter b was set
to be 5.424, a value that was found and confirmed in independent
samples of subjects who performed the same skill task (Reis et al.,
2009; Schambra et al., 2011; Cantarero et al., 2013; Dayan et al.,
2014a,b). Additionally, we calculated the improvement in learning
(i.e., learning gain) for each subject as the difference in the skill
measure between the last (fourth) and first block. This measure fo-
cused on the overall shifts of SAF function, rather than changes in
each component independently (i.e., speed or accuracy; Dayan et al.,
2014b).

In recent years, skill has been operationally defined as changes in
the SAF when performing a task (Karni et al., 1998; Reis et al., 2009;
Dayan and Cohen, 2011; Shmuelof et al., 2012a). This means that skill
improvement is the result of changes in both speed and accuracy;
while the opposite—improving accuracy because performance slows
down or moves faster but less accurately— does not represent skill
improvement. Thus, to quantify skill learning, it is important first to
characterize the SAF of a given task. To do so, we followed the findings
of our previously published study (Reis et al., 2009). Briefly, in dif-
ferent datasets, we measured the SAF during the SVIPT task before
and after 5 days of training. We then searched for the mathematical
model that best fit the behavioral data (accuracy as a function of the
movement time). After testing several functions, we found that the
two-parameter logistic function was the best model that satisfied our
fitting criteria expressed as follows:

error rate �
1

1 � � � �ln(movement time)b)

Where � and b are the dimensionless free parameters, movement time
is the average time it took for the subject to complete each trial, and
error rate is the number of errors per block. Fitting this model to data
showed that while the least-square estimate of the parameter b was
almost unchanged, the corresponding estimate of � markedly in-
creased. We therefore tentatively defined � as the skill parameter and
fixed the value of b at the average value of 5.424 [the average of
pre-training (5.51) and post-training (5.34)] and from each bivariate
observation of movement time and error rate, estimated � as shown
in Equation 1. This measure was then used and validated in new
datasets from different studies (Reis et al., 2009; Schambra et al., 2011;
Cantarero et al., 2013; Dayan et al., 2014b), indicating that using the
above equation to estimate � with a fixed value of b is acceptably
accurate. Our second experiment was not a good example of skill
learning because subjects were not requested to maximize their speed
and received only binary feedback concerning hitting the target.
Thus, this task aimed only to improve accuracy via reinforcement.
Therefore, we analyzed and presented the accuracy and movement
time separately for this experiment.

Consistency measure. In Experiment 2, we defined consistency as the
lag-1 autocorrelation [R(1)] of the peak force sequence during the train-
ing session. Sequence of the peak forces is defined as the magnitude (i.e.,
peak) of the force in each trial across the 400 trials (i.e., 4 blocks � 100
trials). Consistency measure reflects the expected value of the covariance
of the peak force between the current trial and the subsequent trial in the
same direction of action, normalized by the overall variance of the peak
forces, as follows:

Consistency � R�1	 �
E�� forcen

max 	 �forcemax	� forcen�1
max 	 �forcemax	


variance� forcemax	

where forcen
max represents the peak force in trial n and �forcemax represents

the mean of peak forces across all trials. E(x) represents the expected
value or the mean value in the long run for many repeated samples of x.
We performed this analysis to verify that consistency of the repeated
actions across groups could not simply account for the differences ob-
served in our main UDP measure.

Variability measure. We defined within-trial variability as the SD of the
force signal for each trial during the training session. The force signal

refers to all data points of the force profile in a given trial. The within-trial
variability can be then formulated as follows: Varn � SD(Fn), where Fn

represents all data points of the force signal in trial n. Between-trial
variability was calculated as the SD of the means of forces across trials.
This variability can be formulated as follows: Var[1:n] � SD([M2, M2, . . .,
Mn]), where Mn represents the mean of the force signal in trial
n �Mn � F�n	.

Statistical analysis
We performed the statistical analysis using Matlab software with Statis-
tics Toolbox (MathWorks) and Prism software (RRID:SCR_002798,
GraphPad). To determine whether the groups were significantly differ-
ent at baseline (i.e., pre-training), we used two-tailed t tests between the
different groups to assess differences in corticomotor excitability (i.e.,
motor threshold, TMS stimulus intensity, and MEP for the agonist and
antagonist muscles) and kinematics (i.e., peak acceleration of the thumb
movements). We then used separate repeated-measures ANOVA
(ANOVARM) to assess differences in task performance and in the pro-
portion of movements falling in TDZ (main outcome measure of the
study) with factors block (Pre-training and Post-training in Experiment
1; Pre1-training, Pre2-training, and Post-training in Experiment 2) and
group (Skill and Random in Experiment 1; Reinforced and Random-
reinforced in Experiment 2). When significant differences were identi-
fied, post hoc analysis was conducted using the Holm–Sidak t test for
multiple comparison. In all comparisons, significance level was set at
0.05.

Results
Experiment 1
Both Skill and Random groups, before training, showed small but
comparable TMS-evoked movements within the TDZ (Fig.
3a– e) and similar cortical excitability and kinematic measures
(Table 1). During training, the Skill group experienced signifi-
cantly greater improvement in the SVIPT performance com-
pared with the Random group (ANOVARM, group effect (Skill,
Random): F(1,20) � 20.89, p � 0002; time (blocks) � group (Skill,
Random) interaction effect: F(3,60) � 3.129, p � 0.0322; Fig. 3f).
Interestingly, after training, we found a significant difference in
the amount of UDP between groups (ANOVARM, group effect
(Skill, Random): F(1,20) � 6.916, p � 0.0161, and time (Pre-
training, Post-training) � group (Skill, Random) interaction ef-
fect: F(1,20) � 5.021, p � 0.03; Figure 3e). Specifically, the Skill
group showed a significant increase in the proportion of TMS-
evoked thumb movement falling in the TDZ relative to the Ran-
dom group (post hoc t test, p � 0.0069; Fig. 3a,c,e). This suggests
that UDP develops when repetitions are associated with skill
learning, which contains implicit success-based reinforcement.
Meanwhile, there was no change in movement direction bias
when the practice did not lead to learning (Random group; Fig.
3b,d,e).

The change on UDP could not be explained by differences
in force directions or in force magnitudes applied during the
training (Fig. 3g,h) given that these kinematic measures were
comparable across the two groups. We found no significant
group (Skill, Random) differences in the training direction
(F(1,20) � 1.03, p � 0.32; Fig. 3g) or in the amount of total forces
applied during the training (F(1,20) � 1.33, p � 0.26; Fig. 3h). It
should be noted, however, that not only was the Skill group more
accurate than the Random group (group effect: F(1,20) � 10.39,
p � 0.0043; Fig. 4a,c), but it also performed the task faster with
shorter movement times relative to the Random group (group
effect: F(1,20) � 103.3, p � 0.0001; Fig. 4b,d).

ANOVARM on the mean peak acceleration of the TMS-evoked
movements before (mean � SE: Skill, 0.47 � 0.10 m/s 2; Random,
0.40 � 0.06 m/s 2) and after (mean � SE: Skill, 0.82 � 0.17 m/s 2;
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Random, 0.54 � 0.16 m/s 2) the training session for the Skill and
the Random groups revealed a significant time effect (F(1,20) �
8.28, p � 0.0039), but no significant difference between the
groups (F(1,20) � 1.208, p � 0.28) and no significant interaction
(F(1,20) � 1.48, p � 0.24). ANOVARM on the mean MEP for the
agonist muscle before (mean � SE: Skill, 1.38 � 0.29 mV; Ran-
dom, 1.50 � 0.21 mV) and after training (mean � SE: Skill,
1.44 � 0.19 mV; Random, 1.17 � 0.17 mV) for the Skill and the
Random groups revealed a significant time (Pre-training, Post-
training) � group (Skill, Random) interaction (F(1,20) � 5.73,
p � 0.026), suggesting that while the Skill group showed in-
creased MEP agonist, the Random group tended to reduce the
MEP agonist after training. Nevertheless, there was no significant
difference when testing the group or the time factor separately

(p � 0.34). Data showed that no statistical change (p � 0.1)
occurred in the MEP antagonist muscle.

Previous UDP investigations described the importance of
consistent movement repetition during the training (Classen et
al., 1998; Bütefisch et al., 2000). In our experimental setup, in-
spection of the behavior during the training session revealed that
within-trial variability was higher for the Skill group (group ef-
fect: F(1,20) � 55.26, p � 0.0001; Fig. 4e). This greater variability
could be interpreted as additional supporting evidence for suc-
cessful learning, because to achieve successful task performance,
subjects were required to produce different forces to reach differ-
ent targets within each trial in accordance with the nonlinear
logarithmic transformation. Additionally, reduction of between-
trial variability would also support evidence of improvement in
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Figure 3. Skill learning and implicit success-based reinforcement enhances UDP. a, TMS-evoked thumb movements before (cyan, left) and after (magenta, middle) training for a single subject
in the Skill group. Each line represents the direction (� � [0, 360°]) and the amplitude (
Acc
 � [0,0.6 m/s 2]) of a single thumb movement evoked by a single TMS pulse. Probability distribution
of the thumb directions before (cyan lines) and after (magenta lines) performing the skill task (right). Pink shaded area represents the TDZ. b, TMS-evoked thumb movements before (cyan, left) and
after (magenta, middle) training for a single subject in the Random group. Probability distribution of the thumb directions before (cyan lines) and after (magenta lines) performing the random skill
task (right). Probability distribution of the thumb directions before (cyan lines) and after (magenta lines) performing the skill task (right). Note how only the reinforced subject experienced a shift
in the TMS-evoked movement directions after the skill training. c, Group data: 2-D histogram of the TMS-evoked thumb movement for all subjects in the Skill group before (left) and after the training
(right) sessions. Although baseline directions predominantly fell out from the TDZ, a large number of TMS-evoked movements during post-training fell within the TDZ. d, Group data: 2-D histogram
of the TMS-evoked thumb movement for all subjects in the Random group during pre-training (left) and post-training (right) sessions. Thumb directions after the skill task were not different from
the baseline directions; a large percentage of movements fell outside the TDZ. e, Proportion of TMS-evoked movements in TDZ (in %) for the two groups (blue and red for the Skill and Random group,
respectively). f, Performance of the skill task as quantified by the skill measure (�). g, To rule out the possibility of different force directions during the training block across groups, we calculated the
direction of the isometric forces. This figure shows that the mean direction in each block was similar for each group (bar graphs on the right represent the means of all blocks). h, Mean forces applied
in the task session. The amount of total forces applied was not different across groups (bar graphs on the right represent the means of all blocks). This indicates that the differences in the TMS-evoked
movement direction change (bias) after the training period were not a result of differences in training directions or the amount of force applied during the training. Points in e– h represent mean.
Error bars represent the SEM. Asterisks indicate significance (**p � 0.01; ***p � 0.001) and n.s. indicates statistically not significant.
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task performance. Indeed, between-trial
variability was significantly lower in the
Skill group (group effect: F(1,20) � 618.2,
p � 0.0001; Fig. 4f). Thus, these results
demonstrate that successful repetition of
actions, with improvement of consistency
across trials during skill learning en-
hanced UDP. One possible explanation
for this result is that learning the skill itself
engaged success-related implicit rein-
forcement and that these reinforcement
signals modulated UDP. Nevertheless, to
control for potential kinematic changes
and magnitude of reward that might be
associated with skill performance, we per-
formed a second experiment that tested
the effect of learning a reinforcement task
during action repetition on UDP.

Experiment 2
The second experiment investigated the
effect of learning a reinforcement task
during simple action repetition on UDP
while controlling the potential kinematic
and reward magnitude confounds across
groups. Here, in addition to force magni-
tude and direction, we carefully matched
force variability (between-trial and within-
trial), consistency, and the magnitude of
the reward. Based on current theories of
UDP, we predicted that the two groups
should show similar magnitudes of UDP
since they repeated the same actions, in
the same context, and using the same
end-effector. However, if reinforcement
learning affects UDP, then the Reinforced
group should express larger changes in UDP
than the non-reinforced participants.

We found that reinforcement learning
has a critical role in modulating UDP
(ANOVARM: time effect: F(2,44) � 17.35,
p � 0.0001; time (Pre1-training, Pre2-train-
ing, Post-training) � group (Reinforced,
Random-reinforced) interaction effect: F(2,44) � 5.362, p � 0.0082;
Fig. 5c). Specifically, the Reinforced group significantly benefited
from the appropriate correspondence between cues and actions,
showing an �3-fold change in TMS-evoked thumb movement di-
rection (post hoc t test, p � 0.0001), while the Random-reinforced
group did not increase the movement direction bias after familiar-
ization (post hoc t test, p � 0.99; Fig. 5a–c). Given that our main
analysis compared the proportion of TMS-evoked thumb move-
ments falling in the TDZ at three different timings (pre1-training,
pre2-training, and post-training) and the pre2-training test has only
15 TMS pulses (as opposed to 65 pulses in pre1-training and post-
training tests), we also performed an ANOVARM on post-training
and pre1-training tests. Consistently with the effect reported in the
previous result, we found a significant time (Pre1-training, Post-
training) � group (Reinforced, Random-reinforced) interaction
(F(1,2) � 6.722, p � 0.0166) and time effect (F(1,2) � 35.91, p �
0.0001). Post hoc analysis (between post-training and pre1-training)
showed that the Reinforced group significantly benefited from rein-
forcement more than the Random-reinforced group (two-tailed t
test, p � 0.0129).

The lack of UDP change between post-training and pre2-
training tests in the Random-reinforced group suggests that rep-
etition of actions alone maintains the previous level of UDP.
Indeed, if participants do not execute any movements after de-
veloping UDP, the directional bias returns to baseline levels. This
was demonstrated in an additional group (Time group) that per-
formed the same protocol as the previous two groups, but after
pre2-training subjects had rested for 30 min. Here, the significant
time (Pre1-training, Pre2-training, Post-training) � group (Re-
inforced, Random-reinforced, Time) interaction (F(4,54) � 5.396,
p � 0.001; Fig. 5c) indicates that repetition alone is an important
factor in preservation of previous achieved UDP level. The famil-
iarization block induced a small but significant increase in move-
ment direction bias. ANOVARM with factor time (Pre1-training,
Pre2-training) and group (Reinforced, Random-reinforced, Time)
revealed a significant time effect (F(1,27) � 9.199, p � 0.0053), but
no main effect of group (F(2,27) � 0.2332, p � 0.7935) nor inter-
action (F(2,27) � 0.2007, p � 0.8193).

ANOVARM on the mean peak acceleration of the TMS-evoked
movements before (mean � SE: Reinforced, 0.54 � 0.06 m/s 2;
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Random-reinforced, 0.55 � 0.08 m/s 2) and after (mean � SE:
Reinforced, 0.77 � 0.09 m/s 2; Random-reinforced, 0.62 � 0.08
m/s 2) the training session for the Reinforced group and the
Random-reinforced group revealed a significant time effect
(F(1,22) � 4.363, p � 0.048), but no significant difference between
the groups (F(1,22) � 0.507, p � 0.48), and no significant interac-
tion (F(1,22) � 1.17, p � 0.29). ANOVARM on the mean MEP for
the agonist muscle before (mean � SE: Reinforced, 1.74 � 0.30
mV; Random-reinforced, 2.06 � 0.45 mV) and after (mean � SE:
Reinforced, 1.69 � 0.39 mV; Random-reinforced, 1.75 � 0.29
mV) training for the Reinforced group and the Random-

reinforced group revealed no significant results (p � 0.4). Data
also showed that no change (p � 0.11) occurred in the MEP
antagonist muscle in both groups (see Discussion).

The UDP changes observed were not due to differences across
groups in baseline corticomotor excitability or TMS intensities
(i.e., during pre-training and pre1-training sessions in Experi-
ments 1 and 2, respectively; Table 1). Most importantly, compar-
ison of various kinematic measures during task training show no
significant group effect (Reinforced, Random-reinforced) on
force directions (F(1,22) � 0.59, p � 0.45; Fig. 5d), total forces
(F(1,22) � 6.4 � 10�4, p � 0.99; Fig. 5e,f), within-trial force
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variability (F(1,22) � 0.6552, p � 0.4296; Fig. 6a), between-trial
force variability (F(1,22) � 0.852, p � 0.3658; Fig. 6b), force con-
sistency (F(1,22) � 1.696, p � 0.2063; Fig. 6c), and movement time
(F(1,22) � 0.253, p � 0.6202; Fig. 6d). In addition, the feedback
schedule (magnitude of reward) was by design comparable be-
tween the two main groups; however, only the Reinforced group
experienced correspondence between the executed action and the
visual feedback. This, although unbeknownst to the subjects, led
to significantly increased target accuracy in the Reinforced group
only (i.e., higher actual success; Fig. 6e,f). Together, our findings
provide evidence that correct association between reinforcement
and executed movement modulates UDP, whereas repetition of
actions alone maintains the UDP level.

Discussion
In this study, we investigated whether action repetition while
learning a motor skill task could modulate UDP. In the first ex-
periment, we found that a group that successfully learned the skill
task showed greater UDP than a group that did not accumulate
learning, but made repeated actions with comparable magnitude
and direction. This might be due to the interaction between
movement repetition and improvement in performance (i.e.,
learning). Although the direction and mean force application was
consistent across all aspects of the experiment, the magnitude of
the forces applied varied across targets. In addition, the variability

between trials and the magnitude of success-related reward
varied across groups. Thus, the task of Experiment 1 does not
distinguish between action repetition and alternative potential
drivers of cortical plasticity, such as the altered sensorimotor
mapping, between-trial variability, and the magnitude of reward.
To address these concerns, we designed a second experiment that
aimed at testing the reinforcement learning effect on UDP while
controlling for reward magnitude and kinematics. We found that
providing subjects with a binary reward without visual feedback
of the cursor led to increased UDP effects. Subjects that received
comparable magnitude of reward which was not associated with
their performance maintained the previously induced UDP. Sub-
jects that remained idle for 30 min (the same duration of train-
ing) experienced a reduction of the previously encoded UDP.
Altogether, these results provide evidence that simple repetition
can alter TMS markers of cortical plasticity and that this effect
is augmented by reinforcement coupled with successful goal
achievement during skill learning or a purer reinforcement
task.

Previous investigations have shown that performing repetitive
movements can bias the direction of future movements; however,
those investigations failed to explain why at times these biases
were not present or were of small magnitude (Classen et al., 1998;
Bütefisch et al., 2000). These discrepancies could have arisen
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because these investigations focused on training consistent
movements without controlling for potential success-related re-
inforcement signals that might have been hidden behind the goal
of the task. The finding that repeating actions alone is not suffi-
cient to modulate UDP is consistent with prior studies showing a
large degree of UDP when the tasks being trained also involved
either goal achievement (Diedrichsen et al., 2010) or successful
error reduction (Huang et al., 2011). In addition, past physiolog-
ical studies describing UDP used verbal reinforcement cues given
by the investigator during training to ensure consistency and
quality of the repeated directions, albeit this feedback was not
consistent, monitored, or carefully controlled (Classen et al.,
1998; Celnik et al., 2006). Thus, it is possible that in these studies
the verbal cues intended to ensure consistent movement repeti-
tion may have served roles similar to success-related reinforce-
ment signals that led to enhancement of the bias toward the
repeated action. Recently, Selvanayagam et al. (2011) showed
that the direction of TMS-induced twitch force vectors shifted
toward the training direction immediately after single isometric
strength training with various durations of contraction and rate-
of-force development characteristics. Selvanayagam et al. (2016)
also showed that force amplitude modulates the extent of direc-
tional biases in voluntary aiming. These studies might also speak
to the possible involvement of the subcortical dopaminergic
system in the modulation of M1 connections—possibly by
reinforcing synaptic connections between directionally sensi-
tive neurons active during repeated movement and their
downstream targets.

Evidence from animal lesions and imaging work suggests a
close association between success-related reinforcement learn-
ing, dopaminergic neurons (Hollerman and Schultz, 1998;
Waelti et al., 2001; Wise, 2004; Daw et al., 2005), and M1 plastic-
ity (Classen et al., 1998; Bütefisch et al., 2000; Hosp et al., 2011).
Dopaminergic terminals in M1 originating in the ventral tegmen-
tal area contribute to M1 plasticity (Luft and Schwarz, 2009) and
are necessary for skill learning (Hosp et al., 2011; Kawai et al.,
2015). Human aging studies that have shown a decrease in dopa-
minergic function have found reduced ability to elicit UDP
changes. The same studies, however, have found that dopaminer-
gic medication in older adults leads to an increase in UDP, an
effect correlated with the amount of dopamine released in the
caudate region of the basal ganglia (Floel et al., 2008). Although
UDP has been interpreted as the result of Hebbian changes in the
motor cortex (Orban de Xivry et al., 2011; Huang et al., 2011;
Verstynen and Sabes, 2011), this form of plasticity seems to be
sensitive to inputs from the basal ganglia. This is supported by the
presence of dopamine receptors on cells in M1 (Huntley et al.,
1992; Ziemann et al., 2001; Luft and Schwarz, 2009), the fact that
dopaminergic medication leads to increase of UDP (Floel et al.,
2008), and the finding of deficient motor cortex plasticity in Par-
kinson’s disease patients under off-medication conditions (Mor-
gante et al., 2006).

It is important to note that the repetitions of actions in the
Random group of Experiment 1 did not lead to UDP. Three
possible explanations can account for this observation. First, it is
possible that the larger between-trial variability in this group
(note that mean force was matched across conditions but not
variance) reduced the ability to establish persistent changes in the
cortical representation of the thumb, leading to limited encoding
of kinematic details of the practiced actions. As expected, each of
the other three groups experienced very low trial-to-trial variabil-
ity during the training session. This observation supports the
view that reduced between-trial variability may be a prerequisite

for UDP. Second, the amount of practice might be an important
factor inducing the UDP effect, especially in the absence of any
reinforcement or requirement for maximal force exertion. Some
previous studies using the TMS-thumb paradigm, showed that
UDP needs 30 min, at a rate of 1 Hz, to develop (Classen et al.,
1998; Bütefisch et al., 2000). This intensive repetition ends up
with �1000 movements. The time needed to develop UDP, how-
ever, could be significantly reduced when providing levodopa
(�20 min at 1 Hz of repetition). Our training sessions involved
fewer practice trials. Thus, the lack of UDP effect in the Random
group was perhaps because this group simply did not reach the
minimum time or number of repetitions needed. Third, errors
during the random skill practice not only reduced the amount of
learning but also could have acted as negative signals weakening
cortical representational changes that lead to UDP. Future stud-
ies are needed to determine the potential effect of these factors on
the modulation of UDP.

The UDP paradigm used in our experiments differs from that
studied previously (Classen et al., 1998; Bütefisch et al., 2000). We
chose to use repetitions of isometric contraction instead of the
commonly used finger abduction. This allowed us to assess the
presence of UDP in the context of learning a motor skill (Reis et
al., 2009), in which we could control the magnitude, timing, vari-
ability, and direction of the applied force. Importantly, we found
that, besides force, other kinematic details, such as movement
direction, acceleration, and movement time were consistent dur-
ing the training across groups, making them unlikely confound-
ers of our results. Specifically, in the first experiment, to learn the
skill task within a trial subjects had to perform a series of isomet-
ric contractions of different magnitude. This is the same situation
in the Random group, where within trials subjects had to execute
a series of contractions of different magnitude, where the distance
monotonically increased as a function of force; however, between
trials the maps changed randomly. Similarly, in the second exper-
iment, the maps experienced were the same between groups, but
only the association between reinforcement signals and actions
differed across groups. Thus, it is unlikely that differences in
kinematic variables during the performance of Experiment 2
played a role in our results.

We found small effects of training on corticomotor excitabil-
ity. There are two reasons that could potentially account for this.
First, the amount of practice could have influenced cortical ex-
citability. While most of previous studies used numerous con-
tractions of the muscles agonist to the training direction (e.g., 30
min of voluntary brisk thumb movements at a rate of 1 Hz;
�1000 movements), our training sessions involved fewer prac-
tice trials, with 120 and 400 trials in the first and second experi-
ments, respectively. Second, the type of muscle contraction may
have a role in corticomotor excitability changes. In previous stud-
ies assessing UDP with TMS, the voluntary movements were ex-
ecuted by applying isotonic movements, which is known to
generate force by changing the length of the muscle (Classen et
al., 1998; Bütefisch et al., 2000). In our study, however, we used an
isometric contraction task, which requires no joint motion. Thus,
it is possible that change in muscle length during training may
represent a factor that affects change in excitability. Indeed, this is
consistent with a previous study that showed larger MEP in-
creases with isotonic contractions when compared with isometric
movements (Hayashi et al., 2006).

Our results cannot be attributed to differences in motivation
or frustration (Hikosaka et al., 2013; Wang et al., 2013; Wong et
al., 2015). If this was the case, we would expect the Random
groups from Experiments 1 and 2 to gradually make smaller
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and/or more variable and inconsistent actions. However, the di-
rection and the magnitude of the forces did not change during
training and were similar to those of the Skill and Reinforced
groups. In addition, subjects in the second experiment were not
aware of the nature of the reinforcement regimen and received
only binary feedback at the end of each trial. Given the similar
kinematics across groups, it is unlikely that the effort of partici-
pants to optimize performance and attention devoted to the
training played a role in our results.

In summary, we found that action repetition while learning a
motor task enhances UDP. This finding is important for under-
standing the interplay between the different forms of motor
learning. It also suggests that improvement in skill performance
might be in part mediated by UDP. Our results can be used to
design better training paradigms for improving the efficiency of
motor training in healthy people and in the context of neurore-
habilitation following brain damage.
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