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Abstract

A hallmark of HIV-1 infection is the continuously declining number of the virus’ predominant

target cells, activated CD4+ T cells. With diminishing CD4+ T cell levels, the capacity to uti-

lize alternate cell types and receptors, including cells that express low CD4 receptor levels

such as macrophages, thus becomes crucial. To explore evolutionary paths that allow HIV-

1 to acquire a wider host cell range by infecting cells with lower CD4 levels, we dissected the

evolution of the envelope-CD4 interaction under in vitro culture conditions that mimicked the

decline of CD4high target cells, using a prototypic subtype B, R5-tropic strain. Adaptation to

CD4low targets proved to severely alter envelope functions including trimer opening as indi-

cated by a higher affinity to CD4 and loss in shielding against neutralizing antibodies. We

observed a strikingly decreased infectivity on CD4high target cells, but sustained infectivity

on CD4low targets, including macrophages. Intriguingly, the adaptation to CD4low targets

altered the kinetic of the entry process, leading to rapid CD4 engagement and an extended

transition time between CD4 and CCR5 binding during entry. This phenotype was also

observed for certain central nervous system (CNS) derived macrophage-tropic viruses,

highlighting that the functional perturbation we defined upon in vitro adaptation to CD4low tar-

gets occurs in vivo. Collectively, our findings suggest that CD4low adapted envelopes may

exhibit severe deficiencies in entry fitness and shielding early in their evolution. Considering

this, adaptation to CD4low targets may preferentially occur in a sheltered and immune-privi-

leged environment such as the CNS to allow fitness restoring compensatory mutations to

occur.
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Author summary

Untreated HIV-1 infection leads to a gradual depletion of CD4+ T cells forcing the virus

to continuously adapt to an ever-decreasing number of suitable target cells. Our data

based on experiments in a highly controlled in vitro setting describe one avenue of enve-

lope adaptation that allows the virus to infect target cells expressing low amounts of CD4

such as macrophages. Analysis of the functional envelope phenotypes associated with

adaptation of the virus to infect target cells expressing low levels of CD4 highlighted

altered entry kinetics of the virus. These alterations resulted in extended exposure of

CD4-induced neutralization sensitive epitopes in combination with an increased sensitiv-

ity to neutralizing antibodies targeting the CD4 binding site and the V3 loop. Interest-

ingly, a similar phenotype was observed for macrophage-tropic HIV-1 isolates derived

from the central nervous system (CNS) of infected individuals raising the possibility that

the immune-privileged CNS may favor the development of macrophage-tropic / low CD4

level utilizing envelope variants.

Introduction

The infection cycle of HIV-1 is intimately linked with the CD4 receptor on target cells. Entry

is initiated by the binding of the viral envelope glycoprotein gp120 to CD4, necessitating a

high conservation of the CD4 binding site (CD4bs) on the viral envelope [1]. At the same time,

the virus faces a humoral immune response targeting the CD4bs [1–4] and disease progression

decreases the pool of available CD4 expressing target cells [5–8]. During disease progression

multiple forces are therefore acting on the envelope glycoprotein and its interplay with CD4.

How these factors shape envelope functional adaptation, and which combination of selective

forces is responsible for giving rise to viral phenotypes observed at late disease stages remains

unclear. A particular conundrum is the capacity of HIV-1 to maintain high level virus produc-

tion at late disease stages, even when the classical target cells, CD4+ T cells, are heavily depleted

[9–12]. Because of this, it was suggested for some time that HIV-1 resolves to replicate in other

cell types at later stages [13, 14], which can be linked with use of alternative coreceptors

(reviewed in [15–17]). Differential receptor usage most commonly includes varying the capac-

ity of Env to bind CD4 or CCR5, and switching coreceptor use to CXCR4. All of these pheno-

types have been observed in late disease states in vivo [18–22].

HIV-1 enters host cells by first binding to CD4 [23, 24] via the gp120 surface glycoprotein

subunit [25]. CD4 binding triggers conformational changes in gp120 that expose the co-recep-

tor binding sites to attach to either of the two main co-receptors; CCR5 (R5) [26, 27] or

CXCR4 (X4) [28]. The dynamics of CD4 and CCR5 and/or CXCR4 use are important determi-

nants of cellular tropism and transmission of HIV-1. Receptors are expressed independently

in various combinations and at different levels on a multitude of human cells, rendering spe-

cific cell types differentially susceptible to specific envelope variants [22, 29, 30]. R5 tropic

envelopes almost exclusively establish infection [31–34] and allow for the infection of activated

effector memory CD4+ T cells [35], macrophages, and dendritic cells [36]. A switch in co-

receptor use, from R5 to X4 tropism, is well documented at later disease stages, has been

observed in 20–50% of patients [37–41] and described in non-human primates (NHP) [42,

43]. CXCR4 usage results in an expansion of cellular tropism of the virus to include naïve

CD45RA+ CD4+ T-cells, which lack CCR5 expression [36], and has often been associated with

disease progression [32, 44–47]. Likewise, increased replicative fitness of R5 viruses in later
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stages of infection has also been linked with rapid disease progression [44, 48–54] though this

is not universal [55].

During the course of infection, the HIV-1 envelope must adapt to facilitate replication

despite a decrease in its preferred CD4+ target cell population. Acute infection rapidly depletes

the activated CD4+ T cells expressing high CCR5 co-receptor levels abundant in the GALT

(gut-associated-lymphoid-tissue) and the genital mucosa [10, 56]. In addition to the death of

infected cells, the dramatic reduction in total CD4+ T cell counts observed in HIV-1 infection

is considered mainly due to apoptotic and bystander cell death [57–60] and possibly killing of

CD4+ T cells following abortive infection with HIV via pyroptosis [7, 12].

In the progression of untreated infection, the virus thus needs to expand its cellular tropism

by gaining access to different tissue compartments and adapting to utilize suboptimal receptor

levels and different receptors in humans [61, 62] and NHP models [42, 43]. This is well docu-

mented by studies on viruses derived from the central nervous system (CNS). Envelopes from

virus circulating in this compartment often display elevated macrophage tropism that has

mainly been attributed to an improved affinity for CD4. Paired with almost unanimous

R5-usage, increased CD4 affinity allows the virus to infect macrophages expressing low levels

of CD4 [20, 21, 63–68]. Macrophage tropism has also been attributed to an increased affinity

for CCR5 [20, 69–71]. Consequently, at late disease stages the ability to use low levels of CD4

and R5 or X4, or dual (R5X4) tropism, can provide these envelopes with a broad cellular tro-

pism including macrophages, T cells, DCs and even microglia [21, 36, 63, 66, 69, 72–74].

Thus, the co-evolutionary arms race between the immune system and virus, in combination

with the ever-decreasing availability of target cells, produces a complex composition of possi-

ble envelope-receptor tropisms specific to disease stages and/or body compartments. Numer-

ous studies have phenotypically characterized envelopes displaying altered receptor- and

cellular- tropisms. The impressive body of previous work has almost exclusively focused on

identifying associated phenotypes of, and specific mutations associated with, macrophage-tro-

pism derived during infection in vivo. The envelopes used in the literature have been isolated

from patient material and as such have developed in vivo under an undefined collection of

selective forces. One of the foremost phenotypes consistently associated with macrophage tro-

pism is the ability to use low levels of CD4. Our study explores the impact that a CD4low selec-

tive force has on the resulting envelope phenotype when applied in isolation to address the

question whether low CD4 availability by itself is sufficient to generate macrophage tropism.

In this study, we specifically explored the impact of a target cell environment low in available

CD4 receptor numbers (CD4low), as this may gain in importance at late disease stages during

HIV-1 infection. Utilizing an R5 virus isolated from a chronically infected individual, we

exposed it to an artificially induced CD4low PBMC environment using a CD4 D1-domain bind-

ing DARPin that blocks gp120 binding to CD4 [75]. We show that adaptation of the HIV-1

envelope glycoprotein to CD4low PBMC is sufficient to produce a phenotype similar to that

observed in the CNS in vivo, displaying high sensitivity to CD4 and neutralizing antibodies as

well as increased macrophage tropism. Adaptation to CD4low PBMC resulted in evolution of

envelope variants with a higher affinity to CD4 but decreased fitness. Envelopes with a CD4low

adapted phenotype suffer reduced particle infectivity, prolonged entry step transitions and

increased neutralization sensitivity. We lastly extend the observation of long entry step transi-

tions to several extensively described CNS-derived macrophage-tropic Envs [64, 76–79]. In

combination these observations highlight that the emergence of CD4low using viruses must

overcome multiple barriers in vivo, likely requiring a range of compensatory mutations to offset

the reduced neutralization resistance and entry capacity, providing an explanation as to why

virus strains with these properties have been observed before the onset of potent neutralization

responses [80] and have often been isolated from the immune-privileged CNS [66, 74, 81].
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Results

Adapting HIV-1 to utilize target cells expressing low amounts of CD4

In the present study we were interested to follow the evolution of the HIV-1 envelope protein

when confronted with the selective pressure of a cell environment with low CD4 receptor

availability. The starting point of our analysis was a subtype B, R5-tropic virus isolate called

NAB01, derived during chronic infection [82, 83]. The process of adaptation of this virus to

low CD4 expressing target cells and the chronology of clones generated to form an envelope

evolution panel for later phenotypic and genotypic characterization is outlined in Fig 1A.

The NAB01 primary isolate was first adapted to replication on PBMC in the absence of neu-

tralizing antibody pressure to allow later dissection of sequence alterations due solely to adap-

tation to CD4low levels [84]. After 39 weeks of adaptation to PBMC culture, the envelope gene

of the NAB01 PBMC-adapted (PA) virus, termed NAB01-PA, was cloned, and inserted into

Fig 1. Directed evolution of HIV-1 to utilize CD4low target cells. Adaptation of HIV-1 to CD4low targets in vitro (A, B). (A) Overview of stepwise

adaptation to CD4low PBMC targets and PBMC reversion cultures with normal CD4 levels and the derived envelope clones. (B) Summary of the 18 week

adaptation to low CD4 expressing target cells. Stepwise decrease in available cell surface CD4 on PBMC was achieved by dose escalation of the CD4

inhibitor DARPin 57.2 (right axis, grey shaded areas). HIV-1 replication as measured by p24 antigen production in culture supernatant on CD4 inhibitor

treated cells (CD4low culture, red) and control culture (untreated PBMC, blue) are shown. (C) Adaptation to CD4low targets increases sensitivity to

CD4-IgG2 (PRO542). Mean neutralization sensitivity (IC50) of envelope-pseudotyped viruses on TZM-bl cells derived from two to seven independent

assays (error bars = SD) are shown. (D) High sensitivity to CD4-IgG2 is paired with high binding capacity of CD4-IgG2 to Env trimer. Simple linear

regression analysis of CD4-IgG2 inhibitory capacity (IC50 values shown in panel C) and binding of CD4-IgG2 to the envelope of the indicated viruses

expressed on 293-T cells. Mean fluorescence intensity = MFI. Data are means of two independent experiments; error bars = SD. (E) Adaptation to CD4low

target cells results in high resistance to CD4 inhibitor compared to wild type HIV-1 isolates. Comparison of IC50 of CD4-blocking DARPin 55.2 against 41

wild-type HIV-1 strains from different clades (black dots, see S3 Table for details on virus panel and individual IC50 values) and the CD4low adaptation

virus panel (colored dots, see legend) probed by Env pseudovirus infection on TZM-bl cells. Data are means of one to three independent experiments.

doi:10.1371/journal.ppat.1006255.g001
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the replication competent TN6 HIV vector backbone [85] to produce the Env-chimeric virus

NAB01-PA-TN6 as a control in a previous study [84]. The NAB01-PA Env clone carried cul-

ture adaptation mutations found previously in independent NAB01 long-term culture viruses

(S2 Fig and [84]). Our in vitro target cell setup with low CD4 availability was designed to

mimic a CD4low target cell environment in an immunological sanctuary site that is not, or

only sub-optimally, reached by neutralizing antibodies, as occurs in the CNS. Employing the

NAB01-PA envelope pre-adapted to growth in PBMC in vitro in absence of an autologous neu-

tralization response allowed us to study the virus envelope evolution in response to alteration

of the CD4 availability in the target cell environment in the following steps.

To mimic a CD4low environment, we cultured NAB01-PA-TN6 on PBMC in the presence

of the CD4 inhibitor DARPin 57.2 which competitively interferes with gp120-CD4 binding

and thus limits the availability of CD4 on PBMC without interfering otherwise with the cells

[75]. Virus was cultured over 18 weeks in the presence of increasing concentrations of DARPin

57.2 or in absence of the inhibitor. The concentration of DARPin 57.2 was incrementally

increased during the cultivation period from 15 nM at the start, to a final concentration of

1500 nM after 18 weeks of culture (Fig 1B). Functional envelope clones capable of free-virus

infection were isolated from both the CD4-DARPin treated and control culture supernatants

(S2 Table). Two unique envelopes, referred to as CD4low.c21 and CD4low.c24, were chosen for

further analysis. CD4low.c24 represented the dominant emerged variant representing the bulk

sequence of the CD4 DARPin treated culture, whereas CD4low.c21 differed from this main

sequence in several positions (S2 Table). Two functional envelopes were isolated from the cor-

responding PBMC control culture and, one PBMCcon.c14, with high similarity to the bulk

sequence and thus representing the main variant, was selected for further characterization (S2

Table).

We next probed if the adaptation to low CD4 levels on target cells results in a stable virus

phenotype or if the envelope reverts to wild type once reintroduced into a high CD4 expressing

environment. The selected envelope clones of the adaptation and control cultures (CD4low.

c21, CD4low.c24, and PBMCcon.c14) were re-cloned into the TN6 vector and cultured indepen-

dently for eight weeks on PBMC in the absence of CD4 inhibitors (termed reversion culture).

Functional envelopes representing the main variants were cloned from each reversion culture,

and referred to as CD4low.c21-rev, CD4low.c24-rev, and PBMCcon.c14-rev (S2 Table) and used

to create Env pseudoviruses and Env chimeric TN6 viruses. In sum we compiled a panel of

eight envelopes derived from the original patient isolate NAB01 which we refer to as the

CD4low adaptation panel, that include the wild type NAB01 Env, the culture adapted control

Envs (NAB01-PA, PBMCcon.c14, PBMCcon.c14-rev), the CD4low adapted Envs (CD4low.c21

and CD4low.c24), and reversion Envs (CD4low.c21-rev and CD4low.c24-rev).

Affinity to CD4 dramatically increases with adaptation to CD4low T cells

To explore if the adaptation to a CD4low environment changed the virus’s interaction with

CD4, we first compared the sensitivity of our CD4low adaptation panel to the tetrameric fusion

protein CD4-IgG2, also known as Pro-542 [86] (Fig 1C). As high sensitivity to CD4-IgG2

denotes a high affinity of the HIV-1 envelope for CD4 [78], changes in sensitivity allowed us to

directly monitor a functional impact of the adaptation to lower CD4 levels. In vitro culture

adaptation to PBMC is known to result in an increased sensitivity to CD4 based inhibitors

[87–89]. In line with this, we observed a 7.9-fold increase in sensitivity to CD4-IgG2 for

NAB01-PA compared to the patient isolated NAB01. The descendant culture adapted clones

PBMCcon.c14 and PBMCcon.c14-rev only slightly increased their sensitivity further (2.9-fold

and 1.6-fold compared to wildtype, respectively), highlighting that NAB01-PA was optimally
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adapted to in vitro PBMC replication (Fig 1C). In contrast, CD4low pressure resulted in a dra-

matic increase in sensitivity to CD4 inhibition for both CD4low.c21 and CD4low.c24 with IC50

values 446.3- and 407- fold lower than wildtype (56.5- and 51.5-fold increased sensitivity rela-

tive to NAB01-PA), respectively, confirming that these viruses have increased their affinity to

CD4 (Fig 1C). However, this high affinity to CD4 was not maintained upon re-exposure to a

high CD4 target cell environment on untreated PBMC. Both viruses partially reverted and lost

8.9- and 11.5- fold sensitivity to CD4-IgG2 compared to the CD4low clones, for reversion cul-

ture clones CD4low.c21-rev and CD4low.c24-rev, respectively. This suggested a possible fitness

deficit associated with the ability to use low levels of CD4.

To further define the viruses’ affinity for CD4 we compared the binding of CD4-IgG2 to cell

surface-expressed envelope trimers by flow cytometry. The geometric mean fluorescence of

cell-bound CD4-IgG2 inversely correlated with CD4-IgG2 neutralization activity (R2 = 0.6458,

p = 0.0002; Fig 1D, simple linear regression) confirming that the CD4low adapted strains,

which portray high sensitivity to soluble CD4 neutralization, do indeed have an increased

affinity for CD4. In line with this heightened affinity for CD4, the CD4low viruses were the

least sensitive to CD4-inhibition compared to 41 wild type HIV-1 strains from multiple sub-

types (Fig 1E and S3 Table).

CD4 and CCR5 levels influence differential infection capacity of CD4low

adapted strains

To elucidate the impact of the altered interaction with the CD4 receptor, we next analyzed

how CD4low adapted viruses infect target cells with variable CD4 and CCR5 receptor expres-

sion. To this end we utilized the 293-T cell based HIV-1 receptor affinity profiling system (293

Affinofiles) to express 42 unique combinations of CD4 and CCR5 densities (S1 Fig) as previ-

ously described [90, 91]. This matrix of receptor expression levels covers relevant in vivo CD4

levels and further offers the opportunity to differentiate the influence of CD4 and CCR5 levels

independently of each other. In the un-induced stage, Affinofile cells have been shown to

express CD4 at 0.7 antibody binding sites (ABS) / μm2) and at maximal induction 64 CD4

ABS/μm2 and therefore to reflect the range of CD4 level distribution observed in vivo on

monocytes (3.1 CD4 ABS/μm2), monocyte derived macrophages (3.4 CD4 ABS/μm2) and

CD4+ T cells (78 CD4 ABS/μm2) [21]. We infected induced matrices of Affinofiles and ana-

lyzed the 42 independent conditions by 3-D surface plots (S2 Fig).

To assess the efficacy of infection at different receptor densities, we calculated the relative

infectivity compared to the maximum activity a given Env reached on Affinofiles for each

clone at each Affinofile matrix condition combination (S1 Fig). This analysis highlighted the

differential response to decreasing receptor density exhibited by the CD4low adapted Envs in

comparison with the rest of the panel (Fig 2). Whereas parental and CD4high target exposed

Envs retained only marginal infectivity on targets with low CD4 levels (3% of max for NAB01,

NAB01-PA, and PBMCcon.c14, 5% for PBMCcon.c14-rev), CD4low viruses were markedly

higher (18% and 25% for CD4low.c21 and CD4low.c24, respectively) (Fig 2A).

Employing sensitivity vector analysis for Affinofile data [91], we estimated the relative sen-

sitivity of each envelope to changes in CCR5 and CD4 levels. In this analysis, sensitivity vector

angles 0˚� θ<45˚ indicate a higher sensitivity to changes in CD4 level, while angles between

45˚< θ�90˚ reflect higher sensitivity to CCR5, and 45˚ is thereby equal sensitivity to both

receptors. In line with an improved capacity to interact with CD4, the CD4low viruses proved

to be less steered by changes in CD4 than by CCR5 (57.1˚ and 60.4˚ vector for CD4low.c21 and

CD4low.c24, respectively; Fig 2B). Comparing the sensitivity vector angles to the parental and

control viruses (33.3˚-37.0˚) and CD4low-reversion clones (26.8˚ and 36.9˚ for CD4low.c21-rev

Delineating CD4 dependency of HIV-1
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and CD4low.c24-rev, respectively) (Fig 2B), further indicates that the receptor dependency

acquired by adaptation to CD4low targets is unfavorable and not stable, as upon replication in a

normal CD4 T cell environment, the phenotype is rapidly lost. Control envelopes yielded

highly similar values in the vector angle analysis (33.3˚-37.0˚) suggesting that an optimal

dependency for the NAB01 envelope background lies in this range. Of note, the Affinofile sen-

sitivity vector angle was able to elucidate subtle differences in the phenotypes of CD4low.

c21-rev and CD4low.c24-rev. The reversion clones displayed differential avenues of compensa-

tion for the apparently unfit CD4low adaptation once returned to unrestricted activated PBMC

CD4 levels; CD4low.c21-rev showed a markedly lower infectivity compared to CD4low.c24-rev

(S2 Fig) and it reverted to even higher dependency on CD4 and lower sensitivity to CCR5 (vec-

tor angle 26.8˚) than the control viruses (33.3˚-37.0˚; Fig 2B). In contrast, CD4low.c24-rev

recovered infectivity, exhibiting similar levels of infection to the controls on high CD4 cells,

and also developed the highest infectivity of the panel on cells with low CD4. These data sug-

gest that CD4low envelopes have adopted a high tolerance for low levels of CD4, with an associ-

ated increased utilization of CCR5. CNS macrophage-tropic Env infection of Affinofiles

reported similar effects, namely decreased dependence on CD4, altered interaction with CCR5

(compared to paired non-macrophage-tropic envs)[92, 93].

Adaptation to CD4low targets results in marked infectivity loss during free

virus infection but not in cell-cell transmission and cell-fusion

We next measured the capacity of the CD4low virus panel to infect target cells with different

ranges of CD4 and CCR5 levels using single round replicating Env pseudo-viruses (Fig 3A).

We first probed infection on TZM-bl, which were previously estimated to carry 4x105 CD4

and 1.3x104 CCR5 receptors per cell [94], and stimulated PBMC which were estimated to

express a pre-activation average of 6x103 CD4 and 593 CCR5 receptors per cell [29]. In line

with the reported receptor densities, we observed higher absolute infectivity on TZM-bl than

Fig 2. CD4low adapted envelopes infect a wider range of target cells with differential CD4 and/or CCR5

densities. Infection profiles of 293T-Affinofile cells infected with the CD4low panel envelope-pseudotyped

viruses. Affinofiles were induced to express a matrix of 42 unique combinations of CD4 and CCR5 and the

resulting 3D infection profiles were normalized relative to each envelope’s own maximum infection (S1 and S2

Figs). (A) Percent of maximum (high CD4 and high CCR5) level infection retained on cells expressing high

CCR5 (2.5 μM Ponasterone A) and the lowest amounts of CD4 (0 μg/ml Doxycycline). Data are from two

independent induction and infection assays (S1 and S2 Figs). (B) The VERSA sensitivity vector metrics were

calculated by fitting a plane to the 3D surface plots (S2 Fig) as previously described by Johnston et al., 2009,

and the resulting vector angle indicates a preferential response to changes in CD4 (angles towards 0˚) or CCR5

(angles towards 90˚). Vector angles from one of two infection experiments are shown.

doi:10.1371/journal.ppat.1006255.g002
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PBMC (S3 Fig). NAB01, NAB01-PA, and the culture controls PBMCcon.c14, and PBMCcon.

c14-rev, showed infectivity within a 3.6-fold range on both TZM-bl and PBMC (Fig 3). In con-

trast, adaptation to CD4low targets led to a 2.5–24.8 fold and 3.3–13.3 fold loss in infectivity on

TZM-bl and PBMC compared to the parental clone NAB01-PA for CD4low.c21 and CD4low.

c24, respectively. Notably, infectivity was restored in only one of the reversion culture clones:

CD4low.c24-rev (Fig 3A).

We next explored whether the CD4low adaptation may have led to improved spread in cul-

ture via cell-cell transmission to compensate for the attenuated free virus infectivity observed

Fig 3. Adaptation to CD4low targets reduces free virus infectivity despite high fusogenicity. (A) Cell-free virus infectivity is reduced upon adaptation

to CD4low targets. Infectivity of Env-pseudotyped cell-free virus stocks was assessed by titration on TZM-bl (left) and PBMC (right). Infectivity per unit of

p24 capsid was calculated (RLU/ng p24) (S3 Fig) and data expressed as percent infection relative to the parental clone NAB01-PA. Data represent the

mean of two to three independent TZM-bl titrations, and the mean of three independent experiments on PBMC using different donor batches of three-way

stimulated PBMCs and freshly produced virus stocks. Error bars depict standard deviation (SD). (B) CD4low adapted viruses maintain infectivity during

cell-cell transmission. Env and NLinGluc cell-cell transmission reporter expressing 293-T were co-cultured with A3.01-CCR5 cells in the absence of

polycation to measure cell to cell transmission capability of the individual envelopes (S3 Fig) as described [95]. Data shown is the mean of two

independent assays, error bars are SD. (C) CD4low adapted viruses have high cell-fusion efficacy: Env and NL-Luc-AM reporter expressing 293-T cells

were co-cultured with rhesus Trim5α-expressing TZM-bl target cells to measure fusogenicity of panel envelopes. Data shown are the means of three

independent assays, error bars are SD. (D) CD4low adapted viruses are not prone to shedding of gp120. Gp120 shedding from Envelope-pseudoviruses in

response to treatment with the MPER nAb was assessed as the percentage of gp120 content after 2F5 treatment relative to mock-treated controls

normalized to p24 input. Data shown are the means of three independent assays, error bars are SD.

doi:10.1371/journal.ppat.1006255.g003
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for CD4low.c21 and CD4low.c24 (Fig 3A). Therefore, we probed the ability of the virus panel to

infect via cell-cell transmission (Fig 3B) and to undergo cell-cell fusion (Fig 3C). Cell-cell

transmission capacity was similar across the entire virus panel (Fig 3B). The control Env

PBMCcon.c14 proved to be the most efficient envelope in cell-cell transmission. Most impor-

tantly however, we detected no pronounced deficiency for the CD4low adapted strains CD4low.

c21 and CD4low.c24, which reached an average of 91% and 88% of the infectivity of

NAB01-PA, respectively. This suggested that cell-cell transmission may aid the virus to over-

come fitness deficiencies when altering receptor usage. Cell-fusion, however, portrayed an

entirely different picture (Fig 3C). The CD4low adapted clones CD4low.c21 and CD4low.c24

together with the control culture envelope PBMCcon.c14 were the most effective in initiating

fusion, reaching 267%, 253%, and 272% of NAB01-PA, respectively (Fig 3C). Thus, the free

virions of the CD4low adapted strains fail to efficiently infect despite intact, if not improved

fusogenicity of the Envs.

Decreased free virus infectivity of the CD4low adapted Envs could potentially indicate a low

stability of the Env trimers, i.e. trimers that are prone to shed gp120. While Env expressed on

the surface of an infected cell is continuously replenished by newly expressed Env, a low stabil-

ity would affect cell-cell transmission less than free virus infection, where Env on viral particles

degrades over time without active replacement. This would fit with the observed pattern of

retained cell-cell transmission and low free virus infection. We thus examined the propensity

of the Env panel to gp120 shedding in response to the MPER-specific bnAb 2F5, a potent

inducer of gp120 shedding [96]. While CD4 induced shedding would also be interesting to

define in the context of HIV-1 entry, the large differences in CD4 affinity of the panel nearing

a three-log variation in CD4 sensitivity (Fig 1) would not allow for a direct comparison of

effects. Measuring 2F5 induced gp120 shedding we observed a modest shedding activity

against the CD4low Env clones (27% and 42% for CD4low.c21 and CD4low.c24, respectively)

which was in the range of shedding observed for the parental (NAB01) and control (CD4low.

c14) envelopes (31% and 20%, respectively). Hence, a high propensity to gp120 shedding can-

not be underlying cause of the decreases free-virus infectivity of CD4low compared to parental

and control Env clones.

Adaptation to CD4low targets results in infectivity gain on macrophages

High affinity to CD4 has been associated previously with the capacity to infect cells expressing

low levels of CD4, in particular macrophages [18, 66, 78, 79, 97, 98]. To test macrophage infec-

tivity we produced two types of differentially conditioned monocyte derived macrophages

known to vary in CD4 and CCR5 expression [29], M-MDM have previously been shown to

express an average of 125 CD4 and 55 CCR5 receptors per cell while G-MDM have lower levels

of both receptors with an estimated 50 CD4 and 15 CCR5 per cell [29]. We verified the relative

CD4 expression on our cell preparations and indeed observed 3.1 fold lower CD4 levels on

G-MDM (S4 Fig).

As HIV-1 infection of MDM can show high donor variability we verified that the trend

observed in Fig 4 was maintained in eight donor cell batches (S4 Fig). Of note, absolute infec-

tivity of ultra-centrifuged Env pseudovirus on M-MDM normalized to p24 content of stocks

was close to what we observed for PBMC (S3 and S4 Figs). Overall, G-MDM infection was

markedly lower than M-MDM infection (27.4 fold lower NAB01-PA infection on G-MDM

than M-MDM; Fig 4A) in line with the lower expression of entry receptors on G-MDM cells.

Interestingly, free-virus infection of M-MDM with the CD4low adapted viruses yielded

infection levels closer to parental virus and controls on M-MDM (Fig 4A and 4B) than on

PBMC or TZM-bl (Fig 3A) with M-MDM infectivity of CD4low.c21 and CD4low.c24 being
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only 2.6 and 3.0 fold lower compared to NAB01-PA on, respectively (Fig 4B). The pattern of

G-MDM infection was strikingly different. While absolute G-MDM infection was generally

lower for all probed viruses (Fig 4A), the CD4low clones infected G-MDM with higher effi-

ciency than the parental and culture control viruses (2.5 fold and 4.9 fold higher compared to

NAB01-PA, respectively; Fig 4B). CD4low.c21 and CD4low.c24 reached 23.9% and 58.5%,

respectively, of M-MDM infection levels on G-MDM (Fig 4C). In contrast, the parental clone

NAB01 showed only 2.7% infectivity on G-MDM compared to M-MDM, similar to

NAB01-PA and PBMCcon.c14 (3.6% and 2.2%, respectively). Infection of both M-MDM and

G-MDM again emphasized the contrasting phenotypes of the two reversion clones. CD4low.

c21-rev was the least and CD4low.c24-rev one of the most effective of the entire panel in infec-

tion of both MDM subtypes. In sum, the differential infectivity of macrophage subtypes across

virus strains supported the observations made using the Affinofile system. Differential macro-

phage infections further highlighted that adaptation to usage of low CD4 levels can optimize

infection of specific cell subsets and thus needs to be considered as an important parameter in

shaping target cell tropism throughout disease progression.

Fig 4. Adaptation to CD4low allows efficient infection of macrophages. (A) Two types of macrophages, M-MDM and G-MDM expressing

differential CD4 levels (S4A Fig) were infected with 0.1ng p24 of ultra-centrifuged Env-pseudotyped luciferase reporter virus stocks infection

measured on day seven post-infection by quantifying luciferase reporter activity (relative light units (RLU)). Data are means from two individual

donors, input of ultracentrifugation purified virus was standardized by p24 content, error bars = SD. (B) Infection of M-MDM and G-MDM by CD4low

adapted viruses relative NAB01-PA (data derived from A. (C) Comparison of M-MDM and G-MDM infectivity. Shown is the relative infectivity of

G-MDM compared to M-MDM infection (data derived from A).

doi:10.1371/journal.ppat.1006255.g004
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Adaptation to low CD4 levels gives rise to envelope mutations

associated with macrophage tropism

We next explored the sequence alterations that occurred during adaptation to CD4low pressure

(Fig 5 and S4 Table). Locating globally relevant sites of macrophage tropism determination

has proven difficult [21]. Numerous mutations have been associated with macrophage tropism

Fig 5. Gp120 sequence mutation pattern following adaptation to CD4low targets. (A) Summary of amino acid mutations acquired as a result of

adaptation to long term in vitro culture and adaptation to CD4low. Green shading indicates mutations affecting N-linked glycosylation sites. Red boxes

denote mutations that occur in both CD4low adapted clones, yellow and orange boxes indicate mutations that occurred only in CD4low.c21 and CD4low.c24,

respectively. (B) Structural representations of mutated residues in NAB01 associated with adaptation to low levels of CD4 mapped onto crystal structure

5fyj of X1193.c2 SOSIP [100]. Dark gray residue shading indicates limits of non-resolved region of gp120 V4 loop. Missing from the model are the residue

at 402, within the non-resolved region of V4, and the glycans at residues 408 and 461 which are not present on this subtype G Env variant. Structure

rendered using PyMol version 1.4.1 [101].

doi:10.1371/journal.ppat.1006255.g005
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but were largely found to be strain-specific. Of note, the parental virus NAB01 and all variants

derived through culturing lack E153G, T283N, or N386D signatures of enhanced macrophage

tropism (reviewed in [14]). CD4low adaptation resulted in five mutations in gp120 common to

both CD4low.c21 and CD4low.c24 clones (Fig 5A and S4 Table). The five mutations observed in

CD4low Envs include I165K in the V2-loop, F317L in the V3 loop, and in the V5 region a dual

deletion at G459 and G460 in combination with N461D that eliminates a potential N-linked

glycan at position 461 in the CD4 contact site in V5 [99]. The location of the mutated residues

is highlighted on the crystal structure model of subtype G Env trimer X1193.c2 [100] as this

structure provides a high resolution of the V4 region (Fig 5B). Although this Env is missing

glycans that we found to be under selection pressure in our adapted viruses, overall mapping

of the mutated residues onto the X1193.c2 structure provided interesting insights on their

approximate spatial distribution.

V2 loop. The mutation I165K is located within the V2 loop in the trimer association area

at the apex of the trimer (Fig 5B) and is present in only 0.04% of 4907 envelope sequences ana-

lyzed from the Los Alamos Database (S5 Fig). The sequences in this database are dominated

by virus derived from plasma and PBMC, and thus are less likely to capture frequencies

amongst macrophage or CNS replicating viruses. However, the I165K mutation is found in

only 1 of the 98 patients with subtype B Env sequences with CNS ontology included in the

HIVbrainseqDB [102], further suggesting that this mutation is rare. In addition to I165K, the

V1V2 net charge increased upon adaptation to PBMC from -0.2 to +0.8 and further to +1.8

upon CD4low adaptation. This level of V1V2 charge was sustained for both reversion clones

(S4 Table).

V3 loop. No overall net changes in charge of the V3 were observed (S4 Table). The

V3-loop mutation F317L that emerged in the CD4low clones is also rare (0.14% of the Los Ala-

mos HIV sequences, 0.06% of subtype B; S5 Fig). F317L has previously been associated with

the CD4low adaptation of CNS-derived envelopes [79], and is also prevalent in 14 of 98 patients

with CNS derived Subtype B viruses from the HIVbrainseqDB [102]. Residue 317 is located

within the highly conserved hydrophobic tip of the V3 loop and has previously been associated

with heterodimer stability [103].

CD4bs. The CD4low adapted envelopes shared three mutations proximal to the CD4bs;

two deletions in the V5 (G459del, and G460del) and an N461D mutation which eliminates a

highly conserved N-linked glycosylation site (found in 99.86% of 4907 sequences in the Los

Alamos Database) (S5 Fig). Of the three mutations that the CD4low envelopes shared, N461D

was the only one which reverted upon passaging on PBMC with normal CD4 levels in one of

the isolated reversion clones (CD4low.c24-rev).

N-glycosylation sites. Both CD4low clones lost further glycosylation sites present in the

parental strain (Fig 5A). Mutations T402P, T408N, and T412N present in CD4low.c21 and

CD4low.c21-rev are located in a highly variable domain of the V4. These mutations resulted in

loss of glycans at positions 402 and 409, and a transfer of an N-linked glycosylation site from

406 to 408. Removal of glycans at 410–412 has been reported to decrease infectivity and

increase the potential of the envelope to generate neutralizing antibodies, presumably by

exposing neutralization sensitive epitopes [104]. Likewise, N197D, present in both CD4low.c24

and CD4low.c24-rev, destroys a potential N-linked glycosylation site at the apex of the trimer

spike known to modulate sensitivity to CD4bs nAbs [105], cause increased CCR5 binding

[106, 107] and, in combination with V/T200 (found in all the NAB01 derived clones), has been

associated with macrophage tropism in the CNS [108].

Interestingly, by acquiring a L856Q mutation the CD4low adapted clones loose the gp41 C-

terminal di-leucine internalization motif thought to play a role in reducing Env content from

infected cell surface membranes [109].
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High affinity to CD4 is associated with prolonged transitioning during

entry from CD4-bound stage to CCR5 engagement and fusion

Altered conformational transitions of the trimer upon receptor engagement have been sug-

gested as an attribute of macrophage-tropic envelopes able to use low levels of CD4 [98]. Con-

sidering their increased ability to accomplish membrane fusion (Fig 3C) and to utilize low

levels of CD4 to infect (Figs 2A, 2C and 4), we hypothesized that CD4low adaptation may have

an influence on the kinetics of attachment and entry.

To assess the relative timing of transitions between the three key steps in the entry process

—CD4 engagement, coreceptor binding and fusion—we employed a time-course inhibitor

addition experiment with inhibitors targeting CD4 (CD4-DARPin 55.2), CCR5 (maraviroc)

and HIV-1 fusion (T-20) (Fig 6A). In this assay setup, synchronized infection is achieved

through spinoculation at 4˚C (a temperature which prevents receptor engagement) and a shift

to 37˚C post-spinoculation to initiate entry. Saturating concentrations of inhibitors were

added to replicate infection wells at progressive time points from the initiation of infection (0

min) up to 120 min post infection (Fig 6A). For each inhibitor, we considered the relative

infectivity compared to the 120 min post infection value and fitted infection curves to estimate

the time required by each virus to reach 50% of entry level reached by the 120 min treatment

point (Fig 6B).

When comparing the kinetic of the parental NAB01 virus with the two CD4low adapted

clones, we observed a striking difference of the times needed to transition from the CD4

bound to the CCR5 bound state as well as from CCR5-to-Fusion (Fig 6C). Whereas the time

required to reach 50% fusion differed only 1.4-fold across all eight panel viruses (36.3–50.3

minutes post infection), the time required to complete 50% CD4 binding and 50% CCR5

engagement differed markedly. Most strikingly, we found that the CD4low adapted envelopes,

though they engaged CD4 rapidly, required a significant increase in time for the transition

between CD4 binding and CCR5 engagement (Mann-Whitney test, p = 0.00003 and 0.00024

for comparison between NAB01 and CD4low.c21, NAB01 and CD4low.c24, respectively). While

time windows for CD4 and CCR5 binding tightly overlapped for NAB01 and the derived

PBMC adapted strains, suggesting a very rapid transition between CD4 and CCR5 engagement

for these strains, the CD4low.c21 and CD4low.c24 strains had a time window of 33.2 and 19.6

min between CD4 and CCR5 engagement, respectively. This gap proved largely due to a very

rapid initial engagement of CD4 (Fig 6D) and not a postponing of CCR5 binding. In line with

their high affinity for CD4, the CD4low adapted envelopes already established a firm CD4 bind-

ing during the 30 minute spinoculation at 4˚C, reaching a mean of> 40% of the maximal

infection (CD4low.c21 at 47.4% and CD4low.c24 at 42.4%; Fig 6C). This was in striking contrast

to the rest of the NAB01 virus panel that only reached infection levels between 2.7% and 8.5%

before initiation of the entry process by shifting cultures to 37˚C. Interestingly, rapid CD4

binding appeared to be an unfavorable trait that the virus only maintained under selection

pressure likely as it requires a more open conformation of the trimer. Both reversion clones

increased the time to CD4 engagement, and consequently shortened the CD4 to CCR5 transi-

tion window.

We then asked whether the phenotype we observed in the CD4low envelope clones could

potentially be found in vivo, particularly in the CNS where the immune pressure by neutral-

izing antibodies is less active. To address this question we probed the entry kinetics of a

panel of three well established macrophage-tropic envelopes from the CNS (B33 and B59),

and plasma (C98-15) together with patient-matched non-macrophage-tropic Envs from

lymph nodes (LN40, LN8), and plasma (C98-27) (S5 Table) [64, 76–79]. The rapid engage-

ment of CD4 exhibited by the CD4low Envs was reproduced by the macrophage-tropic
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Fig 6. CD4low adapted viruses need extended time to transition between steps in the entry process. (A) Schematic of entry kinetic assay to

measure timing of CD4 binding, CCR5 binding, and fusion. Virus is added to TZM-bl in the presence of the polycation DEAE, spinoculated onto cells

at 2095g for 30 min at 4˚C to limit conformational changes upon CD4 binding. Infection is synchronized by the addition of warmed media and

inhibitors targeting CD4 (DARPin 55.2), CCR5 (Maraviroc), and fusion (T-20) added in saturating concentrations at 0, 5, 10, 15, 20, 30, 45, 60, and

120 min post start of infection. (B) For each envelope, one representative time course of infection is shown. Infectivity data are normalized to

Delineating CD4 dependency of HIV-1

PLOS Pathogens | DOI:10.1371/journal.ppat.1006255 March 6, 2017 14 / 42



envelopes (Fig 7A and 7C). The time to CD4 binding for all three patient pairs (B33/LN40,

B59/LN8, C98-15/ C98-27) shows a trend of faster CD4 engagement by the macrophage-

tropic envelopes when compared to their non-macrophage-tropic paired Env (Fig 7B),

though this difference achieves statistical significance only between B33 and LN40 (Fig 7D).

Of all patient derived envelopes, the brain-derived B33 also displays the longest CD4 to

CCR5 transition (Fig 7B and 7D). The phenotype we observed for CD4low Envs may there-

fore occur in vivo, and in particular in the CNS, where antibody pressure is commonly

reduced compared to other compartments. All transitions of the entry process were signifi-

cantly different between the CD4low clones and NAB01, except time from start to fusion (Fig

7D, Mann-Whitney test). The trends highlighted by the more extreme phenotype of the

CD4low envelopes were displayed most similarly by B33, and by B59 and C98-15 to a lesser

degree (Fig 7D). To test the sensitivity of our analysis method, we estimated T½ values in

additional ways. First, we averaged the data points from all replicates, prior to fitting only

one curve, and since two replicates were always conducted within the same experiment, we

also pooled these two data points before fitting the curves and averaging individual T½ val-

ues. Whenever taking the average, we also considered using the median instead of the mean.

These different data treatment and analysis methods mostly decreased the power to detect

significant differences (S6 Fig), however they had only a minor impact on estimated parame-

ters (S7 Table) and subsequently the trends observed between macrophage-tropic/CD4low

compared to non-macrophage-tropic/NAB01 were reproducible.

We further profiled the patient paired macrophage-tropic and non-tropic Env functionality

in free-virus infectivity, cell-cell transmission, and cell-fusion to determine the depth of phe-

notypic similarity shared between CNS-macrophage tropic and CD4low Envs. Interestingly,

the infectivity of the CNS-derived macrophage-tropic B33 and B59, but not the plasma-derived

C98-15 macrophage-tropic Env was increased relative to their respective non-macrophage

tropic control Envs (Fig 8A). The lymph-node derived LN40 and LN8 reached only 12% and

18% of B33 and B59’s free-virus infectivity, while C98-15 had half the infectivity of the non-

macrophage tropic variant C98-27 (205%). A similar trend was observed in cell-cell transmis-

sion where LN40 and LN8 reached 3.5% and 16.5% of the cell-cell capacity of B33 and B59,

respectively (Fig 8B). The capacity of all three macrophage-tropic Envs to initiate cell-fusion

was similar to the controls, ranging from 98% to 150%, relative to non-macrophage tropic (Fig

8C). Of particular note, all three macrophage-tropic Envs showed an increase in gp120 shed-

ding relative to their paired non-macrophage-tropic Envs, regardless of the tissue of origin

(Fig 8D). Both B33 (57%) and B59 (61%) lost more than twice as much gp120 as LN40 (20%)

and LN8 (25%). The plasma-derived Envs were more similar, showing 77% and 52% gp120

shedding for C98-15 and C98-27, respectively.

Prolonged transitioning to CCR5 engagement coincides with increased

vulnerability to V3 loop and CD4i directed antibodies

We next examined the sensitivity of the virus panel to entry inhibitors and neutralizing anti-

bodies (nAbs) targeting diverse regions of the envelope (S1 Table) to elucidate the conse-

quences of adaptation to low levels of CD4 for shielding and the susceptibility to neutralizing

infection at 120min post infection and all treatment conditions are shown as relative infectivity compared to this 100% level. (C) Definition of transition

times required to reach 50% of transition to CD4 bound, CCR5 bound stage and fusion. For each inhibitor and each of at least eight replicate

measurements derived from four to six independent experiments, T½ values of infection times were estimated. The mean of these estimates is a

proxy for the time required to reach 50% CD4 resistance, 50% CCR5 resistance, and 50% fusion resistance. Error bars denote SD. (D) Percentage

of viruses already resistant to CD4 blocking following the 30 minute spinoculation at 4˚C. Data points are derived from four to six independent

experiments done in replicates. Horizontal bars depict means.

doi:10.1371/journal.ppat.1006255.g006
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Fig 7. CNS-derived Macrophage-tropic viruses show similar entry pattern with rapid engagement of CD4. (A) to (C) Times to reach

50% resistance to CD4, 50% CCR5, and fusion inhibitors was determined for the shown pairs of patient derived macrophage-tropic and non-

macrophage-tropic viruses as described in Fig 6B to 6D. Data for each inhibitor and virus combination were derived from at least eight

replicates from four to six independent experiments. (A) For each envelope, one representative time course of infection is shown, normalized

to infection at 120min post infection. Data shown is for a replicate representative of the calculated mean of all replicates. (B) Time intervals

between four stages of the entry process (synchronized start, CD4 binding, CCR5 attachment, fusion) were compared by Mann-Whitney tests

of NAB01 and CD4low viruses and M-tropic and non-M tropic pairs from the analyzed three patients. Only envelopes from the same patient
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antibodies. Analysis of the sensitivity of free virus infection to anti-CD4 and CCR5 receptor

agents using NAB01-PA as the point of reference highlighted that a modest decrease in sensi-

tivity to CD4 inhibition in the CD4low strains was mirrored by an equally modest increase in

sensitivity to the CCR5 inhibitors (Fig 9A and S6 Table). This agrees with the higher

(same principal color) were compared. (C) Data depict the percent of virus already resistant to CD4 blocking following the 30min spinoculation

at 4˚C. Individual data points are two replicates from each of four to six independent experiments. Horizontal bars depict means. (D) Statistical

analysis of entry kinetics. Data points from four to six individual experiments were combined before fitting the curves and averaging individual

T½ values. Estimated time intervals between the four stages of the entry process (synchronized start, CD4 binding, CCR5 attachment, fusion)

were compared by Mann-Whitney tests. Only envelopes from the same patient (same principal color) were compared. Alternate statistical

analysis using paired replicates before curve fitting shown in S6 Fig.

doi:10.1371/journal.ppat.1006255.g007

Fig 8. CNS-derived Macrophage-tropic viruses show increased infection capacity and gp120 shedding. (A) Cell-free

virus infectivity is increased in CNS-derived macrophage tropic Envs. Infectivity of Env-pseudotyped cell-free virus stocks was

assessed by titration on TZM-bl. Infectivity per unit of p24 capsid was calculated (RLU/ng p24) (S7 Fig) and data expressed as

percent infection relative to the patient-paired non-macrophage-tropic Env. Data shown is the mean of two independent assays,

error bars are SD. (B) CNS-derived macrophage-tropic Envs have improved infectivity during cell-cell transmission. Env and

NLinGluc cell-cell transmission reporter expressing 293-T were co-cultured with A3.01-CCR5 cells in the absence of polycation

to measure cell to cell transmission capability of the individual envelopes (S7 Fig) as described [95]. Data shown is the mean of

two independent assays, error bars are SD. (C) CNS-derived macrophage-tropic Envs maintain similar cell-fusion efficacy to

non-macrophage tropic Envs: Env and NL-Luc-AM reporter expressing 293-T cells were co-cultured with rhesus Trim5α-

expressing TZM-bl target cells to measure fusogenicity of panel envelopes. Data shown is the mean of two independent assays,

error bars are SD. (D) CNS-derived macrophage-tropic viruses have increased shedding of gp120. Envelope-pseudoviruses

carrying mouse CD4 were treated with 2F5 to induce gp120 shedding and immobilized using magnetic beads. Shed gp120 and

non-bound virus was washed away and gp120 and p24 levels measured by ELISA as described [96]. The difference between

gp120 levels of 2F5 treated and to mock-treated controls is depicted as % gp120 shed. Data shown are the means of three

independent assays, error bars are SD.

doi:10.1371/journal.ppat.1006255.g008
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dependency on CCR5 observed in the Affinofile analysis for the CD4low Envs (Fig 2 and S1

and S2 Figs) and was also supported by the observation that the reversion clones lost CCR5

inhibitor sensitivity while regaining sensitivity to CD4 inhibition. Interestingly, the CD4low

strains portrayed a much higher resistance to CD4 inhibition during cell-cell fusion while sen-

sitivity to CCR5 inhibition showed no alteration (Fig 9B).

Adaptation of primary isolates to growth in vitro in the absence of neutralizing antibody

pressure commonly leads to the emergence of virus variants with increased neutralization sen-

sitivity [87]. This was also true for the PBMC long-term cultured NAB01-PA, which displayed

higher sensitivity to chronic patient plasma from 24 individuals with chronic HIV-1 infection

(eleven subtype B, four subtype A, and three of each subtype C, 01_AE, and 02_AG) (Fig 9C),

and nAbs targeting V3, CD4bs, and CD4i (Fig 9D) than the parental NAB01. Sensitivity to V3

glycan and MPER nAbs, and the fusion inhibitor T-20 did not differ between NAB01 and

NAB01-PA. In contrast, the V2 glycan nAb PGT145, which depends on a closed trimer con-

formation for neutralization, showed a 2.7-fold reduced activity against NAB01-PA. CD4low

adaptation amplified this phenotype and resulted in a substantial increase in neutralization

Fig 9. CD4low adapted envelopes show heightened sensitivity to inhibitors targeting the CD4bs, V3 loop, and CD4i epitopes, and patient

plasma. (A) and (B) Sensitivity of the CD4low viruses to inhibitors of CD4 (DARPin 55.2) and CCR5 (PSC RANTES, Pro140, Maraviroc). IC50 values are

shown relative to the IC50 of NAB01-PA in (A) free virus entry on TZM-bl and (B) 293T-TZMblTRIM5α cell fusion. Individual IC50 values are listed in S6

Table. (C) Sensitivity of CD4low virus panel to heterologous plasma neutralization. Data are medians derived from neutralization titer on TZM-bl cells of

patient plasmas from 24 individuals with different HIV-1 subtype chronic infections (eleven subtype B, four subtype A, and three of each subtype C,

01_AE, and 02_AG). (D) Sensitivity of CD4low virus panel to neutralizing antibodies and Env targeting inhibitors (S1 Table). IC50 values were derived in a

standard pseudovirus neutralization assay on TZM-bl cells. Darker shading indicates higher sensitivity. Data shown in A, B, and D are mean values from at

least two independent assays for each inhibitor.

doi:10.1371/journal.ppat.1006255.g009
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sensitivity to nAbs targeting the CD4bs, CD4i, and V3 epitopes, as well as patient plasma (Fig

9C and 9D), ranging from 446-fold (for nAb b6) to 4301-fold (for nAb 447-52d). The V3 tar-

geting DARPin D12 [110], which recognizes the V3 loop in a structure-dependent manner,

slightly decreased in activity against the CD4low and reversion strains compared to

NAB01-PA. Similarly, the conformational epitope of PG145 was lost completely in the CD4low

envelopes, and was not restored in the reversion clones. Reversion culture viruses also only

showed a partial recovery of resistance to V3 and CD4bs nAbs.

Influence of CD4low adaptation on entry stoichiometry

Considering the substantial changes in neutralization sensitivity, entry kinetics, and infectivity

across the virus panel, we were next interested to explore if the stoichiometry of entry is

altered. It is plausible that the Env conformations which favor CD4 binding that are induced

by in vitro culture in the absence of neutralization pressure, and adaptation to low levels of

CD4 are associated with energetic losses, and in consequence may need more trimers to com-

plete entry [111–113]. To test this, we generated dominant negative Env mutants by introduc-

ing R508S/R511S (SEKS) to all panel viruses to knock out the furin-like protease cleavage site

between gp120 and gp41, as described [112]. Mixed trimer virus preparations with SEKS vari-

ants in varying ratios with wild-type Env were generated and analyzed for infectivity (Fig

10A). Using this data and the average number of trimers per virus particle that was determined

in parallel (Fig 10B and S8 Table) allowed us to estimate the minimal number of trimers

required for viral entry (T) using a previously established mathematical model [111–113].

While the primary virus NAB01 required only one trimer for entry (T = 1), adaptation to

PBMC in vitro culture caused an increase of minimal number of trimers required for entry

ranging from T = 2 to T = 4. CD4low adaptation maintained T = 4, underlining a continued

need for more trimers to be employed in the entry process for these virus variants. The two

CD4low reversion clones showed a substantial decrease in the average trimer number per

virion, decreasing by 3.7- and 2.8- fold for CD4low.c21-rev and CD4low.c24-rev from their

parental clones, respectively. For CD4low.c21-rev this was particularly striking as the average

number of trimers per virion (2.1) was lower than the estimated number of trimers required

for entry (T = 5). Thus only a small fraction of CD4low.c21-rev virions will carry the required

number of trimers necessary to facilitate entry (Fig 10D) and this provides a potential explana-

tion for the particularly low infectivity observed across cell types for (Figs 3A and 4B).

Discussion

During disease progression HIV-1 must overcome the decreasing supply of activated CD4+ T

cells, which express high levels of CD4 and the CCR5 coreceptor [10, 35, 115, 116]. The transi-

tion of the virus to altered receptor usage and the ensuing changes in cell tropism at later dis-

ease stages have been extensively studied over the past 30 years, yet many details remain

elusive [14, 20, 36, 65, 69–71, 117–120]. The observed transitions during the course of the

infection are thought to be needed to allow the virus to infect a broader range of host cells.

This may require altered coreceptor usage [15, 77, 121], or modifications to allow infection of

cells that express lower CD4 levels. Low CD4 usage in particular is exemplified by R5 viruses

exhibiting macrophage tropism [63, 65–67, 74, 77, 78, 98, 122–124]. Development of increased

CD4 binding capacity by gp120 has been implicated in high macrophage tropism [125–127],

which may have relevant consequences in disease progression (reviewed [128]), however the

forces that lead to this phenotype have not been clearly defined. One clue has been provided

by the frequent association of highly macrophage-tropic envelopes with CNS infection in late

disease [129] suggesting features of this compartment particularly favor or facilitate the
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development of envelopes with high CD4 affinity. Adaptation of the HIV-1 envelope to

CD4low conditions warrants study to elucidate potential intermediate evolutionary states,

CD4low associated phenotypes, and to improve our understanding of the forces driving devel-

opment of this niche phenotype at the high end of the continuum of CD4 use.

In the current study we adapted an R5-tropic HIV-1 envelope, isolated from a chronic

patient, to CD4low conditions on PBMC in vitro. Our setup mimicked the environment that is

thought to occur in early infection and the CNS compartment, which is with little or no neu-

tralizing antibody pressure. The ensuing CD4low adapted envelopes displayed a very high affin-

ity binding to CD4. Altered CD4 affinity specifically opens transmission to a new population

Fig 10. Envelopes adapted to low levels of CD4 require a higher proportion of their available trimers to complete

entry. (A) Relative infectivity of mixed trimer infection experiments with CD4low panel viruses using the R508S/R511S

dominant-negative Env mutants. Infectivity of pseudotyped virus stocks expressing the indicated ratios of wild type and

dominant-negative mutant Envs was measured on TZM-bl reporter cells. Infectivity of virus stocks containing solely the

respective WT envelope were set as 100%. Data depict mean from two independent experiments. (B) Experimentally defined

mean trimer number per virion measured from four independent assays (S8 Table) were used to derive mathematical

estimates of the entry stoichiometry T based on data shown in (A) as described [112]. (C) Graphical presentation of mean

trimer number per virion and estimated stoichiometry of entry as shown in (B). (D) The percentage of infectious virions, i.e.

virions with at least T trimers, was calculated for each single viral variant based on trimer numbers distributed according to a

discretized B-distribution with the measured mean (Fig 10B) as described in [114].

doi:10.1371/journal.ppat.1006255.g010
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of cells via an amplified ability to use low amounts of CD4 on the target cells. While these char-

acteristics suggest an overall benefit to CD4low adaptation, we lay out here that this comes at

severe costs for the virus in terms of general infectivity and vulnerability to neutralization.

Adaptation of the NAB01 parental WT envelope to in vitro PBMC infection resulted in the

S190R and V84I mutations. Herschhorn and colleagues have recently described the impact of

mutating the highly conserved leucine at position 190 in the V2 loop [130]. Replacing the L

with either an alanine or arginine provided JR-FL (subtype B) and BG505 (subtype A) with

improved macrophage infection, increased sensitivity to CD4 binding, and higher neutraliza-

tion sensitivity by non-neutralizing Abs. Their evidence suggests the mutations enrich the

amount of envelopes present in a functional state between the ‘closed’ wild-type conformation

and the CD4-bound ‘open’ conformation. While NAB01-PA only showed slightly improved

macrophage infection, sensitivity to non-neutralizing Abs 1–79, 447-52d, 17b, and b6 were

markedly increased, in agreement with an enrichment of the in-between state of envelope

conformation.

CD4low adaptation in the NAB01 envelope background occurred by the removal of several

structural elements that presumably relaxed restrictions of access for both CD4 and CD4bs

specific nAbs. Particularly notable were a deletion of glycosylation sites and part of the V5

loop (affecting residues 459–461) projecting into the space leading to the CD4bs (Fig 5B) [99].

While these changes were linked with an increased ability to bind CD4, the loss of shielding

resulted in increased accessibility for CD4bs and CD4i nAbs that are normally well shielded

off as exemplified by the increase in efficacy of the CD4bs mAb b6 and the CD4i mAb 17b (Fig

9D). Addition of a positive charge at residue I165K, which comes into close proximity with the

neighboring subunits at the trimer association region, has the potential to reduce shielding, by

disrupting the interplay of the neighboring V1V2 regions. Mutation of the conserved F317 res-

idue in the V3 is linked with decreased association of gp120 and gp41 [103], further suggesting

a decreased conformational stability for the Envs adapted to CD4low.

Our detailed analysis of CD4low envelope entry kinetics further supports a reduction in the

energy provided by conformational rearrangements during the multi-step entry process. Fol-

lowing a very rapid CD4 engagement, the time required to transition between steps in the

entry process is significantly extended for CD4low adapted envelopes (Figs 6 and 7 and S6 Fig),

yet interestingly, the overall length of entry remained comparable. The delay within entry

occurs most drastically between binding of CD4 and attachment to CCR5 in the CD4low

clones. Given the ability of CD4low Envs to bind to CD4 rapidly and at temperatures normally

restrictive to conformational changes, it is surprising that CCR5 attachment does not proceed

any quicker, indicating that the CD4low viruses depend on the CCR5 interaction to release the

required amount of energy to progression to the next stage of entry. We speculated this may

relate to a decreased potential energy carried within the open conformation of the trimers, and

could prospectively impact entry stoichiometry. A requirement for a larger number of trimers

in order to overcome opposing membrane potentials during entry could help explain the

observed delay between CD4 and CCR5 binding. However, the T (stoichiometry of entry) val-

ues estimated for CD4low envelopes were comparable to the non-CD4low envelopes adapted to

in vitro culture, both types requiring four trimers for entry. Notably, the CD4low adapted

clones showed a higher T paired with lower overall trimer content on virions. Thus a large

fraction of viruses in these populations will not carry the minimal amount of trimers necessary

for entry and a high proportion of the available trimers needs to be engaged in the entry pro-

cess to make infection possible likely explaining the low infectability of these viruses. Whether

the CD4low viruses have a CD4 bound conformation that differs from wild type requiring lon-

ger to interact with CCR5 or whether this indicates that more CCR5 receptor interactions per

trimer have to occur will be further interesting possibilities to explore in future studies.
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The in vitro adaptation to CD4low targets generated envelope variants with the likely benefi-

cial phenotype of expanded cellular and receptor tropism and drastically increased CD4 bind-

ing. However, as mentioned above, the beneficial phenotype comes at the cost of reduced

infectivity (Fig 3 and S3 Fig), extended exposure of neutralization sensitive epitopes during

entry (Figs 6 and 7), and increased neutralization sensitivity (Fig 9C and 9D). Partial reversion

of these phenotypes after readapting to CD4high conditions indicates that an increase in CD4

binding affinity may result in an ultimately less-fit envelope.

The CD4low envelopes proved generally neutralization sensitive in line with the reduced

shielding and a prolonged exposure of neutralization sensitive epitopes during entry. It may

therefore be critical for this phenotype to develop away from the pressure provided by nAbs in
vivo. Our examination of CD4low linked phenotypes suggests possible mechanisms that could

support development of the neutralization sensitive phenotype. One avenue of adaptation is

suggested by our finding that free virus infectivity is dampened for CD4low envelopes but their

ability to disseminate via cell-cell transmission is comparable to the primary isolated Env (Fig

3). Maintenance of the cell-cell pathway could potentially serve as a rescue mode of viral trans-

mission supporting previous observations [95, 131, 132]. Cell-cell transmission could thereby

allow transmission of less fit virus while adaptation passes through neutralization sensitive

intermediates on the way to a more optimally fit phenotype adapted to a CD4low environment.

The in vitro passaging protocol used in this study is expected to encourage the selection of

Envs competent in free-virus infection. Passaging was performed for 16 of the 18 weeks with

virus supernatant only. The observed conservation of cell-cell capacity in the face of cell-free

selective pressure suggests either a strong impetus to maintain this phenotype, or a lack of

effect of the CD4low adaptation and passaging on the cell-cell phenotype. In addition, we

expect that the absence of neutralization pressure during in vitro passaging allowed the rever-

sion Envs CD4low.c21-rev and CD4low.c24-rev remaining sensitive to neutralization.

In the cell-cell experiment we used one T cell line, A3.01-CCR5 [131], as targets which, as

all T cells, has high CD4 levels and is thus comparable to TZM-bl cells in respect to CD4

expression. However, while our data show that a large variation exists in the CD4 use and

infectivity of our envelope panel (Figs 1C–1E, 2, 3A and 4), the cell-cell transmission shows lit-

tle to no difference across the panel. While we cannot rule out that differences in cell-cell trans-

mission may occur when target cells with lower levels of CD4 are involved, in a comparison of

CD4high expressing targets only free virus transmission was affected.

In conjunction with competency in cell-cell transmission, the fusion capacity of CD4low

envelopes is 2-fold higher than that of NAB01, which may pose a problem to the development

of CD4low use in vivo. Primarily, cell-fusion does not lead to productive infection and syncytia

resulting from cell-fusion may not be long-lived [133]. Therefore, increased fusion in combi-

nation with higher CD4 use could result in a dead end path for the virus and thus be a further

reason why the virus rarely opts for high CD4 affinity in vivo.

The extreme CD4low phenotype was lost during re-adaptation to high CD4 expressing tar-

gets even in the absence of nAb pressure. Adaptation to CD4low may therefore encounter resis-

tance from the various fitness related requirements of virus replication in vivo. This is

supported by the establishment of novel infections by non-macrophage-tropic R5 envelopes

[134] due to the fitness costs associated with CD4low use described here, and the bottleneck at

transmission selecting high-fitness variants in newly established infections [135]. We have

addressed the question of how CD4low envelopes might develop in vivo by comparing the

entry phenotypes with those of well-defined CD4low using envelopes isolated from patients to

find that the CD4low phenotype can be recapitulated amongst viruses replicating in the CNS. It

is intriguing that one of the CNS derived envelopes (B33) displayed a phenotype similar to the

CD4low adapted clones 21 and 24, while the other (B59) did not. A potential explanation for
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this discrepancy could be that B33 and B59 were isolated from CNS at different stages of CNS

infection [136] and/or replicated within different cell types [93]. An additional non-competing

possibility is that the status of the blood-brain-barrier is affected by the progression of infec-

tion [137] differentially in the respective patients, hence allowing more neutralizing antibodies,

and/or plasma derived viruses to traverse to the CNS in certain patients. Of the five shared

mutations found in both CD4low clones (Fig 5), the only one shared by one of the CNS derived

envelopes is 317L which is also found in B33 and has been associated with the ability to use

low levels of CD4 [79].

The phenotypic characterization of the CNS-derived macrophage-tropic Envs highlights

similarities (e.g. similar entry kinetics) but also differences to our CD4low adapted Envs sug-

gesting that our in vitro adapted clones represent an intermediate evolutionary phase with

reduced cell-free infectivity. The CNS-derived macrophage-tropic Envs, which displayed

superior infectivity in cell-free and cell-cell transmission modes relative to their paired con-

trols (Fig 8), may have passed this stage and acquired compensatory mutations that preserve

the entry phenotype but restore infectivity. In particular the elevated infection competency

of these CNS-derived Envs despite increased gp120 shedding suggests these Envs have

undergone severe selective refinement in vivo during their development. It is tempting to

speculate that cell-cell transmission in vivo may have supported the evolution of these shed-

ding-prone, yet highly infecting competent envelopes. While our in vitro selection favored

free transmission as only supernatant was passaged, in vivo both transmission pathways will

be available.

Though the CNS was once considered a site of immunological privilege, it has been estab-

lished that various branches of the immune system operate within the CNS [138–140] includ-

ing the production of limited amounts of antibodies from within the cerebrospinal fluid [141].

Envelopes evolving within the CNS may therefore encounter some humoral immune pressure,

as B59 may have, though the impact of such an interaction on envelope evolution remains an

open question. The lack of an extended entry phenotype in C98-15, isolated originally from

plasma, further shows that the phenotype observed is not a universal feature of all highly mac-

rophage-tropic envelopes and may potentially differ depending on whether the clone recently

evolved or was circulating (and adapting) for an extended period of time. Nevertheless, the

overall trend within each pair of macrophage-tropic and non-macrophage-tropic envelopes

mirrors the difference between CD4low adapted and non-adapted Envs from our panel includ-

ing an increased speed of CD4 binding and extension of transition steps (Fig 7D).

Arrildt and colleagues [125] recently conducted an interesting profiling of phenotypes of

primary macrophage-tropic isolates. They found that macrophage-tropic primary isolates

were not significantly different from matched control Envs in a variety of functional charac-

teristics including infectivity and entry kinetics, as well as neutralization sensitivity to

plasma and V1V2 targeting nAbs. Proposed evolutionary intermediate Envs accordingly

showed a moderate sensitivity to CD4. In contrast our CD4low Envs and the CNS-derived

macrophage tropic Envs differ from their patient-matched controls. As our Envs, like the

CNS-derived macrophage tropic Envs, have not been exposed to humoral immunity during

adaptation, it is tempting to speculate that they represent an early adaptive stage that could

develop only where humoral immunity is low as in sanctuary sites as the CNS. Infectivity

defects, as the CNS derived strains highlight, need not to be associated with this phenotype

of CD4low usage and likely are only a transition point in the evolution towards a stable and

fit variant.

In summary, adaptation to low levels of CD4 on target cells appears to occur in direct oppo-

sition to nAb escape, providing a plausible explanation for the association of highly macro-

phage-tropic envelopes with the CNS and their appearance before nAb development [80].
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Inhibition of the gp120 and CD4 interaction using reagents that bind to the same domain

of cellular CD4 that interacts with gp120 to yield effective therapeutics has been investigated

extensively [75, 142–145]. Our study, in addition to describing the phenotype resulting from

CD4low adaptation, highlights potential routes of escape from CD4 blocking. The envelope

adapted to CD4-blocking gains a wider cellular tropism by an increased ability to bind to CD4,

raising the possibility that blocking access to CD4 therapeutically could potentially accelerate

the generation of envelope variants found normally in late disease stages with increased CD4

binding affinity. The CD4low adapted envelopes generated in our in vitro system, as well as one

brain-derived envelope (B33) developed high neutralization sensitivity in parallel with CD4

affinity, which suggests for B33 that it may also have developed in the absence of nAb pressure.

Intriguingly, a macrophage-tropic isolate derived from plasma (C98-15), which evidently must

have been exposed to neutralizing antibodies, retained neutralization resistance despite devel-

oping the other features required for macrophage tropism. The same was true for the CNS

derived virus B59 opening the possibility that this strain encountered neutralization pressure

as well. Both C98-15 and B59 showed a less extreme phenotype in the entry kinetics compared

to the CD4low viruses and B33. However, in both cases the same trend in kinetics shift was evi-

dent in comparison to non-macrophage-tropic Envs from the same patients (Fig 7). Consider-

ing the potential danger of widening the host cell repertoire, administering CD4 derivatives

rather than targeting CD4 and the CD4bs directly may be more advisable. That this leads to

potent suppression has been shown in the past for CD4-IgG2 (aka Pro542; [146, 147]), and

small-molecule CD4 mimetics [148–151] and with currently unexcelled potency for eCD4-Ig

[152]. However, escape pathways for these compounds also need to be meticulously explored

to exclude changes in the host cell repertoire and unfavorable alterations in viral fitness. Thus

far only few studies have been dedicated to study escape from CD4 mimicking and soluble

compounds [153, 154], with more effort defining escape from CD4bs specific Abs elucidating

fitness costs associated with escape [155].

In sum our analysis describes a set of phenotypic features directly associated with CD4low

adaptation of one subtype B envelope in the absence of nAb pressure that is consistent with

phenotypic changes found in two CNS-derived Envs. We have also connected some of these

phenotypes to envelopes of primary patient isolates suggesting that the environment where

they evolved in vivo potentially shares features with the microenvironment we generated in
vitro. The phenotypic changes that came alongside the adaptation to use low levels of CD4, in

particular the alterations in entry kinetics and stoichiometry, trimer content and infectivity

may open means to better understand the limitations that evolution of CNS macrophage tro-

pism faces. Mechanistic studies on larger sets of CNS and peripheral macrophages may thus

aid to inform vaccine design towards limiting macrophage tropism, ideally preventing the

spread of infection into the CNS.

Materials and methods

Ethics statement

Peripheral blood mononuclear cells (PBMC) were purified from buffy coats from anonymous

blood donations from healthy individuals obtained by the Zurich Blood Transfusion Service

(http://www.zhbsd.ch/) under a protocol approved by the local ethics committee.

Patient plasma from twenty-four individuals with chronic HIV-1 subtype A (N = 4), B

(N = 11), C (N = 3), CRF_01_AE (N = 3), or CRF_02_AG (N = 3) infections were obtained

from biobank samples previously collected during three approved clinical trials the Swiss

Spanish treatment interruption trial (SSITT), the Swiss HIV Cohort study (http://www.shcs.

ch) and the Zurich Primary HIV-infection (ZPHI) study (ClinicalTrials.gov identifier
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NCT00537966) [156–160]. Written informed consent was obtained from all individuals

according to the respective studies as stated in the quoted publication according to the guide-

lines of Canton Zurich and the local ethics committee of all participating clinics.

Reagents

We thank the following individuals for providing inhibitors, antibodies and antibody expres-

sion vectors either directly, or via the NIH AIDS Research and Reference Reagent Program

(NIH ARP): W. Olsen (Progenics, Tarrytown, New York, USA) for CD4-IgG2 and PRO140;

D. Burton (The Scripps Research Institute, La Jolla, California, USA) for b6, b12, PGT121,

PGT128, PGT145, Z13eI; J. Mascola (VRC, Bethesda, Maryland, USA) for VRC01; M. Nus-

senzweig (The Rockefeller University, New York, USA) for 1–79; J. Robinson (Tulane Univer-

sity, New Orleans, USA) for 17b; D. Katinger (Polymun Scientific, Vienna, Austria) for 2G12,

4E10, and 2F5; and Marc Connors (NIC, Bethesda, Maryland, USA) for 10E8. 447-52d was

purchased from Polymun Scientific, Vienna, Austria; T-20 from Roche Pharmaceuticals,

Basel, Switzerland; and Maraviroc from Pfizer, UK. Human CD4 specific DARPins 55.2 and

57.2 were expressed as described (Schweizer, Rusert et al. 2008 [75]). A detailed list of all inhib-

itors and antibodies with their specifications can be found in S1 Table.

Cell lines

293-T cells (American Type Culture Collection (ATCC)) and TZM-bl cells ([161], obtained

from the NIH ARP) were cultivated in DMEM with 10% heat inactivated FCS and 1% Penicil-

lin/ Streptomycin. Rhesus Monkey Trim5α expressing TZM-bl cells (TZM-blrhTRIM5α) were

generated as described [131]. A3.01-CCR5 cells [131] were maintained in RPMI with 10% heat

inactivated FCS and 1% Penicillin/Streptomycin. Affinofile cells [90, 91] were thawed every

two months and maintained in DMEM media supplemented with 10% dialyzed fetal bovine

serum and 50μg/ml Blasticidin (Invitrogen, Massachusetts, USA).

Peripheral Blood Mononuclear Cells (PBMC)

Healthy donor PBMC were isolated from buffy coats and stimulated as described [162] and

cultivated in RPMI with 10% heat inactivated FCS, 1% Penicillin/Streptomycin and 100 units/

ml (U) human recombinant IL-2 (Hoffmann-La Roche, Basel, Switzerland).

NAB01 and NAB01-PA envelopes and generation of Env-chimeric,

replication competent TN6 viruses

The cloning of the CCR5-tropic subtype B envelope NAB-01 (previously described as

NAB1pre-cl_39x (GenBank database entry EU023918; (http://www.ncbi.nlm.nih.gov/

GenBank/index.html; [84]), which was derived from the virus isolate of a chronic infected

individual, patient NAB01 [82], has been previously described [84, 162]. After 39 weeks of

adaptation of the NAB01 isolate to PBMC culture, envelope genes of the adapted virus were

cloned from culture supernatant. One clone, termed NAB01 PBMC-adapted (PA), was

selected for follow up as representative culture adapted clone as it harbored mutations in V84I

and S190R, that were previously observed in PBMC adaptation of NAB01 clones ([84] and

EF643665, EF643666, EF643668-EF643670, EF643673-EF643675). The Env NAB01-PA was

then cloned into the replication competent TN6 HIV vector backbone [85] to produce the

Env-chimeric virus NAB01-PA-TN6 [84] which was used as starting point for the CD4low

adaptation. Of note, chimeric envelopes inserted into the TN6 backbone receive the signal

peptide and first three amino acids of Env from the original TN6 NL4-3 Env.
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Adaptation of NAB01-PA to CD4low expressing target cells

To follow the evolution of NAB01-PA in a low CD4 environment, NAB01-PA-TN6 was pas-

saged on PBMC in the presence of increasing concentrations of a CD4 inhibitor, the high-

affinity CD4-binding DARPin 57.2 that efficiently blocks HIV-1 gp120 binding to CD4 [75].

In a parallel control culture, NAB01-PA-TN6 was propagated on the same batches of PBMCs

in the absence of the CD4 blocking agent. After 18 weeks of culture and a final maximal con-

centration of 1.5 μM DARPin 57.2 (Fig 1B), several functional envelope clones capable of free-

virus TZM-bl infection were isolated from both the CD4-DARPin treated and control culture

supernatants by RT-PCR (S2 Table). Two unique envelopes, CD4low.c21 and CD4low.c24, rep-

resenting the main mutation patterns observed, were selected for further follow up (S2 Table).

To study whether the phenotype of the derived CD4low.c21 and CD4low.c24 clones is stable or

reverts to wild type once back in a CD4 high environment, CD4low.c21, CD4low.c24 and

PBMCcon.c14 TN6 chimeras were further cultured for eight weeks on untreated PBMCs in the

absence of CD4-binding DARPin. After eight weeks, functional envelope genes were isolated

from each of the reversion cultures, and representative clones referred to as CD4low.c21-rev,

CD4low.c24-rev and PBMCcon.c14-rev (rev = reversion culture) chosen for follow up. All enve-

lopes selected for follow up were cloned into pcDNA3.1 expression vector (Invitrogen, Carls-

bad, California, USA) as described [84] to allow phenotypic characterization of cell expressed

envelopes and Env-pseudoviruses (see below) and further cloned into the TN6 vector to create

replication competent chimera.

Patient derived paired macrophage and non-macrophage-tropic

envelopes

The previously described patient-derived paired macrophage and non-macrophage-tropic

envelopes (B33, LN40/B33, B59, LN8, C98-15, and C98-27 [64, 76–79]) were re-cloned from

pSVIII plasmids into pcDNA3.1 expressions plasmids by AT-overhang ligation to allow direct

comparison with the CD4low virus panel.

Envelope pseudotyped HIV-1 luciferase reporter virus

Envelope pseudotyped HIV-1 were produced as described [162]. Briefly, 293T cells were trans-

fected with pcDNA3.1 plasmids encoding the respective envelope genes and the Luciferase

expressing HIV-1 backbone pNLluc-AM (gift from A.J. Marozsan and J.P. Moore) at a ratio of

1:3 using polyethylenimine (PEI, linear 25 kDa, Polysciences, Eppelheim, Germany). After 8-

16h of transfection, medium was replaced with fresh culture medium. Pseudovirus superna-

tant was collected 48h post transfection and filtered through 20 μm pore micro filters. Filtrates

were then either stored at -80˚C or ultra-centrifuged at 49’000g and 4˚C for 90 minutes and

suspended in PBS before being stored at -80C. Envelope-pseudotyped virus expressing mouse

CD4 was produced as previously described [96].

Pseudovirus inhibition assays

Pseudovirus inhibition assays were performed using TZM-bl cells and PBMC as previously

described [162, 163]. Briefly, serial dilutions of inhibitors were pre-incubated with target cells

or viruses depending on target epitope, for 1hr at 37˚C, then virus, cells, and inhibitor were

added together and incubated for 48–72 hours. Infection supernatants were then aspirated,

cells lysed, luciferase substrate (Promega, Madison Wisconsin, USA) added and the presence

of luciferase quantified by measuring relative light units (RLU) using a Dynex MLX 96-well

plate reader.
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CD4 binding activity of Env variants

To estimate CD4 binding activity of Env variants, we performed a cell-based envelope binding

assay. 293-T cells were transfected with pCMV-rev and envelope encoding pcDNA3.1 plas-

mids in a 1:4 ratio with polyethyleneimine (PEI, linear 25 kDa, Polysciences, Eppelheim, Ger-

many) and incubated for 36 hours to induce membrane expression of the envelope. CD4

binding activity of cell surface expressed Env was analyzed by flow cytometry using biotin

labelled CD4- IgG2 and detection with streptavidin-PE (BD, New Jersey, USA).

Monitoring dependence on receptor levels by infection of Affinofile cells

CD4 and CCR5 dual-expressing 293-T Affinofile cells were induced and infected in a matrix

layout as previously described [90, 91]. Briefly, 1.2x105 or 1x104 cells were seeded per well of a

24-well culture plate for quantitative flow cytometry of CD4 and CCR5 expression levels, or

96-well clear-bottom culture plate for infections, respectively, and allowed to adhere overnight

before being treated with perpendicular serial dilutions of Doxycycline (Sigma Aldrich, Mis-

souri, USA) and Ponasterone A (Invitrogen, Massachusetts, USA) to induce CD4 and CCR5

expression, respectively. Surface expression levels of CD4 and CCR5 were quantified between

18-24h post induction by quantitative flow cytometry using QuantiBRITE beads and PE-

labelled antibodies specific for CD4 (clone Q4120; Sigma Aldrich, Missouri, USA) and CCR5

(clone 2D7; BD Biosciences, New Jersey, USA). Affinofile cells were infected 18-24hrs post-

induction using 105 RLU of virus per well (calculated by titration on TZM-bl cells) in the pres-

ence of 10 μg/ml Diethylaminoethyl (DEAE; Ammersham plc, UK) and luciferase readout was

performed after 48hrs of infection.

Cell-cell transmission

To specifically measure viral infectivity in cell-cell transmission, we employed a recently

described A3.01-CCR5 cell based assay [95]. Briefly, this assay utilizes an NL4-3 derived pseu-

dotyped HIV-1 backbone with an intron-regulated Gaussia luciferase LTR-reporter construct

called inGluc which is co-transfected with an Env expression plasmid into 293-T donor cells

[13, 16, 164], a kind gift from Dr. M Johnson. The reverse orientation of the reporter and the

intron allow luciferase expression only after correct splicing, packaging into viral particles and

infection of and expression in the A3.01-CCR5 target cells. Free virus infection was restricted

by the omission of DEAE in the infection medium as described previously [131].

To measure infectivity in free virus and cell-cell transmission, 2.5x105 293-T cells per 6-well

were transfected with Env expression plasmid and NLinGluc backbone for cell-cell in a 1:3

ratio, using polyethylenimine (PEI) as transfection reagent. To test cell-cell infectivity, the cells

were detached after six hours of incubation and 5x103 cells were seeded in 100 μl per 96 well.

1.5x104 A3.01-CCR5 target cells in 100 μl RPMI medium were added to the 293-T cells per 96

well. After 60 h of incubation at 37˚C, Gaussia luciferase activity in the supernatant was quan-

tified using the Renilla Luciferase Assay System (Promega, Madison Wisconsin, USA) accord-

ing to the manufacturer’s instructions.

Cell fusion assay

We employed a co-culture of HIV-1 pseudovirus transfected 293-T cells and the LTR-firefly

luciferase reporter expressing TZM-bl cells to obtain information on the fusion potential of

the probed envelope clones. To limit influence of free virus in the readout, we used TZM-bl

cells that express rhesus macaque Trim5α, as expression of rhTrim5α in target cells restricts

free virus infection [95, 131]. 293-T cells were PEI transfected for six hours with env-
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pcDNA3.1 and pNL AM GFP backbone. Transfected cells were then detached, washed once at

300g for 3min, suspended in 1200μl culture medium and 100μl were added to 10 replicate

wells of a clear-bottom 96 well plate containing 1.5x104 TZM-blrhTrim5α in the presence or

absence of inhibitors. After 24 hours, luciferase activity was recorded.

Detection of gp120 shedding

Gp120 shedding following treatment with 2F5 was measured as previously described [96].

Envelope-pseudotyped virus carrying mouse CD4 (mCD4) were ultracentrifuged at 49’000g

for 90 minutes at 4˚C. The virus pellet was resuspended in TBS +2% BSA for 120–200 minutes

at room temperature and treated with 100 μg/ml of mAb 2F5 for 18–20 hours at 37˚C. Virions

were immobilized with magnetic Dynabeads coated with rat mAb L3T4 specific for mCD4

(Thermo Fisher, Massachusetts, USA) using a magnetic tube rack (DynaMag-2, Thermo

Fisher, Massachusetts, USA) and washed twice to remove shed gp120 and non-bound virions.

Captured viral particles were lysed with TBS +1% Empigen and gp120 and p24 content mea-

sured by ELISA. The gp120 content was normalized to p24 content of each sample and shed-

ding was expressed as a percentage of the mock-treated controls.

HIV-1 infection of primary monocyte-derived-macrophage cultures

Monocytes were purified from freshly isolated healthy donor PBMC using MACS anti-

CD14-coated magnetic beads and MACS separation columns (Miltenyi Biotec, Germany).

Purity of viable cells ranged between 96–98% as assessed by CD14+ staining in flow cytometry

(CD14-PE from Life-Technologies; IgG2a-PE Isotype from BD Pharmingen; Live-Dead near

infra-red viability stain from Life Technologies; pooled mouse serum used to block fc receptors

at 20% (gift of L. Hangartner). 5x104 monocytes per well were seeded into 96-well culture

plates (Greiner Bio-One GmbH, Germany) for infection experiments, or 2x106 cells per well

seeded ultra-low attachment surface 6-well plates (Sigma Aldrich, Missouri, USA) for flow

cytometry analysis. Monocytes were differentiated for six days in differentiation medium

(RPMI1640 supplemented with 1% Pen/strep, 10% fetal-calf serum, 5% pooled human AB

serum (Sigma Aldrich, Missouri, USA), 4mM Glutamax (Thermo Fisher, Massachusetts,

USA)) and either 100ng/ml M-CSF or 100ng/ml GM-CSF (Immunotools GmbH, Friesoythe,

Germany) to produce two different phenotypes of monocyte-derived-macrophages [165–167],

known to express differential levels of CD4 and CCR5 [29]. After six days of differentiation @

37˚C in 80% humidity and 5% CO2, differentiation medium was replaced with culture

medium (RPMI 1640, 10% FCS, 1% penicillin and streptomycin) and incubated at 37˚C over-

night. Pseudovirus infections and flow cytometry of surface receptors were performed on day

seven post-isolation. Before infecting MDMs, one well of each MDM type was imaged with an

Incucyte ZOOM system using a 10x objective lens and ‘scan-on-demand’ with the phase con-

trast channel. Cell morphology was compared to [166] to confirm cultures were independently

differentiated as one phenotype or the other by the presence of ‘fried egg’ morphology for

G-MDM, and ‘spindle-cells’ for M-MDM (S4A Fig). Envelope pseudotyped virus supernatants

were titrated onto MDMs and allowed to incubate at 37˚C in 80% humidity and 5% CO2 for

seven days. Firefly luciferase production was measured using a Dynex MLX plate reader (high

gain setting) and Bright-Glo Luciferase Assay System (Promega, Madison Wisconsin, USA)

on day 14 post-isolation (day seven post infection). To analyze surface marker expression,

MDM were detached with cell dissociation solution (Sigma Aldrich, Missouri, USA) and

stained with CD4-PE (BD, New Jersey, USA), CD195-PE (Biolegend, California, USA, Califor-

nia, USA), CD64-FITC (Biolegend, California, USA), or CD163-BV421 (Biolegend, California,

USA) mAbs, or matched isotype controls, to measure expression of HIV receptors CD4 and
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CCR5(CD195) and macrophage differential phenotypic markers CD64 and CD163 [168](S4A

Fig). Pooled mouse serum (gift of L. Hangartner) was added at 20% to all staining solutions to

block unspecific binding of mouse mAbs to MDM Fc receptors.

Envelope sequencing and analysis

Cloned envelope genes were sequenced on an ABI 3130xl genetic analyzer (Applied Biosys-

tems, Rotkreuz, Switzerland) as described [84]. Gp160 protein characteristics were calculated

using ProtCalc for charge (http://protcalc.sourceforge.net/) and the NIH N-GlycoSite tool

(http://www.hiv.lanl.gov/content/sequence/GLYCOSITE/glycosite.html) to count potential

glycosylation sites. Mutation prevalence in the Los Alamos National Laboratory HIV sequence

database was performed using QuickAlign (https://www.hiv.lanl.gov/content/sequence/

QUICK_ALIGNv2/QuickAlign.html) web alignment with all 4907 complete sequences avail-

able at the time of query. Subtype and Tissue ontogeny- filtered sequences were downloaded

from the HIVbrainseqDB [102] and the prevalence of specific mutations queried using a cus-

tom algorithm, available on request. Envelope gene sequences of all clones were deposited in

the GenBank database entries KX673206-KX673212.

Entry kinetics

Time of inhibitor addition experiments were performed to define entry kinetics with small

modifications to previously described protocols [112, 169]. Briefly, 6x103 TZM-bl cells in

DMEM supplemented with 10 μg/ml DEAE-Dextran were plated in 384 well clear-bottom

plates (Greiner Bio-One GmbH, Germany). Luciferase reporter pseudovirus was spinoculated

onto cells for 30min at 2095g and 4˚C to settle virus onto cells but prevent receptor engage-

ment. Following spinoculation the supernatant with un-adsorbed virus was removed and 70 μl

of 37˚C pre-warmed DMEM were added per well to initiate infection (time point zero) and

plates were incubated at 37˚C. At defined time points post-infection, 10 μl of the respective

inhibitor were added to specific wells to stop the viral entry process. Inhibitors (T-20, Mara-

viroc, and DARPin 55.2) were added at saturating concentrations (final concentrations of

50 μg/ml, 5 μM and 1 μM, respectively) to ensure inhibition of entry. To obtain a measure for

infectivity across different experiments, the wells with the last inhibitor addition at 120 min-

utes after infection start were used as 100% reference infectivity value and the infectivity of all

other inhibitor treated wells were set in relation to it. In addition, a mock-treated well (addi-

tion of 10 μl DMEM at time point zero) was evaluated to assess absolute infectivity in absence

of inhibitors. Luciferase reporter readout was performed after 48hr incubation at 37˚C.

The time to reach 50% of the 120min infection (T½) was used as a surrogate for timing of

receptor (CD4 or CCR5) binding or fusion. For each envelope, each inhibitor and each repli-

cate, a general kinetic equation (A-D)/(1+/(x/C)^B) + D was fitted to each replicate time series

of data points and a T½ value was estimated from the fitted equation. If the least-squares

approximation used to fit the kinetic equation did not converge, a straight line was instead

used to estimate T½. To deal with irregularities of the data, this line connects the data point

left of the first point with>50% relative infectivity and the point right of the last point with

<50% relative infectivity. The reported T½ value for each envelope and each inhibitor is the

mean T½ value across all replicates (see Figs 6 and 7). Mann-Whitney tests were performed to

compare the time intervals between the four stages of the entry process (synchronized start,

CD4 binding, CCR5 attachment, fusion) among different envelopes. Only envelopes derived

from the same patient were compared (see Fig 7 and S6 Fig).

To assess the sensitivity of the method used, we estimated T½ values in two different ways

in addition to the method described above (see S7 Table). First, we took the mean or median
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of the data points from all replicate experiments prior to fitting only one curve and estimating

T½. Since each experiment always consisted of two replicates, the second method took the

mean or median of these two data points, fitted curves to these data, estimated T½ values for

each pair and averaged them across experiments (see S7 Table). Whenever taking an average,

we also considered using the median instead of the mean (see S7 Table).

Estimating the stoichiometry of entry

The number of envelope glycoproteins required for target cell entry of the studied envelope

variants was calculated as previously described [112–114]. In short, we generated dominant

negative envelope genes in the pcDNA3.1 vector by knocking out the furin cleavage site

(R508S/R511S). Ratios of the dominant negative mutant and wild-type envelopes were trans-

fected into 293-T cells along with the NL-Luc-AM HIV-1 backbone to generate pseudotyped

viral particles carrying varying ratios of functional and non-functional envelopes. Pseudovirus

was then titrated on TZMbl target cells and read out after 48hrs using a Dynex MLX plate

reader and Bright-Glo Luciferase Assay System (Promega, Madison Wisconsin, USA).

The number of envelope proteins per viral particle was estimated by quantitative ELISA of

gp120 and p24, as previously described [112], and the mean trimer number of each virus vari-

ant determined. These data were then used to determine the number of trimers required for

entry using the mathematical framework described in [112–114].

Supporting information

S1 Table. Inhibitors and antibodies.

(TIF)

S2 Table. Overview Env mutation in clones isolated from CD4low and reversion culturing.

(TIF)

S3 Table. Multi-clade virus panel probed for CD4-DARPin 55.2 sensitivity.

(TIF)

S4 Table. CD4low adaptation panel sequence characteristics.

(TIF)

S5 Table. Patient isolate pairs of macrophage- and non-macrophage-tropic envelopes.

(TIF)

S6 Table. Inhibitory activity of CD4 and CCR5 inhibitors against CD4low adapted viruses

during free-virus infection and fusion.

(TIF)

S7 Table. Entry kinetics curve fitting sensitivity analysis.

(TIF)

S8 Table. Estimations of trimer number per virion by quantitative gp120 and p24 ELISA

ratios.

(TIF)

S1 Fig. Differential infection of Affinofile cells with varying CD4 and CCR5 levels by

CD4low adapted viruses. 293-T Affinofiles were induced to express forty-two unique combina-

tions of (A) CD4 and (B) CCR5 levels. Receptor levels were assessed by quantitative flow cytom-

etry. Data are from one of two independent experiments. (C) and (D) Infection of Affinofile

matrices. Following receptor induction Affinofiles were infected with the indicated envelope
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pseudotyped viruses. For each pseudovirus, infection across the Affinofile matrix was normal-

ized to the maximum infection this virus reached on Affinofiles in an individual experiment.

Data from two independent experiments are shown, error bars = SD. (C) Mean percent maxi-

mum infections were plotted by CD4 level. Each panel indicates one level of CD4 induction

with CCR5 levels increasing from left to right within each cluster of colored bars. (D) Mean per-

cent maximum infections were plotted by CCR5 level. Each panel indicates one level of CCR5

induction with CD4 levels increasing from left to right within each cluster of colored bars.

(TIF)

S2 Fig. Three dimensional Affinofile infection profiles. Affinofiles were induced to express

forty-two unique combinations of CD4 and CCR5 and infected with the indicated Env-pseu-

doviruses. Data of the CD4low envelope panel shown in S1 Fig and primary virus JR-FL for

comparison are depicted. Two independent assays are shown. Axes legends are indicated at

top right, dotted line projects into the page.

(TIF)

S3 Fig. Comparison of free virus, cell-cell transmission and fusion capacity of CD4low

adapted viruses. Data correspond to Fig 3 and depict raw RLU values obtained for the

depicted experiments (A) Titration of Env pseudoviruses on TZM-bl and PBMC. Infectivity of

CD4low adapted viruses in (B) cell-cell transmission and (C) fusion.

(TIF)

S4 Fig. Infectivity of CD4low adapted viruses on macrophages. Differentially conditioned

monocyte derived macrophage phenotypes and infection. (A) Phenotypic verification of

M-MDM and G-MDM preparation by phase contrast morphology and flow cytometry analy-

sis of CD4, CD64 and CD163. Histograms depict one of 2 independent experiments for

CD163 and CD64 staining, and one of 4 independent experiments for CD4 staining, dot-plot

shows trends of CD4 and CCR5 staining levels for four independently isolated and treated

batches of MDM. (B) Envelope pseudotyped virus stocks were freshly produced by transfecting

293-T cells with pcDNA3.1 envelope expression plasmid together with pNLluc-AM backbone

and viral stocks titrated on M-MDM and G-MDM of eight different donors. Data show sum-

mary of experiments that were normalized either by input volume, RLU value determined by

TZM-bl infectivity (RLU/μl), or p24 as determined by ELISA of viral stocks. Infection readout

was normalized to NAB01. (C) Absolute infectivity of ultracentrifugation purified Env-pseu-

dovirus stocks on differentially M-MDM and G-MDM with virus input normalized by p24

content. Mean, error bars = SD.

(TIF)

S5 Fig. Prevalence of key mutations observed upon adaptation to CD4low targets amongst

primary viruses recorded in the Los Alamos sequence database. 4907 available Env

sequences were analyzed.

(TIF)

S6 Fig. Statistical analysis of entry kinetics following paired curve fitting. Alternative analy-

sis of transition time between steps of the entry process of the data depicted in Fig 7. Data

points from the two replicates from the same experiment were combined (i.e. paired) before

fitting the curves and averaging individual T½ values. Estimated time intervals between the

four stages of the entry process (synchronized start, CD4 binding, CCR5 attachment, fusion)

were compared by Mann-Whitney tests. Only envelopes from the same patient (same principal

color) were compared.

(TIF)
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S7 Fig. Comparison of free virus, cell-cell transmission and fusion capacity of patient-

matched macrophage tropic and non-macrophage-tropic viruses. Data correspond to Fig 8

and depicts raw RLU values obtained for the (A) titration of Env pseudoviruses on TZM-bl

and infectivity of CD4low adapted viruses in (B) cell-cell transmission and (C) fusion.

(TIF)
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