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Cortical Spreading Depression Closes Paravascular Space
and Impairs Glymphatic Flow: Implications for Migraine
Headache

X Aaron J. Schain,1,2 Agustin Melo-Carrillo,1,2 Andrew M. Strassman,1,2 and XRami Burstein1,2

1Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, and 2Harvard Medical
School, Boston, Massachusetts 02215

Functioning of the glymphatic system, a network of paravascular tunnels through which cortical interstitial solutes are cleared from the
brain, has recently been linked to sleep and traumatic brain injury, both of which can affect the progression of migraine. This led us to
investigate the connection between migraine and the glymphatic system. Taking advantage of a novel in vivo method we developed using
two-photon microscopy to visualize the paravascular space (PVS) in naive uninjected mice, we show that a single wave of cortical
spreading depression (CSD), an animal model of migraine aura, induces a rapid and nearly complete closure of the PVS around surface
as well as penetrating cortical arteries and veins lasting several minutes, and gradually recovering over 30 min. A temporal mismatch
between the constriction or dilation of the blood vessel lumen and the closure of the PVS suggests that this closure is not likely to result
from changes in vessel diameter. We also show that CSD impairs glymphatic flow, as indicated by the reduced rate at which intraparen-
chymally injected dye was cleared from the cortex to the PVS. This is the first observation of a PVS closure in connection with an abnormal
cortical event that underlies a neurological disorder. More specifically, the findings demonstrate a link between the glymphatic system
and migraine, and suggest a novel mechanism for regulation of glymphatic flow.
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Introduction
Cortical spreading depression (CSD), first described by Leao
(Leao, 1944; Leão,1986), is a slowly propagating wave of altered
neural activity, consisting of a brief excitation followed by a pro-
longed inhibition. CSD has long been thought to be the neural
event that underlies the migraine aura, the nonpainful sensory
phenomena that can precede the migraine attack in 25–30% of

patients, and is implicated in initiating the headache phase of
migraine by activating the nociceptive pathway that provides the
sensory innervation to the intracranial meninges (Bolay et al.,
2002; Zhang et al., 2010, 2011).

Clinical studies showing that migraine aura patients may be
prone to stroke (Scher et al., 2005; Schürks et al., 2009; Gud-
mundsson et al., 2010; Kurth et al., 2010), silent infarction (Kruit
et al., 2004, 2006, 2010), and increased thickness of cortical areas
involved in the genesis of visual (Hadjikhani et al., 2001; Granzi-
era et al., 2006) and sensory (DaSilva et al., 2007) aura have raised
the possibility that repeated occurrence of CSD may have long-
term effects on the brain. In animals, CSD was shown to facilitate
cortical damage in models of ischemia (Lauritzen and Strong,
2016), subarachnoid hemorrhage (Hamming et al., 2016), and
traumatic brain injury (Toth et al., 2016). To date, the focus of
much research has been on CSD’s vascular effects, which include
mild oligemia (Fabricius and Lauritzen, 1993; Unekawa et al.,
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Significance Statement

Impairment of brain solute clearance through the recently described glymphatic system has been linked with traumatic brain
injury, prolonged wakefulness, and aging. This paper shows that cortical spreading depression, the neural correlate of migraine
aura, closes the paravascular space and impairs glymphatic flow. This closure holds the potential to define a novel mechanism for
regulation of glymphatic flow. It also implicates the glymphatic system in the altered cortical and endothelial functioning of the
migraine brain.
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2015), impairment of neurovascular coupling (Østergaard et al.,
2015), and creation of an O2 supply– demand mismatch (von
Bornstädt et al., 2015) that can lead to anoxic levels in metaboli-
cally compromised brain. At the cellular and molecular level,
repetitive CSDs were also found to induce an inflammatory cas-
cade resulting in the production of inducible nitric oxide syn-
thase and COX-2 in the brain parenchyma (Karatas et al., 2013),
as well activation of microglia (Gehrmann et al., 1993) and hy-
pertrophy, proliferation, and activation of astrocytic cells (Kraig
et al., 1991; Xue et al., 2009; Sukhotinsky et al., 2011). The clear-
ance of intraparenchymal extracellular macromolecules, like
those produced during the inflammatory cascade described
above, is thought to be mediated mainly via the glymphatic
system. The glymphatic system is a newly characterized series of
extracellular compartments that clears waste from the brain pa-
renchyma (Carare et al., 2008; Jessen et al., 2015) into paravascu-
lar spaces (PVSs) and then through the dural lymphatics to
cervical lymph nodes (Aspelund et al., 2015; Louveau et al.,
2015). Impairment of glymphatic pathway function in the aging
brain (Kress et al., 2014), during prolonged wakefulness (Xie et
al., 2013), after traumatic brain injury (Iliff et al., 2014), or in
aquaporin 4 (AQP4) knock-out mice (Iliff et al., 2012) suggests
that proper clearance of interstitial fluid and solutes, such as
amyloid-� and hyperphosphorylated tau, through this paravas-
cular drainage system is critical for maintaining a healthy brain.

The goal of the current study was to determine whether the
glymphatic system is affected by CSD. To answer this question,
we used in vivo two-photon imaging to determine whether this
cortical event compromises the PVS and the clearance of inter-
stitial solutes through the glymphatic system. As a new approach
to examine the effects of CSD, we developed a novel method of
visualizing fluid-filled spaces in mice that ubiquitously express
GFP in all tissues. We show that CSD has a dramatic effect on the
physical dimensions of the PVS, and that glymphatic flow is de-
layed and slowed by CSD.

Materials and Methods
Animals. All procedures involving animals were in compliance with the
experimental protocol approved by the institutional Animal Care and
Use Committee of the Beth Israel Deaconess Medical Center and Har-
vard Medical School and adhered to the guidelines of the Committee for
Research and Ethical Issues of the International Association for the Study
of Pain. Mice genotypic lines include bAct-GFP [Jackson Labs (Jax) strain
6567, RRID:IMSR_JAX:006567], Ai14D � CMV-Cre (which we call
Ai14Dx, Jax 7914, RRID:IMSR_JAX:007914, and 6054, RRID:IMSR_
JAX:006054), and GFAP-cre � mTmG (Jax 12886, RRID:IMSR_JAX:
012886, and Jax 7676, RRID:IMSR_JAX:007676). Fluorescent mice were
all on C57BL/6J background. Equal numbers of male and female mice,
5–10 months old, were used throughout the experiments. The GFAP-
cre-mTmG image comes from one male mouse imaged at 2 months old.
Mice were kept in 12 h light/dark cycles and were housed 2–5 per cage.

Anesthesia. Mice were deeply anesthetized using intraperitoneal injec-
tion of urethane (1.5 g/kg) and atropine (0.15 mg/kg). Using this
method, we routinely kept mice at normal physiological levels (heart
rate, 550 –700 beats per minute; arterial O2 saturation, 90 –100%; breath-
ing rate, 120 –200 breaths per minute; monitored with a MouseOx, Starr
Life Science) throughout the length of the experiment. Systemic blood
pressure was not monitored.

Skull thinning. A modified thin-skull procedure was used for acute
transcranial imaging based on those described previously (Grutzendler et
al., 2002; Yang et al., 2010). Briefly, the scalp was shaved and sterilized, a
midline scalp incision was made, and a metal plate was affixed to the skull
using cyanoacrylate. An area �1.5 mm in diameter was thinned near the
middle of the right parietal skull plate. We used a high-speed drill and a

microsurgical blade to thin the skull to a thickness of 40 –50 �m for the
thin-skull preparation.

In vivo imaging. Fully anesthetized mice were imaged in an Olympus
FV1000MPE-E multiphoton Imaging System using a Spectra-Physics
Maitai Deepsee laser (�70 fs pulse width) and a Plan 25� 1.05 numerical
aperture objective. Three color channels were collected simultaneously
(420 – 460 nm blue in a photomultiplier tube; 495–540 green and 575–
630 red in GaAsP detectors). A wavelength of 890 nm was used to excite
all fluorophores, and produce second harmonic generation at �445 nm
(blue). After skull thinning, mice were placed in the microscope with
head plate still attached. Time-lapse three-dimensional image stacks
were taken starting just under the skull through the meninges into the
brain.

CSD initiation. CSD was initiated from a small craniotomy �3.5 mm
anterior to the center of the imaging window. This site was chosen to
maximize the distance from the imaging site and thus to avoid any direct
effects on the imaged tissue from the CSD-inducing stimuli. To expose
the dura, a small (�1 mm 2) area was thinned on the frontal skull plate,
�1 mm anterior to bregma and equidistant medial-laterally from the
edges of the frontal plate, and small piece of skull was lifted with a 31
gauge needle. CSD was initiated by either pinprick or KCl crystal, which
is similar to the approach in previous studies (Zhang et al., 2010; Charles
and Baca, 2013). Pinprick was produced by insertion of a glass micropi-
pette (30 �m tip) �500 �m into the cortex for 20 s before removal. For
induction by KCl, a single crystal was placed on the cortex for 20 s and
then washed off with synthetic interstitial fluid. Pinprick was used in all
experiments except those in which dye was injected into the anterior
craniotomy. KCl was used in these experiments to avoid a second pipette
insertion into the same region of cortex. Consistent with previous studies
(Zhang et al., 2010), we observed no differences in the effects of CSD
induced by these two methods. Sham mice received the craniotomy but
no pinprick or KCl.

Intracortical injection. One microliter of FITC-conjugated or Texas-
red-conjugated 3 kDa dextran (Thermo Fisher Scientific; 2 mg/ml) or of
SR101 (Thermo Fisher Scientific; 2 mM) in synthetic interstitial fluid was
slowly injected 700 –1000 �m beneath the dura through a glass micropi-
pette (tip diameter, �10 �m) attached to a micromanipulator. For prela-
beling of PVS with Texas-red dextran (TRD) or astrocyte labeling with
SR101, the dye was injected into a small craniotomy created using a 31
gauge needle on the corner of the imaging window (�1 mm from the
location imaged). For determination of the rate of interstitial/glymphatic
flow to the PVS, FITC-dextran was injected into the same opening
used for CSD initiation (4 mm anterior to the imaging window, as de-
scribed above). We found that with slow insertion of the glass electrode
and injection, we could inject dye without causing CSD in most animals.
Animals where CSD was initiated by the dye injection were excluded
from analysis.

Field potential recording. For verification of CSD, a small craniotomy
was created at the edge of the imaging window on the side opposite the
CSD initiation location, and cortical activity was recorded (electrocorti-
cogram or local field potential) with a glass micropipette (0.9% saline,
�1 M�, 7 �m tip) placed just below the surface of the cerebral cortex
through the craniotomy.

Mapping of injection site. Mice were killed after dye-flow experiments
and the brain was extracted and postfixed in 4% paraformaldehyde and
then 30% sucrose before parasagittal sectioning using a cryostat. Slices
were mounted and images were taken using a fluorescence microscope.

Image analysis. Images were analyzed using Fiji (http://www.fiji.sc;
RRID:SCR_002285), a version of ImageJ.

Blood vessel and PVS size quantification. Orthogonal image planes were
generated in Fiji from image stacks taken of a blood vessel with surround-
ing PVS in bAct-GFP or Ai14Dx mice. Three to five orthogonal planes
were averaged together, and each color channel was normalized across
time according to the mean of the genetic fluorescent channel (green for
bAct-GFP, red for Ai14Dx) at each time point to account for small
changes in brightness due to objective immersion water evaporation or
photobleaching. For cross-sectional area quantification, PVS and blood
vessel cross sections were identified anatomically. One brightness thresh-
old was chosen per animal such that the negative space of the lumen
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could be consistently identified through each time point during baseline
image acquisition. The cross-sectional area of the lumen or neighboring
PVS was measured at each time point using a custom Fiji macro based on
the Wand tool autoselection combined with visual guidance. Areas are
represented as fold change compared with their average size during base-
line. For changes in vessel lumen and PVS during CSD, 320 � 320 pixel
images with 20 –25 slices were taken every 20 s starting �10 min before
CSD induction and for 30 min postinduction. For linear diameter quan-
tification (only used for penetrating-vessel PVSs and their paired surface
vessels), a line between the endothelium and parenchyma was drawn on
the averaged XY projections at a particular location (chosen for maximal
starting PVS size) and the distance was measured for each time point.
Because there was an average 15 s difference within each z stack between
imaging of the surface and penetrating vessels (each image slice in the
stack takes �2 s), penetrating-artery PVS was compared with the aver-
age of the surface-vessel PVS from the time point before and after the
penetrating-vessel image. This average was weighted by proximity in
time to the penetrating-vessel PVS image.

Dye-intensity quantification. To determine the rate that the PVS fills
with dye postinjection, orthogonal images of arteries with PVS were
constructed as described above. The thresholded cross-sectional areas of
PVS measured from the tdTomato channel in Ai14Dx mice were then
applied as a selection mask for the green channel (FITC-dextran dye),
and average pixel intensity in arbitrary units of fluorescence within the
mask was measured. The average green channel pixel intensity due to
noise within the PVS at baseline was subtracted from each subsequent
time point postinjection per mouse (background noise was subtracted).

Statistics. Two-tailed paired t test with Bonferroni–Holm correction
was used to compare blood vessel lumen characteristics at baseline versus
each time point post-CSD. Arterial PVS size calculations had unequal
variance and were compared with the Kruskal–Wallis test. Individual
time points were compared with baseline using multiple Welsh’s t tests
for unequal variance with Bonferroni’s correction. Two-way repeated-
measures ANOVA was used to compare dye intensity areas between
control and CSD-induced groups (All five control mice were compared
with five of six CSD mice chosen randomly as a matched requirement for
repeated-measures ANOVA). One-way ANOVA and post hoc paired t
tests with Bonferroni–Holm correction were used to compare time
points to baseline for PVS cross-sectional area during the two CSDs
induced after dye injection. The 40 min of closure was defined by time
points that were both �1 SD of zero and significantly less than baseline.
One control mouse was excluded because a CSD was triggered by injec-
tion. A two-tailed two-sample equal-variance t test was used to compare
dye accumulation in PVS after CSD or control. Means are reported
�SEM. No sample size justification was calculated, but numbers of ani-
mals are similar to previously reported findings for arterial lumen
changes (Ayata et al., 2004). No randomization was used and blind anal-
ysis was either not necessary (for lumen and PVS changes) or not possible
(for dye flow within PVS it was obvious which PVS closed due to CSD).

Data availability. All relevant data are available from the authors by
request.

Results
Anatomical and functional characterization of PVS in
fluorescent mice in vivo
We developed a novel in vivo method to visualize the PVS in naive
uninjected mice, defining PVS here as a fluid-filled space bordered
by the pia, the endothelial wall or smooth muscle of pial blood ves-
sels, and the brain. We performed two-photon imaging through a
thinned skull in mice expressing fluorescence in all tissues (here
using bAct-GFP), leaving fluid-filled spaces anatomically identifi-
able by lack of fluorescence (Fig. 1). We visualize the PVS in super-
ficial vessels using orthogonal reconstructions, which best show the
three-dimensional relationship between vessel lumen, PVS, and
overlying subarachnoid space (SAS). To verify that our identifica-
tion of the PVS is consistent with previous studies (Iliff et al., 2012,
2013, 2014), we took images using GFAP-cre/mTmG mice (n � 3),

where astrocytes and neurons are green, all other cellular tissue is red,
and fluid-filled spaces lack fluorescence (Fig. 2a), which show that
our imaged PVS is bordered by parenchyma, endothelium, and pia.
We also injected 3 kDa TRD into the nearby cortex, just outside of
the imaging site, of GFP mice (n � 7; Fig. 2c–f), and found that the
injected dye fully filled the nonfluorescent space in the GFP mice
surrounding both arteries and veins, functionally confirming its
identification as PVS. Double injection of 3 kDa FITC-dextran and
the astrocytic label SR101 in a wild-type C57 mouse also verified that
intracortically injected dextran dye labels PVS bordered by astro-
cytes within the parenchyma (n � 2; Fig. 2b).

When labeling the PVS with TRD via intracortical injection,
we observed that the pia was a functional barrier to 3 kDa TRD as
dye did not readily enter the adjacent SAS. To further test this
barrier, we also injected TRD directly into the SAS (n � 3), and
found that it did not freely enter the underlying PVS (Fig. 2f).

For imaging and quantification of PVS, we targeted pial blood
vessels, whose size ranged from 6.0 to 11 �m in diameter (113–
388 �m 2 cross-sectional area) for arteries/arterioles (average,
292 � 52 �m 2), and 9.4 –21 �m in diameter (279 –1370 �m 2

cross-sectional area) for veins/venules (average, 675 � 227 �m 2).
PVS area varied in size depending on anatomy. For example, PVS
was larger if it accompanied multiple blood vessels (Fig. 2d) or blood
vessel bifurcations (Fig. 2c, top right). On average, PVS cross-
sectional area was 305 � 140 �m2 near arteries, and tended to be
smaller surrounding veins (90.9 � 28 �m2), even though the veins
studied were larger on average (average ratio of PVS/lumen areas
was 1.26 for arteries vs 0.13 for veins). Arteries and veins could be
differentiated in bAct-GFP mice by the presence of smooth muscle,
seen as a thickness in the blood vessel wall (Fig. 3, compare f, g).

CSD induces closure of the PVS
To test the effects of CSD on the PVS, we induced CSD by pin-
prick in the frontal cortex, while imaging the superficial pial vas-
culature and surrounding spaces in the parieto-occipital cortex
�3.5 mm caudally (Fig. 1d). Pinprick is a well accepted method
of initiating CSD that causes negligible trauma (see Materials and
Methods). Blood vessel lumen and PVS cross-sectional areas
were measured in mice that were not injected with dye to avoid
any brain changes due to injection (although no obvious changes
were observed in dye-injected animals). The arrival of the CSD
wave in the imaging window (Fig. 3a,b) was confirmed by visu-
alizing the well reported pattern of arterial constriction and dila-
tion (Ayata et al., 2004; Unekawa et al., 2015). CSD arrival caused
a significant reduction of arterial lumen cross-sectional area to
15.1 � 6.6% of baseline (t(4) � 12.72, p � 2.2 � 10�4, paired t
test) for 1 min, followed by dilatation to 155 � 18% of baseline at
3 min, followed by a longer phase of constriction to a minimum
of 62.4 � 12% of baseline at 22 min. That these vascular changes
were indeed caused by CSD was confirmed by recording the field
potential using an electrode placed within the imaging window
(n � 3; Fig. 4). Apart from these vascular changes, CSD caused
rapid and nearly complete closure of the PVS surrounding pial
arteries, as defined by cross-sectional area reduction to �1 SD of
0% (7.75 � 5.5 � 10�4 percentage of baseline, SD of 1.29 �
10�3, n � 5, t(4) � 1727, p � 6.7 � 10�13, Welch’s t test at minute
1.66), starting within 2 min and continuing for another 6 min
(H(67) � 179, p � 2.87 � 10�12 Kruskal–Wallis test, p � 7.5 �
10�4 p-critical for all closed time points, Welch’s t test with Bon-
ferroni’s correction; Fig. 3a,b,d,f). The PVS then opened gradu-
ally, but remained partially constricted for �30 min post-CSD,
when it reached 85.1 � 34% of baseline. Induction of CSD by a
single brief (20 s) application of KCl crystal to the dura instead of
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pinprick produced qualitatively similar changes in the dimen-
sions of the PVS.

When we induced CSD by pinprick in mice whose PVS was
prelabeled with local TRD injection (n � 5), the resulting closure
appeared to force the dye between the smooth muscle and the
endothelium of the arterial wall (Fig. 3d,f) and between individ-
ual smooth muscle cells (Fig. 5). Judging by its brightness, it
appears as if the concentration of the dye increased drastically in
and near the endothelial cell layer. This pattern of labeling is
reminiscent of the periarterial labeling described histologically
following intraparenchymal tracer injection and attributed to
uptake along basement membrane (Carare et al., 2008). The ab-
sence of dye from the SAS or surrounding cortex during each
phase of CSD further suggests that there are potential barriers to
efflux from the PVS, even during CSD (Fig. 3d).

Because interstitial fluid has been reported to flow out of the brain
through the paravenous (as opposed to para-arterial) space (Iliff et al.,
2012), we also measured CSD’s effects on pial veins and venous PVS.
CSD had minimal effect on vein luminal cross-sectional area (Fig.
3c,e,g), but nonetheless caused paravenous space to close completely
within 1 min (n � 4, t(3) � 160.9, p � 3.86 � 10�5, paired t test),
remaining �1 SD of zero for 16 min but statistically significantly differ-

ent from baseline for time points in the range of minute 1.3 to 10 (p �
2.2 � 10�5 p-critical), and then gradually opening to 79.3 � 37% of its
original size over 30 min.

Since previous studies (Iliff et al., 2012, 2013, 2014) have
largely dealt with penetrating vasculature, as opposed to surface
vasculature, we also imaged the PVS in penetrating arteries. Clo-
sure of the PVS was also apparent around penetrating arteries
(Fig. 6), although the changes could not be as precisely quantified
comparedwithorthogonalreconstructionsbecauseofthesmallerbase-
line size of the PVS, as well as the greater movement of the paren-
chyma. To compare PVS closure in penetrating and surface
arteries, we measured the diameter of the PVS, or distance be-
tween the endothelium and the parenchyma, in a consistent lo-
cation for both surface and penetrating arteries (16 –35 �m
below) in animals not injected with dye. Penetrating-artery PVS
closed during CSD with a similar time frame as surface-vessel
PVS (Fig. 6d); a repeated-measures ANOVA showed no signifi-
cant effect of vessel location, penetrating or surface (F(1,176) �
0.01, p � 0.95), and there was no significant interaction of the
groups with time (F(44,176) � 1.1, p � 0.39). The only difference
was a tendency for the penetrating-vessel PVS to begin closing
slightly before the surface-vessel PVS. At time point 0, here de-

a

b

c

z

x

skull

skull

dura

dura

pia

pia

brain

brain

sas
pvs

pvs

art

89.3µm2

PVS
PVS

589.1um2

lumen
20.7µm2

y

x 20µm

20µm

d Arterial/PVS measurement
during CSD in GFP mouse

Imaging
Window

2mm

CSD
pinprick

Figure 1. Method for anatomical characterization and quantification of arterial lumen and PVS. a, A three-dimensional image stack is obtained using two-photon microscopy through the thinned
skull of a bAct-GFP mouse, with representative slices shown at the level of the skull (blue is second harmonic generation created by bone), dura, pia, and brain (green). White line represents angle
and position of the orthogonal reconstruction shown in b. b, Each cranial layer [including SAS (sas)], along with the arterial lumen (art) and arterial PVS (pvs). c, To quantify cross-sectional areas of
PVS and lumen, the green GFP channel is thresholded and cross-sectional areas of PVS and lumen are measured from the result. PVS and lumen areas are normalized across time points to their
average baseline size to compare across mice. d, Diagram of mouse skull showing the location of frontal craniotomy, where CSD was induced by pinprick (glass micropipette, black circle), and the
thinned area in parietal bone (blue circle), where pial blood vessels and PVS were imaged.

Schain et al. • Cortical Spreading Depression Impairs Glymphatic Flow J. Neurosci., March 15, 2017 • 37(11):2904 –2915 • 2907



fined as when the surface artery is constricted maximally, the
penetrating PVS has closed �60% more than the surface-vessel
PVS (t(2) � 21.9, p � 0.002 paired t test).

CSD impairs glymphatic flow
Because the PVS is considered essential for clearance of brain
solutes (Abbott, 2004; Carare et al., 2008; Iliff et al., 2012,
2014; Jessen et al., 2015), we sought to determine the effects of
CSD on interstitial/glymphatic flow. Accordingly, we injected
dye (3 kDa FITC-dextran) into the frontal cortex (3.5 mm
anterior to the imaging window) of ubiquitously labeled td-
Tomato red fluorescent mice, and observed how quickly the

dye filled the posterior PVS in CSD-induced and non-CSD-
induced mice (Fig. 7a,b). The switch from GFP to tdTomato
mice and consequently from red to green dextran injection
was done to show that the technique was not dependent on the
strain of mouse or the wavelength of the dye. To evaluate more
accurately the effect of CSD on solute clearance, we attempted
to maximize the period the PVS was closed by inducing two
rather than one wave of CSD. We used topical application of a
crystal of KCl for 20 s instead of pinprick to induce CSD, to
avoid repeated needle insertion in a restricted region of cortex
(see Materials and Methods). In control animals that received no
CSD induction, the dye injection alone produced no significant
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Figure 3. CSD causes closure of arterial and venous PVSs. a, d–g, Pre-CSD and post-CSD in vivo two-photon orthogonal (a, d, e) and XY (f, g) images of PVS near artery (art; a, d, f ) and vein (e, g)
in bAct-GFP mice. b, c, Quantification of CSD-induced changes in normalized cross-sectional area of lumen (top) and PVS (bottom) of arteries (b) and veins (c) pre-CSD and post-CSD measured in the
uninjected mice (a). Time 0 was set at 20 s before initial arterial constriction, which lasted for 1 min and reduced cross-sectional area to 15.1 � 6.6% of baseline. Arterial lumen then dilated for 3
min to 155 � 18% of baseline, and constricted again, though to a lesser degree, for �20 min (to a minimum of 62.4 � 12% of baseline at 22 min), while the vein lumen remained unchanged.
During this period, para-arterial and paravenous spaces closed (area �1 SD of 0%) for 6 and 16 min, respectively, and partially reopened by 30 min (n � 5 arteries/PVS in 5 mice, n � 4 veins/PVS
in 4 mice, error bars are �SEM). d–g, To determine what happens to PVS solutes during closure, we also examined mice in which the PVS had been dye-filled by intracortical injection of TRD (red)
before CSD induction (n � 5). When PVS closes, dye appears nearer to the arterial endothelium but not in the brain parenchyma or SAS (sas).
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change in PVS (Fig. 7c, control). Induction of two CSDs, 3 min
before and 20 min after dye injection, which caused significant re-
duction of PVS for 40 min (F(17,90) � 1.39, p � 3.8 � 10�4 p-critical,
compared with baseline, Bonferroni–Holm, as well as t(9) � 5.13,
p � 0.037 compared with control, Welch’s t test; Fig. 7c,f), signifi-

cantly delayed and reduced accumulation of dye in PVS under the
imaging window (13.6 � 8.8 a.u. in CSD vs 52.3 � 18 a.u. in control,
F(5,40) � 3.61, p � 0.046 at 150 min, p � 0.0086, two-way repeated-
measures ANOVA, n � 5 control; n � 6 CSD; see Materials and
Methods; Fig. 7d–f).
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Figure 4. Simultaneous field potential recording of CSD and imaging of pial blood vessels. a, Field potential recording of a CSD-induced mouse with representative images of pial vascular changes
marked according to the timing of their occurrence. Scale bar, 20 �m (results representative of n � 3 mice). b, Experimental setup. Note imaged area is �0.5 mm closer to the CSD initiation site
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n � 2 mice). Dye in the PVS near a blood vessel lumen (BV) appears to concentrate within the PVS �30 s to 1 min, and is then brightest between smooth muscle and near the endothelium when
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constricts (as expected; 30 s), and that the dye is forced between and around SM cells as the PVS closes (2 min).
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Discussion
Using in vivo two-photon imaging, we show that CSD, a known
instigator of migraine, produced a dramatic alteration in both the
structure and function of the glymphatic system—a recently de-
scribed paravascular pathway for waste clearance from brain in-
terstitial fluid. Our key findings are that (1) CSD produces a rapid
closure of the PVS around both arteries and veins on the pial

surface of the cerebral cortex and (2) this closure is accompanied
by a reduction in the outflow of interstitial fluid from the paren-
chyma into the PVS. While previous studies of the glymphatic
system have reported alterations in the outflow of interstitial fluid
through the paravascular clearance system, this is the first obser-
vation of physical PVS closure in connection with an abnormal
cortical event that underlies a neurological disorder. These find-
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ings raise the possibility that such alterations may constitute a
novel mechanism for regulation of glymphatic flow. In the con-
text of migraine, transient impairment of glymphatic flow may
compromise the clearance of a variety of extracellular excitatory
and inflammatory chemicals known to increase post-CSD, and
consequently lead to the development of localized cortical hyper-
excitability (Aurora et al., 1998; Coppola et al., 2007) and struc-
tural thickening (Maleki et al., 2011, 2012, 2013).

Mechanism of PVS closure
While we show that CSD causes a physical closure of the PVS, we
cannot yet fully explain the mechanism. This closure is not likely to
be simply a result of the CSD-induced changes in vessel diameter,
because it was maximal throughout both the initial dilation and
constriction exhibited by the arteries, and because the closure of the
paravenous space (i.e., PVS near pial veins) occurred in the absence
of any detectable change in the diameter of the pial vein. Based on
reports of neuronal (Takano et al., 2007) and astrocytic endfeet (To-
mita et al., 2011) swelling after CSD, it may be more likely that the
closure of the PVS is secondary to such swelling—especially consid-
ering that astrocytic endfeet form the outer wall of the PVS (Jessen et
al., 2015). Also, we observed that the PVS around penetrating arter-
ies may close seconds before it closes around the surface arteries,

which raises the possibility that the CSD-induced parenchymal
swelling spreads from deep layer I up to the pia.

Mechanism of slowed dye clearance
Our finding that closure of the PVS by CSD was accompanied by a
reduction in dye clearance from the injection site suggests that this
closure may impede the outflow of interstitial fluid from the brain
into the PVS, and slow fluid movement within the PVS. This impair-
ment of flow is consistent with the prior body of evidence on the
critical role played by the paravascular pathway in clearance of sol-
utes from the interstitial fluid (Jessen et al., 2015; Bakker et al., 2016).
Current knowledge identifies AQP4, a channel that regulates water
transport through cell membranes, as a key player in the dynamics of
glymphatic flow (Iliff et al., 2012; Nagelhus and Ottersen, 2013). In
fact, the presence of AQP4 in astrocytic endfeet makes it an ideal
candidate to mediate (1) CSD-induced astrocytic endfeet swelling
(Tomita et al., 2011); (2) CSD-induced accumulation of solutes,
such as potassium, ATP, and glutamate in the interstitial fluid
(Schock et al., 2007; Charles and Brennan, 2009; Ayata and Laurit-
zen, 2015), potentially due to reduced interstitial flow; and (3) the
closure of the PVS. If AQP4 modulation could prevent PVS closure
and subsequent flow impairment, then it could be a potential target
for migraine treatment.
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The glymphatic system and headache
As recognized by the International Headache Classification
Committee [Headache Classification Committee of the Interna-
tional Headache Society (IHS), 2013], the aura and the headache
phase of migraine sufferers may be separated by 20 – 40 min
(Liveing, 1873; Blau, 1992) or appear simultaneously (Hansen et
al., 2012). Attempting to understand these relationships, we
showed recently that activation of meningeal nociceptors (Zhang
et al., 2010) and central trigeminovascular neurons (Zhang et al.,
2011) may coincide with the occurrence of CSD or begin 15–35
min after. CSD is accompanied by a transient increase in the
extracellular concentration of a number of substances that have
the ability to activate nociceptors. These include potassium (Vys-
kocil et al., 1972; Ayata and Lauritzen, 2015), glutamate (Molcha-
nova et al., 2004), and ATP (Schock et al., 2007), as well as an
inflammatory cascade that results in COX-2 production and
meningeal mast cell degranulation (Karatas et al., 2013). Each of
these substances has been shown to produce strong activation of
nociceptors [glutamate (MacIver and Tanelian, 1993; Du et al.,
2001; Cairns et al., 2002); ATP (Cook and McCleskey, 2002; Mol-
liver et al., 2002; Dussor et al., 2008; Zhao and Levy, 2015); po-
tassium (Strassman et al., 1996)]. Immediate onset of headache
after aura could be triggered by such chemicals released into the
cortical interstitial fluid during CSD, which then enter the PVS
around surface pial vessels and activate nociceptors that inner-
vate those vessels (O’Connor and van der Kooy, 1986; Suzuki et
al., 1989) or the pial surface itself (Kosaras et al., 2009) in certain
areas of the brain. Delayed onset of headache could be caused by
the temporary blockade of outflow of excitatory or inflammatory
chemicals from the cortex following CSD, which might prevent
these chemicals from reaching dural nociceptors until the PVS
reopens. This is supported by evidence that glymphatic flow is
eventually drained through dural lymphatic vessels that pass
through the walls of densely innervated dural sinuses and large
veins (Edvinsson and Uddman, 1981; O’Connor and van der
Kooy, 1986; Edvinsson et al., 1987). Our results argue against the
possibility that the excitatory chemicals released in the cortex
during CSD pass directly through the pia and diffuse through the
SAS to the overlying dura, because we found that cortical solutes
do not diffuse into the SAS, and instead accumulate in the PVS,
where they remain segregated from the SAS.

The potential relationship between headache and the glym-
phatic system is also supported by evidence for inhibition of
glymphatic clearance of solutes and metabolites from the brain
parenchyma during prolonged wakefulness (Xie et al., 2013) and
after traumatic brain injury (Plog et al., 2015), conditions associ-
ated with migraine headache. Sleep disturbances, especially in-
somnia, reliably precipitate headache (Kelman and Rains, 2005)
and show a strong association with migraine chronification (Jen-
num and Jensen, 2002; Dodick et al., 2003; Rains and Poceta,
2006; Rains et al., 2008; Lateef et al., 2011), whereas post-
traumatic headache fulfilling migraine criteria is the most fre-
quent symptom after traumatic brain injury (Theeler et al., 2013;
Lucas et al., 2014; Anderson et al., 2015). The common finding of
a reduction in glymphatic flow now shown for three disparate
headache-associated phenomena raises the possibility that alter-
ations in the glymphatic flow might be a general mechanism
linking disruption of brain homeostasis to headache. Based on
our findings, it may be worthwhile to determine whether partial
closure of the PVS plays any role in the inhibition of glymphatic
flow during prolonged wakefulness or after traumatic brain in-
jury. In this case, accumulation of interstitial waste, which may
occur during sleep deprivation (Xie et al., 2013), may lower the

threshold for migraine onset, whereas enhanced glymphatic
clearance of solutes from the brain during sleep (Xie et al., 2013)
may partially explain the mechanisms by which sleep terminates
migraine.

Although there is no experimental evidence on which one can
speculate on CSD’s impact on glymphatic flow during wake
versus sleep states, our data raise the possibility that CSD can
suppress glymphatic flow during wakefulness beyond what is ob-
served with wakefulness alone. Along this line, it may also be
reasonable to propose that the occurrence of aura during the
sleep state may have a more robust effect as it can suppress glym-
phatic flow at a time it is at maximal value.

Migraine aura, impaired glymphatic system, and brain health
Our finding of decreased glymphatic flow is potentially of signifi-
cance for understanding the long-term effects of migraine aura on
brain health. Impairment of glymphatic flow and clearance of inter-
stitial fluid in the aging brain (Kress et al., 2014), after traumatic
brain injury (Iliff et al., 2014; Plog et al., 2015), and during prolonged
wakefulness (Xie et al., 2013) increase accumulation of amyloid-�
and/or tau proteins (both responsible for neurodegenerative dis-
eases) by reducing the clearance from the brain parenchyma through
the PVSs. Each of these conditions (aging, traumatic brain injury,
sleep disruption) are also major risk factors for the development of
neurodegenerative diseases, such as Alzheimer’s disease (Lindsay et
al., 2002; Ju et al., 2014), chronic traumatic encephalopathy (Gold-
stein et al., 2012), and dementia (Montagna et al., 2003; Saper et al.,
2010; Moretti et al., 2012; Smith et al., 2013). Clinically, indications
for impaired glymphatic functions after occurrence of CSD raise the
possibility that migraine aura can facilitate localized degenerative
processes. Scientifically, it can provide a new framework for under-
standing the variety of structural and functional alterations seen in
the migraine brain.

Another potential risk to the migraine brain arises from our
observation that CSD causes a transient spike in the concentra-
tion of interstitial solutes in the space between the smooth muscle
and endothelial wall. Given that some of these solutes may in-
clude inflammatory molecules, the repeated occurrence of such
events could contribute to endothelial dysfunction in pial and
cortical arteries. Migraine aura patients exhibiting elevated levels
of biomarkers of coagulation activity, fibrinolysis, inflammation,
and oxidative stress (Tietjen et al., 2001, 2009), as well as en-
hanced arterial stiffness and vascular tone (Vanmolkot et al.,
2007; Liman et al., 2012), call for further attempts to delineate
CSD’s impact on the endothelium.

Caveats
One technical caveat that should be noted in studies of the glym-
phatic system, as discussed previously by Nedergaard (Iliff et al.,
2012), is that the dural puncture required for the injection of
tracer might itself alter glymphatic flow, and our measurements
were done in anesthetized animals, which, in common with
sleeping animals, exhibit a higher baseline level of glymphatic
flow than animals that are awake.
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