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Exchange protein directly activated by cAMP (Epac) is a direct effector for the ubiquitous second messenger cAMP. Epac activates the
phospholipase C� (PLC�) pathway. PLC� has been linked to the synthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG). Here,
we report that Epac facilitates endocannabinoid-mediated retrograde synaptic depression through activation of PLC�. Intracellular
loading of a selective Epac agonist 8-CPT-2Me-cAMP into ventral tegmental area (VTA) dopamine neurons enabled previously ineffective
stimuli to induce depolarization-induced suppression of inhibition (DSI) and long-term depression of IPSCs (I-LTD) in the VTA. DSI and
I-LTD are mediated by 2-AG since they were blocked by a diacylglycerol lipase inhibitor. The effects of 8-CPT-2Me-cAMP on DSI and
I-LTD were absent in Epac2 and PLC� knock-out mice, but remained intact in Epac1 knock-out mice. These results identify a novel
mechanism for on-demand synthesis of retrograde signaling 2-AG by the Epac2-PLC� pathway. We investigated the functional signifi-
cance of Epac2-PLC�-2-AG signaling in regulating inhibitory synaptic plasticity in VTA dopamine neurons induced by in vivo cocaine
exposure. We showed that cocaine place conditioning led to a decrease in the frequency and amplitude of spontaneous IPSCs and an
increase in action potential firing in wild-type mice, but not in Epac2 or PLC� knock-out mice. Together, these results indicate that the
Epac2-PLC�-2-AG signaling cascade contributes to cocaine-induced disinhibition of VTA dopamine neurons.
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Introduction
Exchange protein directly activated by cAMP (Epac) is a direct
intracellular effector of cAMP (Kawasaki et al., 1998; de Rooij et

al., 1998). Epac mediates diverse functions of cAMP by acting as
a guanine nucleotide exchange factor for Rap, a Ras-like small
GTPase (Cheng et al., 2008; Gloerich and Bos, 2010; Schmidt et
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Significance Statement

2-arachidonoylglycerol (2-AG) is an endogenous cannabinoid that depresses synaptic transmission through stimulation of CB1

receptors. Among the six isoforms of phospholipase C (PLC; PLC�, PLC�, PLC�, PLC�, PLC�, PLC�), only PLC� has been linked
to 2-AG synthesis. Here we demonstrate that 8-CPT-2Me-cAMP, a selective agonist of the cAMP sensor protein Epac, enhances
2-AG-mediated synaptic depression in ventral tegmental area (VTA) dopamine neurons via activation of PLC�. These results
identify a novel mechanism for 2-AG synthesis via activation of the Epac-PLC� pathway. Furthermore, we show that cocaine-
induced conditioned place preference and disinhibition of VTA dopamine neurons were impaired in mice lacking Epac or PLC�.
Thus, the Epac-PLC� signaling pathway contributes to cocaine-induced disinhibition of VTA dopamine neurons and formation of
drug-associated memories.
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al., 2013). Epac-Rap activates phospholipase C� (PLC�; Oest-
reich et al., 2007), a PLC isoform expressed in the heart (Oest-
reich et al., 2007) and brain (Wu et al., 2003). The Epac-Rap-
PLC� signaling pathway regulates intracellular Ca 2� release in
cardiac myocytes and cardiac contractility (Smrcka et al., 2012),
but its role in neuronal signaling remains unknown.

Stimulation of Gq/11-coupled receptors, such as group-I
mGluRs, leads to the activation of PLC� (Hashimotodani et al.,
2005), which hydrolyzes membrane phospholipid to produce a
pair of second messengers, inositol 1,4,5-trisphosphate (IP3) and
1,2-diacylglycerol (DAG). DAG is subsequently converted into
the endocannabinoid 2-arachidonoylglycerol (2-AG) by DAG
lipase (DAGL; Di Marzo et al., 1998; Piomelli, 2003). The
mGluR agonist (S)-3,5-dihydroxyphenylglycine (DHPG) in-
duces endocannabinoid-mediated retrograde synaptic depres-
sion (Maejima et al., 2001; Varma et al., 2001; Hashimotodani et
al., 2005) and enhances depolarization-induced suppression of
inhibition (DSI; Varma et al., 2001; Edwards et al., 2006). Synap-
tic stimulation of mGluRs induces endocannabinoid-mediated
long-term depression (LTD) at excitatory and inhibitory syn-
apses (I-LTD; Gerdeman et al., 2002; Robbe et al., 2002; Cheva-
leyre and Castillo, 2003, 2004). There are at least six isoforms of
PLC (PLC�, PLC�, PLC�, PLC�, PLC�, PLC�; Rhee and Bae,
1997; Hwang et al., 2005). Among them, only PLC� has been
linked to 2-AG production via mGluRs (Hashimotodani et al.,
2005). Based on the finding that Epac activates PLC� (Oestreich
et al., 2007), we hypothesized that Epac-PLC� activation en-
hances 2-AG-mediated retrograde synaptic depression. To test
this possibility, we examined the effects of the selective Epac ag-
onist 8-CPT-2Me-cAMP (8-CPT) on DSI and I-LTD in dopa-
mine neurons in the ventral tegmental area (VTA), and the
involvement of Epac and PLC� was determined by using Epac
(Yang et al., 2012) and PLC� knock-out mice (Oestreich et al.,
2007).

Two genes, Epac1 and Epac2, encode Epac proteins. Epac2 is
abundantly expressed in the brain, whereas Epac1 expression in
the brain is very low (Kawasaki et al., 1998; de Rooij et al., 1998).
Epac2�/� mice exhibit deficits in social interaction and commu-
nication, but normal working and reference memory (Srivastava
et al., 2012). Epac1 and Epac2 may be functionally redundant, as
only Epac double-knock-out mice (Epac�/�) exhibit deficits in
spatial learning and memory (Yang et al., 2012). Hippocampal
Epac signaling is required for memory retrieval (Ouyang et al.,
2008; Ostroveanu et al., 2010). We have shown that cocaine con-
ditioned place preference (CPP) was impaired in Epac2�/� mice
but was not significantly altered in Epac1�/� mice (Liu et al.,
2016). Thus, Epac may contribute to memory formation and/or
retrieval by spatial and drug-associated cues. Additionally, Epac2
is required for the cocaine-induced insertion of surface GluA2-
lacking AMPA receptors (AMPARs) in VTA dopamine neurons
(Liu et al., 2016). Epac also regulates presynaptic glutamate re-
lease (Gekel and Neher, 2008; Zhao et al., 2013; Fernandes et al.,
2015), LTP induction (Gelinas et al., 2008; Yang et al., 2012), and
AMPAR trafficking (Ster et al., 2009; Woolfrey et al., 2009; Liu et
al., 2016). However, the extent to which Epac regulates inhibitory
transmission and plasticity remains essentially unknown.

Repeated cocaine exposure in vivo reduces GABAergic inhibition
to VTA dopamine neurons ex vivo (Liu et al., 2005; Bocklisch et al.,
2013). Endocannabinoid-mediated I-LTD provides a putative
mechanism for cocaine-induced reduction of GABAergic inhibition
(Pan et al., 2008a). We examined whether Epac-PLC� is required for
the reduction of GABAergic inhibition to VTA dopamine neurons
induced by cocaine exposure in vivo. Our studies reveal a novel

mechanism for Epac-PLC� in regulating endocannabinoid-medi-
ated retrograde synaptic depression and cocaine-induced inhibitory
synaptic plasticity in VTA dopamine neurons.

Materials and Methods
Animals. Animal maintenance and use were in accordance with protocols
approved by the Institutional Animal Care and Use Committee of Med-
ical College of Wisconsin. Epac1 knock-out mice (Epac1�/�), Epac2
knock-out mice (Epac2�/�), and Epac1 and Epac2 double-knock-out
mice (Epac�/�) were generated and maintained on a 129Sv background
in the laboratory of Youming Lu as detailed previously (Yang et al.,
2012). The Epac1�/� or Epac2�/� mice were bred to 129Sv wild-type
mice at Medical College of Wisconsin for �2 generations to generate
heterozygous Epac1�/� or Epac2�/� breeders. Wild-type (Epac�/�),
Epac1�/�, or Epac2�/� mice were generated by heterozygous �
heterozygous breeding and all experiments were performed in age-
matched littermates of either sex. Epac double knock-out (Epac�/�)
mice were generated by crossing Epac1�/� with Epac2�/� mice.
PLC��/� mice were generated in the laboratory of Alan Smrcka and
maintained on C57BL/6 background as described previously (Wang et
al., 2005). Genotyping analysis was performed by using standard PCR
technique on tail biopsies.

Brain-slice preparation. Epac1�/�, Epac2�/�, Epac�/� mice, their
wild-type littermates, PLC��/� mice, and wild-type mice (P20 –P30) of
either sex were used for slice electrophysiology. In experiments described
in Figures 6 and 8, adult wild-type, Epac2�/�, and PLC��/� mice of
either sex (8 –9 weeks old at the beginning of the experiments) underwent
place conditioning and behavioral tests (see below, CPP). Slices were
prepared 24 h following behavioral tests. Mice were anesthetized by iso-
flurane inhalation and decapitated. The brain was embedded in low-
melting-point agarose, and horizontal midbrain slices (200 	m thick)
were cut using a vibrating slicer (Leica VT1200s), as described in our
recent study (Chen et al., 2016). Slices were prepared in a choline-based
solution containing the following (in mM): 110 choline chloride, 2.5 KCl,
1.25 NaH2PO4, 0.5 CaCl2, 7 MgSO4, 26 NaHCO3, 25 glucose, 11.6 so-
dium ascorbate, and 3.1 sodium pyruvate at room temperature. The
slices were incubated at room temperature for 30 – 40 min in sucrose-
based solution containing the following (in mM): 78 NaCl, 68 sucrose, 26
NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 2 CaCl2, 2 MgCl2, and 25 glucose.
Then, the slices were allowed to recover for �30 min in the artificial CSF
(ACSF) containing the following (in mM): 119 NaCl, 2.5 KCl, 2.5 CaCl2,
1 MgCl2, 1.25 NaH2PO4, 26 NaHCO3, and 10 glucose.

Slice electrophysiology. Whole-cell patch-clamp recordings were
made using patch-clamp amplifiers (Multiclamp 700B) under infrared-
differential interference contrast microscopy. Data acquisition and anal-
ysis were performed using DigiData 1440A and 1550B digitizers and
analysis software pClamp 10 (Molecular Devices). Signals were filtered at
2 kHz and sampled at 10 kHz. Dopamine neurons in the VTA (medial to
the medial terminal nucleus of the accessory optic tract) were identified
by long duration (�1.5 ms) of spontaneous action potentials in cell-
attached configuration (Chieng et al., 2011) and the presence of large Ih

currents (�100 pA), rhythmic firing at low frequency (�5 Hz), and
prominent afterhyperpolarization in whole-cell mode (Johnson and
North, 1992; Jones and Kauer, 1999; Liu et al., 2005; Melis et al., 2008,
2013a). Neurons were voltage-clamped at �70 mV unless stated
otherwise. Glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-
2,3-dione (CNQX; 20 	M) and D-2-amino-5-phosphonovaleric acid (D-
AP-5; 50 	M) were present in the ACSF throughout the experiments. For
recording of IPSCs, electrical stimulation was delivered by a bipolar
tungsten stimulation electrode (WPI) placed �150 	m rostral to the
recorded dopamine neuron. Glass pipettes (3–5 M�) were filled with an
internal solution containing the following (in mM): 90 K-gluconate, 50
KCl, 10 HEPES, 0.2 EGTA, 2 MgCl2, 4 Mg-ATP, 0.3 Na2GTP, and 10
Na2-phosphocreatine, pH 7.2 with KOH. Intracellular perfusion of
8-CPT via whole-cell pipette was performed based on published proce-
dure (Lapointe and Szabo, 1987; Tang et al., 1992; Maathuis et al., 1997).
Whole-cell recordings were performed with an Axopatch holder with
suction and perfusion ports (catalog #660015, A-M Systems). 8-CPT-
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containing internal solution (300 	M) was exchanged into the tip of the
pipette via quartz tubing (Polymicro Technologies) connected to a PE-10
tube. Series resistance (15–30 M�) was monitored throughout all re-
cordings, and data were discarded if the resistance changed by �20%. All
recordings were performed at 32 	 1°C by using an automatic tempera-
ture controller (Warner Instruments).

In vivo electrophysiology. Mice were anesthetized with intraperitoneal
injection of urethane (1.5 mg/kg). Mice were positioned in a stereotaxic
frame (David Kopf Instruments) and their body temperature was main-
tained at 37°C using a heating pad. Craniotomies were performed to
allow single-unit recordings of VTA dopamine neurons. The areas for
electrode insertion were moisturized with saline. Single-unit recording
electrodes were pulled from micropipettes (outer diameter, 1 mm; inner
diameter, 0.5 mm) to a resistance of 10 –15 M� when filled with 0.5 M

NaCl containing 1.5% neurobiotin. The electrode was lowered into the
VTA [coordinates from bregma: anteroposterior �2.9 to �3.3 mm, me-
diolateral 0.6 –1.1 mm, dorsoventral �3.9 to �4.5 mm] by a microma-
nipulator. A reference electrode was placed in the subcutaneous tissue.
Single-unit activity was acquired with Multiclamp 700B amplifier and
DigiData 1440A digitizer and analyzed by pClamp 10 (Molecular De-
vices). Signals were filtered at 2 kHz and sampled at 10 kHz. The band-
pass filter was set between 0.3 and 5 kHz (Brischoux et al., 2009).
Dopamine neurons were identified by a broad triphasic extracellular
action potential with a width of �2 ms and a relatively slow firing rate
(�10 Hz; Ungless et al., 2004). The burst firing is defined as the occur-
rence of two consecutive spikes in an interval of �80 ms and the termi-
nation of two consecutive spikes with an interval of �160 ms (Grace and
Bunney, 1984; Bishop et al., 2010; Schiemann et al., 2012; Chen and
Lodge, 2013). To confirm cell type and electrode placement, neurons
were juxtacellularly labeled with neurobiotin via iontophoresis (Pinault,
1996; Bocklisch et al., 2013). Briefly, following electrophysiological re-
cordings, positive current pulses (7 s on/off cycles) were applied through
the recording electrode to the neuron for 10 min. The neurobiotin was
allowed to transport within the neuron for another 1–2 h before the
animals were killed for immunofluorescence staining (Pinault, 1996;
Bocklisch et al., 2013).

CPP. Cocaine CPP was based on published procedures (Vialou et al.,
2012). Epac2�/�, PLC��/�, and wild-type control mice (8 –9 weeks old)
of either sex were placed into the middle chamber of the three-chamber
conditioning apparatus (Med Associates) and allowed to explore three
chambers freely for 20 min. Time spent in every chamber was recorded.
Mice showing unconditioned side preference (�180 s disparity) were
excluded. On the second and third days, mice were injected with saline
(0.9% NaCl, 2 ml/kg, i.p.) in the morning (between 8:00 and 10:00 A.M.)
and confined to one chamber for 30 min, and then the mice were injected
with cocaine (15 mg/kg, i.p.) in the afternoon (between 3:00 and 5:00
P.M.) and confined for 30 min to the other chamber. On the fourth day,
mice were tested for side preference without treatment for 20 min (be-
tween 12:00 and 2:00 P.M.).

Immunofluorescence staining. Following in vivo single-unit recording
of VTA dopamine neurons, mice were perfused transcardially with 4%
paraformaldehyde in 4% sucrose-PBS, pH 7.4. Coronal VTA sections (30
	m) were cut with a Leica cryostat. VTA sections were first incubated
with fluorescein streptavidin (1:200; Vector Laboratories) to retrieve the
neurobiotin-labeled cell bodies. Then the selected tissue sections were
incubated with primary antibody against tyrosine hydroxylase (TH;
1:300; Santa Cruz Biotechnology; 48 h) and anti-rabbit IgG Alexa Fluor
555 conjugate (1:500; Cell Signaling Technology) secondary antibody.
Confocal imaging was performed using a Nikon TE2000-U inverted mi-
croscope equipped with the C1 Plus confocal system (laser light source
for EGFP excitation, 488 nm, C-FL B-2E/C FITC filter cube; laser light
source for Texas Red excitation, 561 nm, C-FL Y-2E/C Texas filter cube).
The images were acquired using a 10� CFI Plan 10� apochromat objec-
tive (numerical aperture, 0.45) or a CFI Plan Fluor 40� oil objective
(numerical aperture, 1.4) Nikon D-Eclipse C1 camera and EZ-C1
software.

Chemicals. 8-CPT sodium salt, D-(-)-2-amino-5-phosphonopentanoic
acid, DHPG, 6-Bnz-cAMP sodium salt, and H-89 dihydrochloride were ob-
tained from Tocris Bioscience. 7,8-dihydroxyflavone, CNQX, and all other

common chemicals were obtained from Sigma-Aldrich. DO34 and DO53
were kindly provided by Benjamin Cravatt at Scripps Research Institute.
Cocaine HCl was kindly provided by the National Institute on Drug Abuse
Drug Supply Program. Drugs were prepared as concentrated stock solutions
and stored at �20 or �80°C before use.

Statistics. Data are presented as the mean 	 SEM. The magnitude of
DSI and I-LTD was calculated as we have described previously (Pan et al.,
2008a, 2009). sIPSCs were analyzed using Mini-analysis (Synaptosft).
CPP scores were calculated as the time spent in the cocaine-conditioned
chamber minus that in saline-conditioned chamber (Zhong et al., 2012).
In vivo dopamine neuron firing was analyzed using Clampfit 10.6. Data-
sets were compared with either Student’s t test or two-way ANOVA
followed by Tukey’s post hoc analysis. Results were considered significant
at p � 0.05.

Results
Epac agonist 8-CPT facilitated DSI through activation
of Epac2
We investigated whether the selective Epac agonist 8-CPT altered
DSI in midbrain slices prepared from wild-type (Epac�/�) and
Epac1/2 (Epac�/�) double-knock-out mice. Whole-cell voltage-
clamp recordings were made from VTA dopamine neurons with
control internal solution or internal solution containing the se-
lective Epac agonist 8-CPT (100 	M). IPSCs were evoked by elec-
trical stimulation of synaptic afferents at 4 s intervals in the
presence of glutamate receptor antagonists CNQX (20 	M) and
D-AP-5 (50 	M). We have shown that postsynaptic depolariza-
tion induced minimal or no DSI in VTA dopamine neurons in
rats or wild-type mice (Pan et al., 2008a; Zhong et al., 2015).
Consistent with these studies, we found that in wild-type slices, a
brief depolarization of VTA dopamine neurons from �70 to 0
mV for 5 s did not induce significant depression of IPSCs with
control internal solution (7.3 	 4.0%, n 
 8) but induced DSI
with internal solution containing 8-CPT (23.4 	 5.7%, n 
 9;
t(15) 
 2.4, p 
 0.031 vs control; Fig. 1A). DSI induced with
8-CPT-containing internal solution was blocked by bath applica-
tion of the CB1 receptor antagonist AM251 (2 	M; 6.2 	 5.3%,
n 
 7; t(14) 
 2.3, p 
 0.040 vs 8-CPT; Fig. 1A). DSI was not
induced in slices from Epac1 and Epac2 double-knock-out
(Epac�/�) mice with control or 8-CPT-containing internal solu-
tion (control, 4.2 	 4.3%, n 
 10; 8-CPT, 3.1 	 5.8%, n 
 8; t(16) 

1.0, p 
 0.323; Fig. 1B).

Two genes, Epac1 and Epac2, encode Epac proteins (Kawasaki
et al., 1998; de Rooij et al., 1998). We next determined whether
Epac1 or Epac2 mediated the effects of 8-CPT on DSI. In
Epac1�/� slices, DSI was induced with 8-CPT-containing inter-
nal solution but not with 8-CPT-free control internal solution
(control, 3.7 	 3.9%, n 
 8; 8-CPT, 29.2 	 3.7%, n 
 8; t(14) 

4.7, p � 0.001; Fig. 1C). In Epac2�/� slices, DSI was not induced
with either internal solution (control, 1.9 	 2.9%, n 
 8; 8-CPT,
4.8 	 2.6%, n 
 9; t(15) 
 1.8, p 
 0.101; Fig. 1D). Thus, Epac2,
but not Epac1, mediates 8-CPT-induced facilitation of DSI in
VTA dopamine neurons. Epac1 is ubiquitously expressed in all
tissues and its expression in the brain is low. Meanwhile, Epac2 is
richly expressed in the brain (Kawasaki et al., 1998; de Rooij et al.,
1998), which may explain the lack of effect of 8-CPT on DSI in
Epac2�/� slices.

8-CPT is a cAMP analog that selectively activates Epac but not
protein kinase A (PKA; Enserink et al., 2002), whereas 6-Bnz-
cAMP is a cAMP analog that selectively activates PKA but does
not affect Epac (Hewer et al., 2011). Nevertheless, they may have
off-target effects at higher concentrations. As a control experi-
ment, we examined whether 6-Bnz-cAMP altered DSI in VTA
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Figure 1. 8-CPT facilitated DSI by activating Epac2 in VTA dopamine neurons. A, In Epac�/� slices, depolarization (from �70 to 0 mV, 5 s) did not induce DSI with control internal solution.
Intracellular loading of 8-CPT (100 	M) enabled DSI (n 
 8 –9, p 
 0.031). The 8-CPT-enabled DSI was blocked by the CB1 receptor antagonist AM251 (n 
 7, p 
 0.040). Sample traces of evoked
IPSCs were shown on the top and averaged DSI on the bottom. The solid lines are single exponential fitting curves of the decay of DSI. B, DSI was not induced in Epac�/� slices with control internal
solution or 8-CPT-containing internal solution (n 
 8 –10, p 
 0.323). C, In Epac1�/� slices, 8-CPT enabled DSI (both n 
 8, p � 0.001). D, DSI was not induced in Epac2�/� slices with control
or 8-CPT-containing internal solution (n 
 8 –9, p 
 0.760). E, DSI was not induced in Epac�/� slices with control or 6-Bnz-cAMP-containing internal solution (n 
 8 –9, p 
 0.101).
F, Dose-dependent effects of intracellular loading of different concentrations of 8-CPT (n 
 7–10, *p � 0.05, **p � 0.01).
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dopamine neurons in Epac�/� slices. 6-Bnz-cAMP (100 	M) was
loaded into VTA dopamine neurons the same way as that of
8-CPT. However, 6-Bnz-cAMP did not enable DSI in VTA dopa-
mine neurons (5.3 	 4.9%, n 
 9; t(15) 
 0.3 vs control,
p 
 0.760; Fig. 1E). Thus, PKA is not required for 8-CPT-induced
facilitation of DSI in VTA dopamine neurons. We also examined
whether intracellular loading of low concentrations of 8-CPT
altered DSI in Epac�/� slices. We found that 8-CPT-induced
facilitation of DSI was concentration-dependent at 1–100 	M

(control, 3.5 	 2.4%, n 
 8; 1 	M, 1.5 	 3.2%, n 
 7, t(13) 
 0.5
vs control, p 
 0.620; 10 	M, 12.2 	 2.9%, n 
 10, t(16) 
 2.2 vs
control, p 
 0.040; 30 	M, 19.7 	 4.5%, n 
 8; t(14) 
 3.2 vs
control, p 
 0.007; 100 	M, 23.4 	 5.7%, n 
 9; t(15) 
 3.1, p 

0.008 vs control; Fig. 1F).

8-CPT facilitated CB1 receptor-mediated I-LTD
The CB1 receptor not only mediates short-term synaptic depres-
sion, such as depolarization-induced suppression of excitation
(DSE) and DSI (Kreitzer and Regehr, 2001; Ohno-Shosaku et al.,
2001; Wilson and Nicoll, 2001), but also LTD and I-LTD (Ger-
deman et al., 2002; Chevaleyre and Castillo, 2003; Safo and Re-
gehr, 2005; Wang et al., 2010). We examined whether 8-CPT
altered I-LTD induction in VTA dopamine neurons. Whole-cell
recordings were made in wild-type slices with control internal
solution or internal solution containing 8-CPT (100 	M). After a
stable baseline recording of IPSCs for 10 min, repetitive synaptic
stimulation (10 Hz, 5 min) was applied to induce I-LTD. Consis-
tent with our previous studies (Pan et al., 2008a), we found that
with control internal solution, the 10 Hz stimulation did not

Figure 2. 8-CPT facilitated CB1 receptor-mediated I-LTD through the activation of Epac2. A, The 10 Hz, 5 min stimulation (arrow) did not induce I-LTD with control internal solution (n 
 6, p 

0.914), while intracellular application of 8-CPT facilitated I-LTD (n 
 8, p 
 0.022). B, 8-CPT-enabled I-LTD was blocked by AM251 (n 
 6, p 
 0.355). C, In Epac1�/� mice, I-LTD was not induced
with control internal solution (n 
 8, p 
 0.789), whereas 8-CPT enabled I-LTD (n 
 9, p 
 0.030). D, I-LTD was not induced with control or 8-CPT-containing internal solution in Epac2�/� slices
(n 
 6 –7, p � 0.05).
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induce significant long-lasting depression of IPSCs (96.7 	
11.1% of baseline, n 
 6; t(10) 
 0.1, p 
 0.914; Fig. 2A), suggest-
ing that this stimulation is subthreshold for I-LTD induction.
However, the 10 Hz stimulation for 5 min induced I-LTD when
8-CPT was included in the internal solution (72.5 	 10.0% of
baseline, n 
 8; t(14) 
 2.6, p 
 0.022; Fig. 2A). This I-LTD was
blocked by the continuous presence of AM251 (2 	M; 91.7 	
5.0% of baseline, n 
 7; t(12) 
 1.0, p 
 0.355; Fig. 2B). These
results indicate that 8-CPT enabled a subthreshold stimulus to
induce CB1 receptor-mediated I-LTD in VTA dopamine
neurons.

We next examined whether 8-CPT altered I-LTD in VTA do-
pamine neurons in slices prepared from Epac1�/� and Epac2�/�

mice. In Epac1�/� slices, application of the 10 Hz stimulation for
5 min did not induce significant I-LTD with control internal
solution (96.8 	 8.1% of baseline, n 
 8; t(14) 
 0.3, p 
 0.789;
Fig. 2C), while the same stimulation induced robust I-LTD with
8-CPT-containing internal solution (74.9 	 7.1% of baseline,
n 
 9; t(16) 
 2.4, p 
 0.030; Fig. 2C). In Epac2�/� slices, the 10
Hz stimulation did not induce I-LTD when the recording pipette
was filled with either control internal solution (91.7 	 5.4% of
baseline, n 
 7; t(12) 
 1.1, p 
 0.293) or internal solution con-
taining 8-CPT (93.0 	 3.6% of baseline, n 
 6; t(10) 
 1.6, p 

0.145; Fig. 2D). Thus, 8-CPT facilitates I-LTD through activation
of Epac2 but not Epac1.

Signaling mechanisms for 8-CPT-induced facilitation of DSI
and I-LTD
Epac is known to activate PLC� (Oestreich et al., 2007). PLC� has
a conserved phosphoinositide-specific PLC (phosphoinositi-
dase) catalytic core that hydrolyzes phosphatidylinositol 1,4,5-
bisphosphate (PIP2) to IP3 and DAG (Smrcka et al., 2012). DAG
is a precursor for the endocannabinoid 2-AG and is converted
into 2-AG by DAGL (Di Marzo et al., 1998; Piomelli, 2003). One
possibility is that 8-CPT enhances DSI and I-LTD via the PLC�¡
DAG ¡ 2-AG pathway. There are at least six isoforms of PLC
(PLC�, PLC�, PLC�, PLC�, PLC�, PLC�; Rhee and Bae, 1997;
Hwang et al., 2005). Currently available PLC inhibitors, such as
U73122, cannot discriminate different PLC subtypes and have
off-target effects (Walker et al., 1998; Hoover et al., 2008). We
therefore tested whether 8-CPT altered DSI and I-LTD in VTA
dopamine neurons in PLC��/� mice (Wang et al., 2005). We
found that DSI was induced in 8-CPT-filled VTA dopamine neu-
rons in wild-type slices but not in PLC��/� slices (wild type,
30.4 	 1.3%, n 
 8; PLC��/�, 7.7 	 3.6%, n 
 9; t(15) 
 5.7, p �
0.001; Fig. 3A). There is a possibility that genetic deletion of PLC�
causes general deficits in 2-AG synthesis, which may account for
the lack of effect of 8-CPT on DSI. We performed the following
control experiments to test such a possibility.

Group-I mGluRs are coupled to the PLC� pathway (Hash-
imotodani et al., 2005), while the tyrosine kinase receptor B
(TrkB) is coupled to the PLC� pathway (Reichardt, 2006). The
mGluR agonist DHPG and the TrkB agonist 7,8-dihydroxyflavone
(DHF) enhance DSI (Varma et al., 2001; Edwards et al., 2006;
Zhong et al., 2015) and induced CB1 receptor-dependent synap-
tic depression (Yu et al., 2013). We examined whether DHPG-
induced and DHF-induced facilitation of DSI in VTA dopamine
neurons was altered in PLC��/� mice. In the presence of DHPG
(2 	M) in the ACSF, a brief depolarization (�70 to 0 mV for 5 s)
induced DSI with comparable magnitude in wild-type and
PLC��/� slices (wild type, 30.0 	 7.6%, n 
 7; PLC��/�, 29.9 	
2.1%, n 
 8; t(13) 
 0.02, p 
 0.985; Fig. 3B). Similarly, in the
presence of DHF (10 	M), there was no significant difference of

DSI in wild-type and PLC��/� slices (wild type, 33.6 	 5.1%, n 

9; PLC��/�, 30.8 	 7.3%, n 
 7; t(14) 
 0.3, p 
 0.750; Fig. 3C).
Thus, genetic deletion of PLC� did not affect 2-AG synthesis
through PLC� and PLC� pathways. These results indicate that
8-CPT facilitated DSI in VTA dopamine neurons via activation
of PLC�.

We have shown earlier that 8-CPT enabled a subthreshold
stimulus to induce I-LTD in VTA dopamine neurons (Fig. 2A).
To determine whether PLC� mediates this effect of 8-CPT, we
examined I-LTD in slices prepared from wild-type and PLC��/�

mice. Whole-cell recordings were made with internal solution
containing 8-CPT (100 	M). We found that the 10 Hz stimula-
tion induced I-LTD in wild-type slices (70.4 	 7.4% of baseline,
n 
 6; t(10) 
 3.3, p 
 0.009), but I-LTD was blocked in PLC��/�

slices (94.4 	 11.4% of baseline, n 
 6; t(10) 
 0.4, p 
 0.697; Fig.
3D). Thus, the selective Epac agonist 8-CPT facilitated I-LTD via
activation of PLC�.

As mentioned earlier, PLC� hydrolyzes PIP2 to DAG (Smrcka
et al., 2012), and DAG is hydrolyzed into 2-AG by DAGL (Di
Marzo et al., 1998; Piomelli, 2003). If the Epac agonist 8-CPT
enabled DSI through activation of the PLC� ¡ DAG ¡ 2-AG
pathway, then DAGL inhibitors should block 8-CPT-induced fa-
cilitation of DSI and I-LTD. To test this possibility, we examined
the effects of DO34, a recently developed, highly selective and
potent DAG lipase inhibitor (Ogasawara et al., 2016), on DSI and
I-LTD in wild-type slices. DO53, an inactive analog of DO34, was
used as a negative control (Ogasawara et al., 2016). Slices were
pretreated with DO34 (1 	M) or DO53 (10 	M) for 30 min and
these compounds were present in the ACSF throughout the ex-
periments. 8-CPT was included in the internal solution used for
whole-cell recordings. We found that DO53 did not significantly
alter DSI (31.7 	 10.2%, n 
 8; Fig. 4A) and I-LTD (68.5 	 9.5%
of baseline, n 
 6; t(10) 
 3.2, p 
 0.010; Fig. 4B), whereas DO34
blocked DSI (2.4 	 2.6%, n 
 10; t(16) 
 3.1, p 
 0.007; Fig. 4A)
and I-LTD (90.4 	 8.4% of baseline, n 
 7; t(12) 
 1.1, p 
 0.275;
Fig. 4B). These results suggest that 8-CPT enabled I-LTD via the
PLC� ¡ DAG ¡ 2-AG pathway.

We examined whether intracellular perfusion of a higher con-
centration of 8-CPT (300 	M) via the patch pipette during whole-
cell recordings affected basal IPSCs in VTA dopamine neurons.
Recordings were initially made with 8-CPT-free internal solu-
tion. After stable baseline recordings of IPSCs for 5 min, 8-CPT
was perfused to the tip of the patch pipette (see Materials and
Methods). We found that 8-CPT perfusion caused gradual de-
pression of IPSCs in Epac�/� slices (72.3 	 6.8% of baseline, n 

7; t(12) 
 3.0, p 
 0.011) but not in Epac2�/� slices (93.6 	 7.7%
of baseline, n 
 7; t(12) 
 0.4, p 
 0.695; Fig. 5A). 8-CPT-induced
depression in Epac�/� slices was blocked by the DAGL inhibitor
DO34 (1 	M; 96.8 	 8.2% of baseline, n 
 6; t(11) 
 2.3, p 
 0.043
vs control; Fig. 5B) but was not significantly affected by the PKA
inhibitor H89 (70.4 	 6.3% of baseline, n 
 7; t(13) 
 0.2, p 

0.809 vs control; Fig. 5B). In the latter experiment, slices were
incubated (�1 h) and continuously superfused with H89 (10
	M). We and others have shown that under this condition H89
was effective in blocking PKA signaling (Chevaleyre et al., 2007;
Pan et al., 2008b). Together, these results indicate that 8-CPT
depresses basal IPSCs through the activation of the Epac¡ PLC�
¡ DAG ¡ 2-AG pathway.

Epac2 is required for the reduction of GABAergic inhibition
to dopamine neurons induced by cocaine CPP
We and others have shown that in vivo exposure to cocaine re-
duces GABAergic inhibition to VTA dopamine neurons in mid-
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brain slices ex vivo (Liu et al., 2005; Bocklisch et al., 2013). Our
previous studies suggest that the endocannabinoid-mediated
I-LTD provides a putative mechanism for cocaine-induced re-
duction of GABAergic inhibition (Pan et al., 2008a). Having
shown that Epac2 is required for I-LTD induction in VTA dopa-
mine neurons, we next determined whether cocaine CPP altered
spontaneous IPSCs (sIPSCs) in the VTA and, if so, whether the
alteration was dependent on Epac2. Epac�/� and Epac2�/� mice
underwent saline and cocaine conditioning. Three mice that ex-
hibited unconditioned place preference (�180 s) during the pre-
test were excluded from further experiments. The remaining
mice did not exhibit baseline bias (p � 0.05; Fig. 6A). Then,
cocaine (15 mg/kg, i.p.) or saline place conditioning was con-
ducted twice daily for 2 d. CPP was tested the next day without
any drug or vehicle administration. Two-way ANOVA revealed
that genotype (F(1,36) 
 12.8, p 
 0.001) and cocaine place con-
ditioning (F(1,36) 
 64.1, p � 0.001) had significant main effects

on the preference score, and there was a significant interaction
between genotype and cocaine conditioning (F(1,36) 
 9.7, p 

0.004; Fig. 6B). Tukey’s post hoc tests showed that cocaine condi-
tioning led to a significant increase in the preference score
(p � 0.001) in Epac�/� mice and that cocaine CPP was attenu-
ated in Epac2�/� mice (p � 0.001; Fig. 6B). These results are
consistent with our recent studies showing that cocaine CPP is
reduced in Epac2�/� mice (Liu et al., 2016).

One day after the CPP test, the mice were killed and midbrain
slices were prepared. Spontaneous IPSCs were recorded from
VTA dopamine neurons in these four groups of mice. We found
that cocaine treatment and genotype had significant effects on the
mean amplitude of sIPSCs (cocaine: F(1,47) 
 5.9, p 
 0.019;
genotype: F(1,47) 
 5.9, p 
 0.020; cocaine � genotype interac-
tion: F(1,47) 
 15.8, p � 0.001; Fig. 6C,D) and the mean frequency
of sIPSCs (cocaine: F(1,47) 
 4.5, p 
 0.040; genotype: F(1,47) 

9.2, p 
 0.004; cocaine � genotype interaction: F(1,47) 
 9.5, p 


Figure 3. PLC� is required for 8-CPT-induced facilitation of DSI and I-LTD, but is not required for DHPG-induced or DHF-induced facilitation of DSI. A, 8-CPT enabled DSI in wild-type (WT) slices,
but not in PLC��/� slices (n 
 8 –9, p � 0.001). B, The mGluR1 agonist DHPG-enabled DSI was not altered in PLC��/� slices (n 
 7– 8, p 
 0.985). C, TrkB agonist DHF-enabled DSI was not
altered in PLC� �/� slices (n 
 7–9, p 
 0.750). D, 8-CPT enabled I-LTD in WT slices (n 
 6, p 
 0.009). This I-LTD was absent in PLC��/� slices (n 
 6, p 
 0.697).
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0.004; Fig. 6C,E). Tukey’s post hoc tests indicated that cocaine
conditioning significantly decreased the mean amplitude (p �
0.001; Fig. 6D) and frequency of sIPSCs (p � 0.001; Fig. 6E) in
Epac�/� mice. The cocaine-induced decreases in the amplitude
and frequency of sIPSCs were absent in Epac2�/� mice (p �
0.001; Fig. 6D,E). The cumulative distribution for the amplitude
of sIPSCs was shifted to the left (i.e., smaller value) in Epac�/�

mice that received cocaine conditioning, and this shift was
blocked in Epac2�/� mice (Fig. 6F). The cumulative distribution
for interevent intervals of sIPSCs was shifted to the right (i.e.,
longer interval and less frequent) in Epac�/� mice that received
cocaine conditioning, and this shift was blocked in Epac2�/�

mice (Fig. 6G). Together, these results indicate that cocaine CPP
led to the decrease in sIPSC amplitude and frequency in Epac�/�

mice, and this decrease was blocked in Epac2�/� mice.

Cocaine-induced reduction of GABAergic inhibition was
attenuated in PLC��/� mice
Having shown that Epac2 is required for the cocaine-induced
decrease in sIPSCs in VTA dopamine neurons (Fig. 6), we next
determined whether PLC� is involved in this process. We exam-
ined whether cocaine-induced reduction of GABAergic inhibi-
tion was altered in PLC��/� mice. Wild-type and PLC��/� mice
underwent saline and cocaine conditioning as described above.
CPP was tested the next day without any drug or vehicle admin-
istration. Two-way ANOVA revealed that genotype (F(1,36) 

11.4, p 
 0.002) and cocaine place conditioning (F(1,36) 
 127.2,
p � 0.001) had significant main effects on the preference score,
and there was a significant interaction between genotype and
cocaine conditioning (F(1,36) 
 7.6, p 
 0.009; Fig. 7B). Tukey’s
post hoc tests showed that cocaine conditioning led to a significant

Figure 4. The DAGL inhibitor DO34 blocked DSI and I-LTD in wild-type slices. A, B, DAGL inhibitor DO34, but not the inactive analog DO53, blocked 8-CPT-enabled DSI (n 
 8 –10, p 
 0.007;
A) and I-LTD (n 
 6 –7, p 
 0.010; B).

Figure 5. Intracellular perfusion of a higher concentration of 8-CPT (300 	M) depressed basal IPSCs. A, 8-CPT depressed IPSCs in Epac�/� slices (n 
 7, p 
 0.011) but not in
Epac2�/� slices (n 
 7, p 
 0.695). B, 8-CPT-induced depression of IPSCs in the Epac�/� slices was blocked by the DAGL inhibitor DO34 (n 
 6 –7, p 
 0.043) but was unaffected by
the PKA inhibitor H89 (n 
 7– 8, p 
 0.809).
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increase in the preference score (p � 0.001) in wild-type mice,
and cocaine-induced CPP was attenuated in PLC��/� mice (p �
0.001; Fig. 7B).

One day after the CPP test, the mice were killed and midbrain
slices were prepared. Spontaneous IPSCs were recorded from
VTA dopamine neurons in these four groups of mice. We found

that cocaine conditioning (F(1,55) 
 16.6, p � 0.001) and geno-
type (F(1,55) 
 4.9, p 
 0.032) had significant effects on the mean
amplitude of sIPSCs, and there was a significant interaction be-
tween cocaine conditioning and genotype (F(1,55) 
 27.9, p �
0.001; Fig. 7C,D). Tukey’s post hoc tests indicated that cocaine
conditioning significantly decreased the mean amplitude of

Figure 6. Epac2 is required for the reduction of GABAergic inhibition to dopamine neurons induced by cocaine conditioning. A, Epac�/� and Epac2�/� mice exhibited no significant
unconditioned preference in each chamber during pretest (n 
 9 –10, p � 0.05). B, In Epac�/� mice, cocaine conditioning induced a significant increase in preference score compared with saline
conditioning (n 
 9 –10, ***p � 0.001). Epac2�/� mice exhibited a significant decrease in the preference score compared with that of Epac�/� mice (n 
 9 –10, ***p � 0.001).
C, Representative sIPSCs recorded from VTA dopamine neurons in slices prepared from saline-conditioned or cocaine-conditioned Epac�/� or Epac2�/� mice. D, E, The averaged amplitude (D) and
frequency (E) of sIPSCs in VTA dopamine neurons in these four groups of mice. The mean amplitude and frequency of sIPSCs were significantly decreased in cocaine-conditioned Epac�/� mice (both
n 
 12, ***p � 0.001), and this decrease was blocked in Epac2�/� mice (both n 
 12, ***p � 0.001). F, G, The cumulative probability plots indicated that cocaine conditioning led to shifts in
the distribution of the amplitude (F ) and interevent intervals (G) in Epac�/� mice. These shifts were blocked in Epac2�/� mice (n 
 12, p � 0.01).
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sIPSCs (p � 0.001; Fig. 7D) in wild-type mice; this decrease was
blocked in PLC��/� mice (p � 0.001; Fig. 7D). The cumulative
distribution for the amplitude of sIPSCs was shifted to the left
(i.e., smaller value) in wild-type mice that received cocaine con-
ditioning, and this shift was blocked in PLC��/� mice (Fig. 7F).

Cocaine conditioning (F(1,55) 
 6.5, p 
 0.014) and genotype
(F(1,55) 
 10.9, p 
 0.002) had significant effects on the mean
frequency of sIPSCs, and there was a significant interaction be-
tween cocaine conditioning and genotype (F(1,55) 
 15.7, p �

0.001; Fig. 7C,E). Tukey’s post hoc tests indicated that cocaine
conditioning significantly decreased the frequency of sIPSCs
(p � 0.001; Fig. 7E) in wild-type mice, and this decrease was
blocked in PLC��/� mice (p � 0.001; Fig. 7E). The cumulative
distribution for interevent intervals of sIPSCs was shifted to the
right (i.e., longer interval and less frequent) in wild-type mice
that received cocaine conditioning, and this shift was blocked in
PLC��/� mice (Fig. 7G). Together, these results indicate that
cocaine CPP led to the reduction of GABAergic inhibition to

Figure 7. Cocaine conditioning-induced reduction of GABAergic inhibition was attenuated in PLC��/� mice. A, Wild-type (WT) and PLC��/� mice exhibited no significant unconditioned
preference (baseline bias) in each chamber during pretest (n 
 8 –10, p � 0.05). B, Cocaine CPP was attenuated in PLC��/� mice compared with that of WT mice (n 
 9 –10, ***p � 0.01).
C, Representative sIPSCs recorded from VTA dopamine neurons in slices prepared from saline-conditioned or cocaine-conditioned WT or PLC��/� mice. D, E, The averaged amplitude (D) and
frequency (E) of sIPSCs in VTA dopamine neurons in these four groups of mice. The mean amplitude and frequency of sIPSCs were significantly decreased in cocaine-conditioned WT mice (n 

14 –15, ***p � 0.001), and this decrease was blocked in PLC��/� mice (both n 
 14, ***p � 0.001). F, G, The cumulative probability plots indicated that cocaine conditioning led to shifts in the
distribution of the amplitude (F ) and interevent intervals (G) in WT mice. These shifts were blocked in PLC��/� mice (n 
 12, p � 0.01).
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VTA dopamine neurons in wild-type mice, and this reduction
was blocked in PLC��/� mice.

Cocaine CPP produced Epac2-PLC�-dependent increase in
action potential firing of VTA dopamine neurons in vivo
Cocaine-induced reduction of the amplitude and frequency
sIPSCs in VTA dopamine neurons may cause disinhibition and
therefore increase the excitability of these neurons. To test this,
we made in vivo single-unit extracellular recordings from VTA do-
pamine neurons in saline-conditioned and cocaine-conditioned

wild-type, Epac2�/�, and PLC��/� mice shown in Figures 6 and
7, respectively. One day after the CPP test, the mice were anes-
thetized with urethane and in vivo single-unit recordings were
performed. Dopamine neurons were identified by a broad tripha-
sic extracellular action potential with a width of �2 ms and a
relatively slow firing rate (�10 Hz; Ungless et al., 2004; Fig.
8A,B). Dopamine neurons were validated postmortem via juxta-
cellular labeling with neurobiotin and TH immunostaining
(Ungless et al., 2004; Chaudhury et al., 2013; Fig. 8A). In
Epac2�/� mice, we found that cocaine place conditioning and

Figure 8. The Epac-PLC� pathway is required for cocaine conditioning-induced increase in action potential firing of VTA dopamine neurons in vivo. A, Dopamine neurons were identified by a
broad triphasic extracellular action potential of a width of �2 ms and juxtacellular labeling with neurobiotin. Post hoc immunostaining showed that the electrophysiologically identified dopamine
neuron was colabeled with neurobiotin (green) and TH (red). B, Examples of action potential firing recorded from saline-conditioned or cocaine-conditioned Epac�/� and Epac2�/� mice. C, D,
Cocaine conditioning led to increases in the frequency of action potential firing (C) and the proportion of spikes that occurred in a burst (D) in Epac�/� mice (both n 
 12–13, ***p � 0.001). These
increases were blocked in Epac2�/� mice (n 
 13–14, ***p � 0.001). E, F, Repeated cocaine exposure caused increases in the frequency of action potential firing (E) and the proportion of spikes
that occurred in a burst (F; both n 
 11–12, ***p � 0.001) in WT mice. These increases were blocked in PLC��/� mice (both n 
 12–15, ***p � 0.001).
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genotype had significant effects on the frequency of action poten-
tial firing (cocaine: F(1,51) 
 21.1, p � 0.001; Epac2�/�: F(1,51) 

26.0, p � 0.001; cocaine � Epac2�/� interaction F(1,51) 
 17.9,
p � 0.001; Fig. 8B,C), and the percentage of spikes in bursts in
VTA dopamine neurons (cocaine: F(1,51) 
 14.4, p � 0.001;
Epac2�/�: F(1,51) 
 11.9, p 
 0.001; cocaine � Epac2�/� interac-
tion: F(1,51) 
 11.3, p 
 0.002; Fig. 8B,D). Tukey’s post hoc tests
indicated that cocaine place conditioning significantly increased
the frequency of action potential firing and the percentage of
spikes in bursts in Epac�/� mice (both p’s � 0.001), but not in
Epac2�/� mice (both p’s � 0.05). There were no significant dif-
ferences of the firing frequency and the percentage of spikes in
bursts between Epac�/� and Epac2�/� mice that received saline
conditioning (both p’s � 0.05).

In PLC��/� mice, cocaine place conditioning and genotype
had significant effects on the frequency of action potential firing
(cocaine: F(1,50) 
 14.4, p � 0.001; PLC��/�: F(1,50) 
 14.1, p �
0.001; cocaine � PLC��/� interaction F(1,50) 
 29.9, p � 0.001;
Fig. 8E), and the percentage of spikes in bursts in VTA dopamine
neurons (cocaine: F(1,50) 
 11.1, p 
 0.001; PLC��/�: F(1,50) 

6.4, p 
 0.015; cocaine � PLC��/� interaction: F(1,50) 
 21.4,
p � 0.001; Fig. 8F). Tukey’s post hoc tests indicated that cocaine
place conditioning significantly increased the frequency of action
potential firing and the percentage of spikes in bursts in wild-type
mice (both p’s � 0.001), but not in PLC��/� mice (both p’s �
0.05). There were no significant differences of the firing fre-
quency and the percentage of spikes in bursts between wild-type
and PLC��/� mice that received saline conditioning (both p’s �
0.05). Thus, cocaine place conditioning caused an increase in the
excitability of VTA dopamine neurons, and this increase was
blocked in Epac2 and PLC� knock-out mice.

Discussion
The present study has shown that the selective Epac agonist
8-CPT enabled CB1 receptor-mediated DSI and I-LTD in VTA
dopamine neurons in wild-type mice, and the effects of 8-CPT
were blocked in Epac2-deficient and PLC�-deficient mice. These
results uncovered a novel mechanism for on-demand synthesis of
retrograde signaling 2-AG by the Epac2-PLC� pathway. In addi-
tion, we provide evidence that Epac2-PLC� is required for the
reduction of GABAergic inhibition to VTA dopamine neurons
induced by cocaine place conditioning.

Facilitation of DSI and I-LTD by 8-CPT
Consistent with previous studies (Pan et al., 2008a), we found
that depolarization of VTA dopamine neurons was not sufficient
to induce DSI in VTA dopamine neurons, and repetitive synaptic
stimulation at 10 Hz for 5 min was subthreshold for I-LTD in-
duction. The present study showed that 8-CPT enabled DSI and
I-LTD, and the effects of 8-CPT were blocked in Epac2�/� mice,
but not in Epac1�/� mice. Thus, 8-CPT facilitated DSI and I-LTD
by activating Epac2. The lack of effects in Epac1�/� mice may be
explained by low expression of Epac1 in the brain (Kawasaki et
al., 1998; de Rooij et al., 1998; Ostroveanu et al., 2010). Previous
studies have shown that robust DSI was induced by depolariza-
tion alone in rat VTA dopamine neurons (Melis et al., 2009,
2013b, 2014). In these studies, IPSCs were evoked by selectively
stimulating rostromedial tegmental nucleus (RMTg) afferents,
which highly express CB1 receptors (Melis et al., 2014). In sup-
port of this premise, the CB1 receptor agonist WIN55212-2 pro-
duced robust depression of IPSCs evoked by stimulating the
RMTg and blocked RMTg-evoked suppression of VTA dopa-
mine neuron firing (Melis et al., 2009; Lecca et al., 2012). In the

present study, IPSCs were evoked by nonselectively stimulating
inhibitory synaptic inputs, which may potentially account for the
absence of DSI from depolarization alone in our study.

DSI and I-LTD are mediated by the activation of CB1 recep-
tors by 2-AG, as they were blocked by pharmacological inhibition
or genetic knock-out of DAGL (Chevaleyre and Castillo, 2003;
Pan et al., 2009; Gao et al., 2010; Tanimura et al., 2010) and
prolonged by monoacylglycerol lipase inhibitors (Pan et al., 2009;
Patel et al., 2009; Straiker et al., 2009). Indeed, we found that
8-CPT-enabled DSI and I-LTD were abolished by a recently de-
veloped, highly selective, and potent DAGL inhibitor DO34
(Ogasawara et al., 2016), but not by the inactive analog DO53.
Thus, an increase in 2-AG production is likely responsible for
8-CPT-induced facilitation of DSI and I-LTD. In support of this
idea, we found that intracellular perfusion of a high concentra-
tion of 8-CPT (300 	M) induced depression of IPSCs in Epac�/�

slices, and the 8-CPT-induced depression was blocked by DO34
and was absent in Epac2�/� slices. These results provide evidence
that 8-CPT facilitated DSI and I-LTD by increasing 2-AG
production.

The group-I mGluR agonist DHPG induces 2-AG-mediated
retrograde synaptic depression (Maejima et al., 2001; Varma et
al., 2001) and facilitates DSI (Varma et al., 2001; Edwards et al.,
2006). The effects of DHPG are likely mediated by increasing
2-AG production. Group-I mGluRs are coupled to PLC�
(Hashimotodani et al., 2005), which cleaves PIP2 into IP3 and
DAG, and the latter is subsequently converted into 2-AG by
DAGL (Di Marzo et al., 1998; Piomelli, 2003). There are at least
six isoforms of PLC (PLC�, PLC�, PLC�, PLC�, PLC�, PLC�;
Rhee and Bae, 1997; Hwang et al., 2005), and among them, PLC�
is required for 2-AG synthesis induced by group-I mGluR activa-
tion and depolarization-induced Ca 2� influx (Hashimotodani et
al., 2005). TrkB receptor agonists BDNF and DHF enhance DSI
and I-LTD in VTA dopamine neurons (Zhong et al., 2015). Given
that TrkB is coupled to PLC� (Reichardt, 2006), a role for PLC�
in 2-AG synthesis has been speculated but has not been examined
experimentally (Zhong et al., 2015). Epac activates PLC� via its
direct effector, the small GTPase Rap (Schmidt et al., 2001; Oes-
treich et al., 2007). We tested the possibility that 8-CPT enabled
DSI and I-LTD through activation of PLC� and found that the
effects of 8-CPT on DSI and I-LTD were absent in PLC��/�

slices. The lack of effects of 8-CPT cannot be attributed to gross
disruption of 2-AG production due to permanent loss of PLC�
from early development, since the mGluR agonist DHPG and the
TrkB agonist DHF enabled DSI in wild-type and PLC��/� slices.
These results suggest that activation of the Epac2-PLC� pathway
induces synthesis of retrograde signaling 2-AG. Although all
PLC isoforms are capable of producing DAG (Rhee and Bae,
1997; Hwang et al., 2005), 2-AG production via mGluRs and
depolarization-induced Ca 2� influx was previously only linked
to PLC� (Hashimotodani et al., 2005). The present results pro-
vide evidence that PLC� is involved in synthesizing retrograde
signaling 2-AG.

Regulation of cocaine-induced reduction of GABAergic inhibition
by the Epac2-PLC� pathway
We have shown that repeated cocaine exposure in vivo reduces
the strength of GABAergic inhibition to VTA dopamine neurons
(Liu et al., 2005; Pan et al., 2008a), which primes excitatory syn-
apses for LTP induction (Liu et al., 2005; Pan et al., 2011).
Endocannabinoid-mediated I-LTD may constitute a mechanism
for cocaine-induced reduction of GABAergic inhibition (Pan et
al., 2008a). Having shown that 8-CPT enabled DSI and I-LTD via
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activating Epac2 and PLC�, we examined whether the Epac-
PLC� pathway is required for the reduction of GABAergic inhi-
bition to VTA dopamine neurons induced by cocaine exposure in
vivo. We have shown recently that cocaine CPP was impaired in
Epac2�/� mice but was not altered in Epac1�/� mice (Liu et al.,
2016). We examined whether cocaine CPP was accompanied by a
change in GABAergic inhibition to VTA dopamine neurons. The
results showed that cocaine place conditioning caused decreases
in the frequency and amplitude of sIPSCs in wild-type mice, but
not in Epac2�/� mice or in PLC��/� mice. Thus, the Epac-PLC�
pathway is required for the cocaine-induced reduction of
GABAergic inhibition to VTA dopamine neurons, and the dis-
ruption of Epac signaling attenuates the behavioral reinforce-
ment induced by cocaine. Although cocaine-induced decreases in
amplitude and frequency of sIPSCs were blocked in the Epac2�/�

mice, CPP was only attenuated in these mice. CPP is a complex
behavior that is likely involved in multiple signaling pathways
and multiple brain regions (Bardo and Bevins, 2000).

What might be the mechanism for the involvement of Epac-
PLC� in cocaine-induced reduction of GABAergic inhibition? A
common cocaine-induced neuroadaptation is an upregulation of
cAMP signaling in the mesolimbic dopamine system (Nestler,
2001; Anderson and Pierce, 2005). Repeated cocaine exposure in
vivo leads to reduction of G
i/o-protein levels (Nestler et al., 1990;
Striplin and Kalivas, 1992) and enhancement of adenylate
cyclase activity and cAMP accumulation (Watts and Neve, 2005).
Cocaine-induced upregulation of cAMP signaling may activate
the Epac-PLC� pathway, leading to increased 2-AG production.
The repeated activation of this signaling cascade may induce an
I-LTD-like synaptic modulation via cAMP-induced Epac2 acti-
vation in VTA dopamine neurons, leading to 2-AG synthesis and
a reduction in the strength of GABAergic inhibition to VTA do-
pamine neurons. By activating PLC�, Epac links the cAMP-
adenylate cyclase pathway and the DAG/IP3-PLC pathway and
provides a novel mechanism for the crosstalk between these two
common G-protein signaling pathways.

Epac2-PLC� is required for cocaine-induced increase in dopamine
neuron excitability
Cocaine-induced reduction of GABAergic inhibition causes dis-
inhibition of VTA dopamine neurons and increases their excit-
ability (Liu et al., 2005; Bocklisch et al., 2013). We found that
cocaine conditioning increased in vivo action potential firing in
VTA dopamine neurons, and this increase was blocked in
Epac2�/� and PLC��/� mice. Thus, the Epac2-PLC� pathway is
involved in the cocaine-induced increase in excitability in VTA
dopamine neurons. We have shown that intraperitoneal injec-
tion of AM251 blocked the decreases in IPSCs in VTA dopamine
neurons induced by repeated cocaine exposure in vivo (Pan et al.,
2008a). It is thus likely that endocannabinoid signaling contrib-
utes to cocaine-induced reduction of GABAergic inhibition and
the increase in action potential firing. Cocaine exposure in vivo
in rats or mice led to increases in insertion of GluA2-lacking
AMPARs (Bellone and Lüscher, 2006; Good and Lupica, 2010;
Liu et al., 2016) and in AMPAR/NMDAR ratio (Ungless et al.,
2001; Borgland et al., 2004; Liu et al., 2005; Bellone and Lüscher,
2006; Mameli et al., 2007; 2009; Argilli et al., 2008). We have
shown that Epac2 is required for both effects of cocaine (Liu et al.,
2016). Thus, it is likely that both the cocaine-induced increase in
the strength of excitatory synapses and decrease in the strength of
inhibitory synapses contribute to the increase in excitability and
action potential firing in VTA dopamine neurons.

In summary, we have shown that 8-CPT facilitated DSI and
I-LTD in VTA dopamine neurons, and these effects were medi-
ated via the activation of the Epac-PLC� pathway. In addition,
this signaling pathway is also involved in cocaine conditioning-
induced reduction of GABAergic inhibition and an increase in
dopamine neuron excitability. Together, our studies suggest that
Epac-PLC� plays a critical role in mediating cocaine-induced
long-term synaptic plasticity at both excitatory and inhibitory
synapses.
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