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Abstract

We consider the estimation of sparse graphical models that characterize the dependency structure 

of high-dimensional tensor-valued data. To facilitate the estimation of the precision matrix 

corresponding to each way of the tensor, we assume the data follow a tensor normal distribution 

whose covariance has a Kronecker product structure. The penalized maximum likelihood 

estimation of this model involves minimizing a non-convex objective function. In spite of the non-

convexity of this estimation problem, we prove that an alternating minimization algorithm, which 

iteratively estimates each sparse precision matrix while fixing the others, attains an estimator with 

the optimal statistical rate of convergence as well as consistent graph recovery. Notably, such an 

estimator achieves estimation consistency with only one tensor sample, which is unobserved in 

previous work. Our theoretical results are backed by thorough numerical studies.

1 Introduction

High-dimensional tensor-valued data are prevalent in many fields such as personalized 

recommendation systems and brain imaging research [1, 2]. Traditional recommendation 

systems are mainly based on the user-item matrix, whose entry denotes each user’s 

preference for a particular item. To incorporate additional information into the analysis, such 

as the temporal behavior of users, we need to consider a user-item-time tensor. For another 

example, functional magnetic resonance imaging (fMRI) data can be viewed as a three way 

(third-order) tensor since it contains the brain measurements taken on different locations 

over time for various experimental conditions. Also, in the example of microarray study for 

aging [3], thousands of gene expression measurements are recorded on 16 tissue types on 40 

mice with varying ages, which forms a four way gene-tissue-mouse-age tensor.

In this paper, we study the estimation of conditional independence structure within tensor 

data. For example, in the microarray study for aging we are interested in the dependency 
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structure across different genes, tissues, ages and even mice. Assuming data are drawn from 

a tensor normal distribution, a straightforward way to estimate this structure is to vectorize 

the tensor and estimate the underlying Gaussian graphical model associated with the vector. 

Such an approach ignores the tensor structure and requires estimating a rather high 

dimensional precision matrix with insufficient sample size. For instance, in the 

aforementioned fMRI application the sample size is one if we aim to estimate the 

dependency structure across different locations, time and experimental conditions. To 

address such a problem, a popular approach is to assume the covariance matrix of the tensor 

normal distribution is separable in the sense that it is the Kronecker product of small 

covariance matrices, each of which corresponds to one way of the tensor. Under this 

assumption, our goal is to estimate the precision matrix corresponding to each way of the 

tensor. See § 1.1 for a detailed survey of previous work.

Despite the fact that the assumption of the Kronecker product structure of covariance makes 

the statistical model much more parsimonious, it poses significant challenges. In particular, 

the penalized negative log-likelihood function is non-convex with respect to the unknown 

sparse precision matrices. Consequently, there exists a gap between computational and 

statistical theory. More specifically, as we will show in §1.1, existing literature mostly 

focuses on establishing the existence of a local optimum that has desired statistical 

guarantees, rather than offering efficient algorithmic procedures that provably achieve the 

desired local optima. In contrast, we analyze an alternating minimization algorithm which 

iteratively minimizes the non-convex objective function with respect to each individual 

precision matrix while fixing the others. The established theoretical guarantees of the 

proposed algorithm are as follows. Suppose that we have n observations from a K-th order 

tensor normal distribution. We denote by mk, sk, dk (k = 1,…, K) the dimension, sparsity, 

and max number of non-zero entries in each row of the precision matrix corresponding to 

the k-th way of the tensor. Besides, we define . The k-th precision matrix 

estimator from our alternating minimization algorithm achieves a 

 statistical rate of convergence in Frobenius norm, which is 

minimax-optimal since this is the best rate one can obtain even when the rest K − 1 true 

precision matrices are known [4]. Furthermore, under an extra irrepresentability condition, 

we establish a  rate of convergence in max norm, which is also optimal, 

and a  rate of convergence in spectral norm. These estimation 

consistency results and a sufficiently large signal strength condition further imply the model 

selection consistency of recovering all the edges. A notable implication of these results is 

that, when K ≥ 3, our alternating minimization algorithm can achieve estimation consistency 

in Frobenius norm even if we only have access to one tensor sample, which is often the case 

in practice. This phenomenon is unobserved in previous work. Finally, we conduct extensive 

experiments to evaluate the numerical performance of the proposed alternating minimization 

method. Under the guidance of theory, we propose a way to significantly accelerate the 

algorithm without sacrificing the statistical accuracy.
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1.1 Related work and our contribution

A special case of our sparse tensor graphical model when K = 2 is the sparse matrix 

graphical model, which is studied by [5–8]. In particular, [5] and [6] only establish the 

existence of a local optima with desired statistical guarantees. Meanwhile, [7] considers an 

algorithm that is similar to ours. However, the statistical rates of convergence obtained by [6, 

7] are much slower than ours when K = 2. See Remark 3.6 in §3.1 for a detailed comparison. 

For K = 2, our statistical rate of convergence in Frobenius norm recovers the result of [5]. In 

other words, our theory confirms that the desired local optimum studied by [5] not only 

exists, but is also attainable by an efficient algorithm. In addition, for matrix graphical 

model, [8] establishes the statistical rates of convergence in spectral and Frobenius norms for 

the estimator attained by a similar algorithm. Their results achieve estimation consistency in 

spectral norm with only one matrix observation. However, their rate is slower than ours with 

K = 2. See Remark 3.11 in §3.2 for a detailed discussion. Furthermore, we allow K to 

increase and establish estimation consistency even in Frobenius norm for n = 1. Most 

importantly, all these results focus on matrix graphical model and can not handle the 

aforementioned motivating applications such as the gene-tissue-mouse-age tensor dataset.

In the context of sparse tensor graphical model with a general K, [9] shows the existence of 

a local optimum with desired rates, but does not prove whether there exists an efficient 

algorithm that provably attains such a local optimum. In contrast, we prove that our 

alternating minimization algorithm achieves an estimator with desired statistical rates. To 

achieve it, we apply a novel theoretical framework to separately consider the population and 

sample optimizers, and then establish the onestep convergence for the population optimizer 

(Theorem 3.1) and the optimal rate of convergence for the sample optimizer (Theorem 3.4). 

A new concentration result (Lemma B.1) is developed for this purpose, which is also of 

independent interest. Moreover, we establish additional theoretical guarantees including the 

optimal rate of convergence in max norm, the estimation consistency in spectral norm, and 

the graph recovery consistency of the proposed sparse precision matrix estimator.

In addition to the literature on graphical models, our work is also closely related to a recent 

line of research on alternating minimization for non-convex optimization problems [10–13]. 

These existing results mostly focus on problems such as dictionary learning, phase retrieval 

and matrix decomposition. Hence, our statistical model and analysis are completely different 

from theirs. Also, our paper is related to a recent line of work on tensor decomposition. See, 

e.g., [14–17] and the references therein. Compared with them, our work focuses on the 

graphical model structure within tensor-valued data.

Notation—For a matrix A = (Ai,j) ∈ ℝd×d, we denote ‖A‖∞, ‖A‖2, ‖A‖F as its max, 

spectral, and Frobenius norm, respectively. We define ‖A‖1,off ≔ ∑i≠j |Ai,j| as its off-diagonal 

ℓ1 norm and |‖A‖|∞ ≔ maxi ∑j |Ai,j| as the maximum absolute row sum. Denote vec(A) as the 

vectorization of A which stacks the columns of A. Let tr(A) be the trace of A. For an index 

set  = {(i, j), i, j ∈ {1,…, d}}, we define [A]  as the matrix whose entry indexed by (i, j) ∈ 
 is equal to Ai,j, and zero otherwise. We denote 𝟙d as the identity matrix with dimension 

d×d. Throughout this paper, we use C, C1, C2,… to denote generic absolute constants, 

whose values may vary from line to line.
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2 Sparse tensor graphical model

2.1 Preliminary

We employ the tensor notations used by [18]. Throughout this paper, higher order tensors are 

denoted by boldface Euler script letters, e.g. . We consider a K-th order tensor  ∈ 
ℝm1×m2×⋯×mK. When K = 1 it reduces to a vector and when K = 2 it reduces to a matrix. 

The (i1,…, iK)-th element of the tensor  is denoted to be i1,…,iK. Meanwhile, we define 

the vectorization of  as vec( ) ≔ ( 1,1,…,1,…, m1,1,…,1,…, 1,m2,…,mK, 

m1,m2,…,mK)⊤ ∈ ℝm with m = ∏k mk. In addition, we define the Frobenius norm of a 

tensor  as .

For tensors, a fiber refers to the higher order analogue of the row and column of matrices. A 

fiber is obtained by fixing all but one of the indices of the tensor, e.g., the mode-k fiber of 

(k) is given by i1,…,,ik−1,:,ik+1,…,iK. Matricization, also known as unfolding, is the 

process to transform a tensor into a matrix. We denote (k) as the mode-k matricization of a 

tensor , which arranges the mode-k fibers to be the columns of the resulting matrix. 

Another useful operation in tensors is the k-mode product. The k-mode product of a tensor 

 ∈ ℝm1×m2×⋯×mK with a matrix A ∈ ℝJ×mk is denoted as  ×k A and is of the size m1 × 

⋯× mk−1 × J × mk+1 × ⋯ × mK. Its entry is defined as 

. In addition, for a list of matrices {A1,

…, AK} with Ak ∈ ℝmk×mk, k = 1,…, K, we define  × {A1,…, AK} ≔  ×1 A1 ×2 × ⋯ 
×K AK.

2.2 Model

A tensor  ∈ ℝm1×m2×⋯×mK follows the tensor normal distribution with zero mean and 

covariance matrices Σ1,…, ΣK, denoted as  ~ TN(0, Σ1,…, ΣK), if its probability density 

function is

(2.1)

where  and . When K = 1, this tensor normal 

distribution reduces to the vector normal distribution with zero mean and covariance Σ1. 

According to [9, 18], it can be shown that  ~ TN(0, Σ1,…, ΣK) if and only if vec( ) ~ 

N(vec(0);ΣK ⊗ ⋯ ⊗ Σ1), where vec(0) ∈ ℝm and ⊗ is the matrix Kronecker product.

We consider the parameter estimation for the tensor normal model. Assume that we observe 

independently and identically distributed tensor samples 1,…, n from TN(0; 

). We aim to estimate the true covariance matrices ( ) and their 

corresponding true precision matrices ( ) where . To 

address the identifiability issue in the parameterization of the tensor normal distribution, we 
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assume that  for k = 1,…, K. This renormalization assumption does not change the 

graph structure of the original precision matrix.

A standard approach to estimate , k = 1,…, K, is to use the maximum likelihood method 

via (2.1). Up to a constant, the negative log-likelihood function of the tensor normal 

distribution is , where 

. To encourage the sparsity of each precision matrix in the 

high-dimensional scenario, we consider a penalized log-likelihood estimator, which is 

obtained by minimizing

(2.2)

where Pλk (·) is a penalty function indexed by the tuning parameter λk. In this paper, we 

focus on the lasso penalty [19], i.e., Pλk (Ωk) = λk‖Ωk‖1,off. This estimation procedure 

applies similarly to a broad family of other penalty functions.

We name the penalized model from (2.2) as the sparse tensor graphical model. It reduces to 

the sparse vector graphical model [20, 21] when K = 1, and the sparse matrix graphical 

model [5–8] when K = 2. Our framework generalizes them to fulfill the demand of capturing 

the graphical structure of higher order tensor-valued data.

2.3 Estimation

This section introduces the estimation procedure for the sparse tensor graphical model. A 

computationally efficient algorithm is provided to estimate the precision matrix for each way 

of the tensor.

Recall that in (2.2), qn(Ω1,…, ΩK) is jointly non-convex with respect to Ω1,…, ΩK. 

Nevertheless, qn(Ω1,…, ΩK) is a bi-convex problem since qn(Ω1,…, ΩK) is convex in Ωk 

when the rest K − 1 precision matrices are fixed. The bi-convex property plays a critical role 

in our algorithm construction and its theoretical analysis in §3.

According to its bi-convex property, we propose to solve this non-convex problem by 

alternatively update one precision matrix with other matrices fixed. Note that, for any k = 1,

…, K, minimizing (2.2) with respect to Ωk while fixing the rest K − 1 precision matrices is 

equivalent to minimizing

(2.3)
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Here , where 

 with × the tensor product operation 

and [·](k) the mode-k matricization operation defined in §2.1. The result in (2.3) can be 

shown by noting that  according to 

the properties of mode-k matricization shown by [18]. Hereafter, we drop the superscript k 

of  if there is no confusion. Note that minimizing (2.3) corresponds to estimating vector-

valued Gaussian graphical model and can be solved efficiently via the glasso algorithm [21].

Algorithm 1

Solve sparse tensor graphical model via Tensor lasso (Tlasso)

1: Input: Tensor samples 1…, n, tuning parameters λ1,…, λK, max number of iterations T.

2:

Initialize  randomly as symmetric and positive definite matrices and set t = 0.

3: Repeat:

4: t = t + 1.

5: For k = 1,…, K:

6:

  Given , solve (2.3) for  via glasso [21].

7:

  Normalize  such that .

8: End For

9: Until t = T.

10:

Output: .

The details of our Tensor lasso (Tlasso) algorithm are shown in Algorithm 1. It starts with a 

random initialization and then alternatively updates each precision matrix until it converges. 

In §3, we will illustrate that the statistical properties of the obtained estimator are insensitive 

to the choice of the initialization (see the discussion following Theorem 3.5).

3 Theory of statistical optimization

We first prove the estimation errors in Frobenius norm, max norm, and spectral norm, and 

then provide the model selection consistency of our Tlasso estimator. We defer all the proofs 

to the appendix.

3.1 Estimation error in Frobenius norm

Based on the penalized log-likelihood in (2.2), we define the population log-likelihood 

function as
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(3.1)

By minimizing q(Ω1,…, ΩK) with respect to Ωk, k = 1,…, K, we obtain the population 

minimization function with the parameter Ω[K]−k ≔ {Ω1,…, Ωk−1, Ωk+1,…, ΩK}, i.e.,

(3.2)

Theorem 3.1—For any k = 1,…, K, if Ωj (j ≠ k) satisfies , then the population 

minimization function in (3.2) satisfies .

Theorem 3.1 shows a surprising phenomenon that the population minimization function 

recovers the true precision matrix up to a constant in only one iteration. If , j ≠ k, then 

. Otherwise, after a normalization such that ‖Mk(Ω[K]−k)‖F = 1, the 

normalized population minimization function still fully recovers . This observation 

suggests that setting T = 1 in Algorithm 1 is sufficient. Such a suggestion will be further 

supported by our numeric results.

In practice, when (3.1) is unknown, we can approximate it via its sample version qn(Ω1,…, 

ΩK) defined in (2.2), which gives rise to the statistical error in the estimation procedure. 

Analogously to (3.2), we define the sample-based minimization function with parameter 

Ω[K]−k as

(3.3)

In order to prove the estimation error, it remains to quantify the statistical error induced from 

finite samples. The following two regularity conditions are assumed for this purpose.

Condition 3.2—(Bounded Eigenvalues). For any k = 1,…, K, there is a constant C1 > 0 

such that,

where  and  refer to the minimal and maximal eigenvalue of , 

respectively.

Condition 3.2 requires the uniform boundedness of the eigenvalues of true covariance 

matrices . It has been commonly assumed in the graphical model literature [22].
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Condition 3.3—(Tuning). For any k = 1,…, K and some constant C2 > 0, the tuning 

parameter λk satisfies .

Condition 3.3 specifies the choice of the tuning parameters. In practice, a data-driven tuning 

procedure [23] can be performed to approximate the optimal choice of the tuning 

parameters.

Before characterizing the statistical error, we define a sparsity parameter for , k = 1,…, K. 

Let . Denote the sparsity parameter sk ≔ | k| − mk, which is the 

number of nonzero entries in the off-diagonal component of . For each k = 1,…, K, we 

define  as the set containing  and its neighborhood for some sufficiently large 

constant radius α > 0, i.e.,

(3.4)

Theorem 3.4—Assume Conditions 3.2 and 3.3 hold. For any k = 1,…, K, the statistical 

error of the sample-based minimization function defined in (3.3) satisfies that, for any fixed 

,

(3.5)

where Mk(Ω[K]−k) and M̂
k(Ω[K]−k) are defined in (3.2) and (3.3), and .

Theorem 3.4 establishes the statistical error associated with M̂
k(Ω[K]−k) for arbitrary 

with j ≠ k. In comparison, previous work on the existence of a local solution 

with desired statistical property only establishes theorems similar to Theorem 3.4 for 

with j ≠ k. The extension to an arbitrary  involves non-trivial technical barriers. 

Particularly, we first establish the rate of convergence of the difference between a sample-

based quadratic form with its expectation (Lemma B.1) via Talagrand’s concentration 

inequality [24]. This result is also of independent interest. We then carefully characterize the 

rate of convergence of Sk defined in (2.3) (Lemma B.2). Finally, we develop (3.5) using the 

results for vector-valued graphical models developed by [25].

According to Theorem 3.1 and Theorem 3.4, we obtain the rate of convergence of the Tlasso 

estimator in terms of Frobenius norm, which is our main result.

Theorem 3.5—Assume that Conditions 3.2 and 3.3 hold. For any k = 1,…, K, if the 

initialization satisfies  for any j ≠ k, then the estimator Ω̂
k from Algorithm 1 

with T = 1 satisfies,
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(3.6)

where  and  is defined in (3.4).

Theorem 3.5 suggests that as long as the initialization is within a constant distance to the 

truth, our Tlasso algorithm attains a consistent estimator after only one iteration. This 

initialization condition  trivially holds since for any  that is positive definite 

and has unit Frobenius norm, we have  by noting that 

 for the identifiability of the tensor normal distribution. In literature, 

[9] shows that there exists a local minimizer of (2.2) whose convergence rate can achieve 

(3.6). However, it is unknown if their algorithm can find such minimizer since there could be 

many other local minimizers.

A notable implication of Theorem 3.5 is that, when K ≥ 3, the estimator from our Tlasso 

algorithm can achieve estimation consistency even if we only have access to one 

observation, i.e., n = 1, which is often the case in practice. To see it, suppose that K = 3 and 

n = 1. When the dimensions m1, m2, and m3 are of the same order of magnitude and sk = 

O(mk) for k = 1, 2, 3, all the three error rates corresponding to k = 1, 2, 3 in (3.6) converge 

to zero.

This result indicates that the estimation of the k-th precision matrix takes advantage of the 

information from the j-th way (j ≠ k) of the tensor data. Consider a simple case that K = 2 

and one precision matrix  is known. In this scenario the rows of the matrix data are 

independent and hence the effective sample size for estimating  is in fact nm1. The 

optimality result for the vector-valued graphical model [4] implies that the optimal rate for 

estimating  is , which matches our result in (3.6). Therefore, 

the rate in (3.6) obtained by our Tlasso estimator is minimax-optimal since it is the best rate 

one can obtain even when  are known. As far as we know, this phenomenon has 

not been discovered by any previous work in tensor graphical model.

Remark 3.6—For K = 2, our tensor graphical model reduces to matrix graphical model 

with Kronecker product covariance structure [5–8]. In this case, the rate of convergence of 

Ω̂
1 in (3.6) reduces to , which is much faster than 

 established by [6] and 

 established by [7]. In literature, [5] shows that 

there exists a local minimizer of the objective function whose estimation errors match ours. 

However, it is unknown if their estimator can achieve such convergence rate. On the other 
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hand, our theorem confirms that our algorithm is able to find such estimator with optimal 

rate of convergence.

3.2 Estimation error in max norm and spectral norm

We next show the estimation error in max norm and spectral norm. Trivially, these 

estimation errors are bounded by that in Frobenius norm shown in Theorem 3.5. To develop 

improved rates of convergence in max and spectral norms, we need to impose stronger 

conditions on true parameters.

We first introduce some important notations. Denote dk as the maximum number of non-

zeros in any row of the true precision matrices , that is,

(3.7)

with |·| the cardinality of the inside set. For each covariance matrix , we define 

. Denote the Hessian matrix , whose entry 

 corresponds to the second order partial derivative of the objective function with 

respect to [Ωk]i,j and [Ωk]s,t. We define its sub-matrix indexed by the index set k as 

, which is the | k| × | k| matrix with rows and columns of 

indexed by k and k, respectively. Moreover, we define . In 

order to establish the rate of convergence in max norm, we need to impose an 

irrepresentability condition on the Hessian matrix.

Condition 3.7—(Irrepresentability). For each k = 1,…, K, there exists some αk ∈ (0, 1] 

such that max

Condition 3.7 controls the influence of the non-connected terms in  on the connected 

edges in k. This condition has been widely applied in lasso penalized models [26, 27].

Condition 3.8—(Bounded Complexity). For each k = 1,…, K, the parameters  are 

bounded and the parameter dk in (3.7) satisfies .

Theorem 3.9—Suppose Conditions 3.2, 3.3, 3.7 and 3.8 hold. Assume sk = O(mk) for k = 

1,…, K and assume  are in the same order, i.e., m1 ≍ m2 ≍ ⋯ ≍ mK. For each k, if the 

initialization satisfies  for any j ≠ k, then the estimator Ω̂
k from Algorithm 1 

with T = 2 satisfies,
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(3.8)

In addition, the edge set of Ω̂
k is a subset of the true edge set of , that is, 

.

Theorem 3.9 shows that our Tlasso estimator achieves the optimal rate of convergence in 

max norm [4]. Here we consider the estimator obtained after two iterations since we require 

a new concentration inequality (Lemma B.3) for the sample covariance matrix, which is 

built upon the estimator in Theorem 3.5. A direct consequence from Theorem 3.9 is the 

estimation error in spectral norm.

Corollary 3.10—Suppose the conditions of Theorem 3.9 hold, for any k = 1,…, K, we 

have

(3.9)

Remark 3.11—Now we compare our obtained rate of convergence in spectral norm for K 
= 2 with that established in the sparse matrix graphical model literature. In particular, [8] 

establishes the rate of  for k = 1, 2. Therefore, 

when , which holds for example in the bounded degree graphs, our obtained 

rate is faster. However, our faster rate comes at the price of assuming the irrepresentability 

condition. Using recent advance in nonconvex regularization [28], we can eliminate the 

irrepresentability condition. We leave this to future work.

3.3 Model selection consistency

Theorem 3.9 ensures that the estimated precision matrix correctly excludes all non-

informative edges and includes all the true edges (i, j) with 

for some constant C > 0. Therefore, in order to achieve the model selection consistency, a 

sufficient condition is to assume that, for each k = 1,…, K, the minimal signal 

 is not too small.

Theorem 3.12—Under the conditions of Theorem 3.9, if  for 

some constant C > 0, then for any k = 1,…, K, , with high probability.

Theorem 3.12 indicates that our Tlasso estimator is able to correctly recover the graphical 

structure of each way of the high-dimensional tensor data. To the best of our knowledge, 
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these is the first model selection consistency result in high dimensional tensor graphical 

model.

4 Simulations

We compare the proposed Tlasso estimator with two alternatives. The first one is the direct 

graphical lasso (Glasso) approach [21] which applies the glasso to the vectorized tensor data 

to estimate  directly. The second alternative method is the iterative penalized 

maximum likelihood method (P-MLE) proposed by [9], whose termination condition is set 

to be .

For simplicity, in our Tlasso algorithm we set the initialization of k-th precision matrix as 

𝟙mk for each k = 1,…, K and the total iteration T = 1. The tuning parameter λk is set as 

. For a fair comparison, the same tuning parameter is applied in the P-

MLE method. In the direct Glasso approach, its tuning parameter is chosen by cross-

validation via huge package [29].

We consider two simulations with a third order tensor, i.e., K = 3. In Simulation 1, we 

construct a triangle graph, while in Simulation 2, we construct a four nearest neighbor graph 

for each precision matrix. An illustration of the generated graphs are shown in Figure 1. In 

each simulation, we consider three scenarios, i.e., s1: n = 10 and (m1, m2, m3) = (10, 10, 10); 

s2: n = 50 and (m1, m2, m3) = (10, 10, 10); s3: n = 10 and (m1, m2, m3) = (100, 5, 5). We 

repeat each example 100 times and compute the averaged computational time, the averaged 

estimation error of the Kronecker product of precision matrices 

, the true positive rate (TPR), and the true 

negative rate (TNR). More specifically, we denote  be the (i, j)-th entry of , 

and define  and 

.

As shown in Figure 1, our Tlasso is dramatically faster than both alternative methods. In 

Scenario s3, Tlasso takes about five seconds for each replicate, the P-MLE takes about 500 

seconds while the direct Glasso method takes more than one hour and is omitted in the plot. 

Tlasso algorithm is not only computationally efficient but also enjoys superior estimation 

accuracy. In all examples, the direct Glasso method has significantly larger errors than 

Tlasso due to ignoring the tensor graphical structure. Tlasso outperforms P-MLE in 

Scenarios s1 and s2 and is comparable to it in Scenario s3.

Table 1 shows the variable selection performance. Our Tlasso identifies almost all edges in 

these six examples, while the Glasso and P-MLE method miss several true edges. On the 

other hand, Tlasso tends to include more non-connected edges than other methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Left two plots: illustrations of the generated graphs; Middle two plots: computational time; 

Right two plots: estimation errors. In each group of two plots, the left (right) is for 

Simulation 1 (2).

Sun et al. Page 15

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2017 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Sun et al. Page 16

Ta
b

le
 1

A
 c

om
pa

ri
so

n 
of

 v
ar

ia
bl

e 
se

le
ct

io
n 

pe
rf

or
m

an
ce

. H
er

e 
T

PR
 a

nd
 T

N
R

 d
en

ot
e 

th
e 

tr
ue

 p
os

iti
ve

 r
at

e 
an

d 
tr

ue
 n

eg
at

iv
e 

ra
te

.

Sc
en

ar
io

s
G

la
ss

o
P

-M
L

E
T

la
ss

o

T
P

R
T

N
R

T
P

R
T

N
R

T
P

R
T

N
R

Si
m

 1

s1
0.

27
 (

0.
00

2)
0.

96
 (

0.
00

0)
1 

(0
)

0.
89

 (
0.

00
2)

1(
0)

0.
76

 (
0.

00
4)

s2
0.

34
 (

0.
00

0)
0.

93
 (

0.
00

0)
1 

(0
)

0.
89

 (
0.

00
2)

1(
0)

0.
76

 (
0.

00
4)

s3
/

/
1 

(0
)

0.
93

 (
0.

00
1)

1(
0)

0.
70

 (
0.

00
4)

Si
m

 2

s1
0.

08
 (

0.
00

0)
0.

96
 (

0.
00

0)
0.

93
 (

0.
00

4)
0.

88
 (

0.
00

2)
1(

0)
0.

65
 (

0.
00

5)

s2
0.

15
 (

0.
00

0)
0.

92
 (

0.
00

0)
1 

(0
)

0.
85

 (
0.

00
2)

1(
0)

0.
63

 (
0.

00
5)

s3
/

/
0.

82
 (

0.
00

1)
0.

93
 (

0.
00

1)
0.

99
(0

.0
01

)
0.

38
 (

0.
00

2)

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2017 March 16.


	Abstract
	1 Introduction
	1.1 Related work and our contribution
	Notation


	2 Sparse tensor graphical model
	2.1 Preliminary
	2.2 Model
	2.3 Estimation

	Algorithm 1
	3 Theory of statistical optimization
	3.1 Estimation error in Frobenius norm
	Theorem 3.1
	Condition 3.2
	Condition 3.3
	Theorem 3.4
	Theorem 3.5
	Remark 3.6

	3.2 Estimation error in max norm and spectral norm
	Condition 3.7
	Condition 3.8
	Theorem 3.9
	Corollary 3.10
	Remark 3.11

	3.3 Model selection consistency
	Theorem 3.12


	4 Simulations
	References
	Figure 1
	Table 1

