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ABSTRACT  Polyphosphate (polyP) is an abundant and physiologically im-

portant biomolecule for virtually any living cell. Therefore, determination of 

changes in cellular content of polyP is crucial for its functional characteriza-

tion. Determination of cellular polyP has been performed by many different 

methods, and the lack of a standardized procedure is possibly responsible for 

the large dispersion of results found in the relevant literature. For a relatively 

simple organism, such as the yeast Saccharomyces cerevisiae, this variation 

can be up to 12-fold. polyP extraction and determination of free phosphate 

released by enzymatic degradation of the polymer is a method quite common 

and relatively straightforward for polyP determination. By using the yeast S. 

cerevisiae as model, we have experimentally evaluated the different steps in 

this procedure in order to identify critical issues that might explain the dis-

parate reported results. As the main output of this evaluation we propose a 

straightforward and robust procedure that can be used as gold standard pro-

tocol for cellular polyP purification and determination from unicellular organ-

isms, thus providing consistency to measurements and facilitating inter-

laboratory comparisons and biological interpretation of the results. 
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INTRODUCTION 

Inorganic polyphosphate (polyP) is a linear polymer of or-

thophosphate with many biological functions in both pro-

karyotic and eukaryotic organisms. In microorganisms, 

polyP plays an important function as stores of phosphorus 

and energy, in cation homeostasis, and in adaptation to 

stress conditions [1]. Very recently, a role for polyP in post-

translational modification of Lys residues in proteins has 

been reported [2]. In complex organisms, as humans, this 

polymer is involved in many diverse functions such as 

blood coagulation, bone formation, immune response, 

regulation of calcium level in mitochondria, or neuro-

transmission (see [3] and references herein). In addition, 

polyP is used in diverse industrial processes, including wa-

ter treatment, and as fertilizer in agriculture [4]. Therefore, 

research on polyP is of great relevance in a variety of fields, 

ranging from the environmental to the biological sciences. 

In the past, quantification of intracellular polyP content 

has been carried out by means of a diversity of approaches 

and methodologies, often yielding results that are difficult 

to compare. One of the most commonly employed meth-

ods to quantify polyP has been 
31

P NMR [5-7]. While this 

technique has produced a foundational knowledge in the 

field of polyP research, it suffers of significant drawbacks. 

For instance, 
31

P NMR only detects phosphorus-containing 

molecules on the basis of bond class. Therefore, the meth-

od is not ideally suited to distinguish between polyP and 

molecules that also can contain phosphoanhydride bonds, 

such as nucleotides. Moreover, the abundant presence of 

P-ester compounds can obscure the comparatively smaller 

polyP signal in the majority of biological samples. In addi-

tion, usually NMR equipment is not well suited for time-

resolved experiments in which environmental conditions 

must be quickly changed. 

Staining with relatively specific dyes has been widely 

used for monitoring polyP accumulation both in vivo and in 

vitro. An example is the utilization of the metachromatic 

interaction of polyP with toluidine blue [8], although the 
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most widely used method is based on the interaction be-

tween polyP and the fluorochrome 4′,6-diamidino-2-

phenylindole (DAPI). DAPI is usually used for DNA detec-

tion, because blue fluorescence is apparent when the 

stained cells are viewed under UV light. However, the bind-

ing of DAPI to polyP also shifts the peak of DAPI and the 

fluorescence intensity at this shifted wavelength is propor-

tional to the concentration of polyP [9, 10]. Although pre-

vious studies concluded that the presence of DNA do not 

complicate the fluorimetric quantification of polyP with 

DAPI, it has recently been described that RNA, inositol 

phosphates, amorphous calcium phosphates and nucleo-

tides can cause significant interference at the wavelengths 

used to measure polyP, concluding that the DAPI-polyP 

interaction is sensitive to sample composition [7, 11-14] 

and can lead to high variation between samples. Recently a 

new method for measuring polyP based on spectromicros-

copy (Raman microscopy) has been developed [13, 15]. 

Raman microscopy is a fast evolving technology, but cur-

rently its sensitivity is relatively low and requires equip-

ment not widely available. 

Protocols that determine polyP concentration biochem-

ically offer an appealing alternative to the methods dis-

cussed above, as exemplified by the early determination of 

polyP levels in different mammalian cells and tissues per-

formed by the Kornberg's laboratory [16]. Such enzymatic 

methods are based on the use of polyP kinase, followed by 

ATP measurement [17, 18], or that of exopolyphosphatase 

followed by determination of free orthophosphate [19-21], 

and have been used in a variety of cells, from microorgan-

isms to mammalian tissues. These methods are widely 

used because of their high sensitivity (particularly if radio-

active phosphate is used), but they are not devoid of prob-

lems. For instance, they generally require of purification 

procedures, which can lead to erratic and/or low yields and, 

currently, no commercial sources exist for the required 

enzymes. In addition, even for enzyme-based protocols, 

the disparity of procedures used for purification and assays 

complicates inter-laboratory comparisons. 

Possibly, the lack of a truly validated method to quanti-

fy cellular polyP content has been a drawback that has 

hampered the advance in the field. In fact, after evaluation 

of the relevant literature concerning the budding yeast 

Saccharomyces cerevisiae, we noticed a large disparity in 

the polyP content reported for this yeast that was difficult 

to explain on the basis of different genetic backgrounds or 

growth conditions. We considered that, at least in part, 

such inconsistency could derive from the use of different 

methods for polyP determination. In this work we analyze 

and compare possible alternatives for the main steps of 

exopolyphosphatase-based methods for polyP quantifica-

tion, discuss the relative advantages, and propose a unified 

FIGURE 1: High variability on polyP determination in 

S. cerevisiae. (A) polyP content in mM concentration 

according to different authors. Values were convert-

ed to mM according to the following assumptions: i) 

The volume of the haploid cell is 42 fl, ii) One OD660 

unit equals to 2.6 x 10
7
 cells and represents 50 µg of 

RNA. The Mw for the [-PO3
-
-] monomer is 79 g/mol. 

(B) Flow chart of this work, showing the different 

possibilities explored in each of the three parts need-

ed for determining polyPs: extraction, purification 

and quantification. 
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protocol for polyP determination that will help in the ad-

vance of the research of this polymer. 

 

RESULTS AND DISCUSSION 

Large discrepancies in determination of polyP cellular 

content claim for standardized determination methods 

A major issue when any cellular metabolite from a given 

source is determined is to evaluate whether the values 

obtained are congruent with those previously reported 

under similar circumstances (growth conditions, genetic 

background, etc.) in the literature. In the case of polyP 

content in yeast cells, this is a difficult task because, in 

many cases, the units employed are different (i.e. μg/OD 

unit, μmol/mg RNA, nmol Pi/10
n
 cells, and so on). We have 

made an attempt to integrate data from the literature in a 

common frame of measurement units (mM Pi). The result 

of this transformation applied to five independent reports 

[22-26] is shown in Figure 1. As it can be seen, there are 

large differences (up to 12-fold) in the amount of cellular 

polyP determined. It might be argued that this disparity 

could result from the use of different genetic backgrounds 

in the experiments. However, in several of the examples 

included in Figure 1, the BY4741 strain, or very close deriv-

atives, were employed. The use of different backgrounds, 

even if it can result in some fluctuations, can hardly explain 

the large variations observed (our own unpublished data, 

see also reference [25]). In addition, the Pi content in the 

media used and the growth phase of the cultures were 

fairly consistent among the different experiments. There-

fore, it is reasonable to conclude that a substantial compo-

nent of such variations must reside in the use of different 

protocols for polyP extraction, purification and quantifica-

tion. In consequence, we considered necessary to carry out 

a comparative analysis of different options than can be 

proposed for each of these steps (Figure 1B). 

 

Influence of the extraction method on polyP quantifica-

tion 

There is plenty of evidence that polyP polymers are labile 

to acidic conditions [27]. In fact, acid treatment at high 

temperature has been used for polyP quantification upon 

hydrolysis of the polymer [28]. However, some methods 

for polyP extraction from cells or tissues involve the use of 

strong acids (usually sulfuric or perchloric). Therefore, we 

considered the possibility that this step might influence in 

the recovery of polyP from its original source. To evaluate 

this, we incubated 4 µg of commercial polyP for different 

periods of time with the reagents more frequently used in 

the literature: a phenol-based extraction solution at pH 8.0 

(Figure 2A), the same solution at pH 4.8 (Figure 2B), 1 M 

sulfuric acid (Figure 2C) or 1 M perchloric acid (Figure 2D). 

As it can be observed, treatment with strong acids results 

FIGURE 2: polyP is unstable 

when strong acids are em-

ployed during the extrac-

tion process. Relative 

amount of polyP after 

treatment with the different 

extraction solutions. Com-

mercial polyP (4 μg) was 

incubated at different times 

with the different extraction 

solutions: (A) neutral-phenol 

at 4°C, (B) acid-phenol at 

4°C, (C) 1 M H2SO4 at room 

temperature and (D) 1 M 

HClO4 at 4°C. The mixes 

were neutralized, purified 

using affinity columns and 

the polyP eluted with MilliQ 

water. polyP amount was 

determined from the 

amount of Pi produced upon 

treatment with rPpx1. The 

graphs represent the per-

centage of polyP relative to 

time zero of each condition. 

Mean ± SEM from 3 inde-

pendent experiments is 

shown. 
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in a time-dependent decrease in the amount of measured 

polyP, which was reduced up to one half of the untreated 

aliquot in as little as 10 min. This implies that some com-

monly used extraction methods would result in polyP deg-

radation at this step, with the consequent impact in the 

final quantification. 

 

The purification method strongly influences the size and 

amount of recovered polyP 

Two of the most frequently used methods for polyP purifi-

cation upon extraction are affinity chromatography (usual-

ly silica-based) and ethanol precipitation. Reported evi-

dence indicated that different extraction methods may 

result in size fractionation of recovered polyP [29]. To test 

possible purification method-dependent differences in the 

length and recovery of polyP, we extracted polyP from two 

aliquots of yeast cultures by the phenol/chloroform (pH 

8.0) method and samples were purified either by ethanol 

precipitation or by column chromatography (see Materials 

and Methods). Aliquots of the ethanol-precipitated mate-

rial, as well as of the flow-through and the eluate of the 

chromatography were analyzed by polyacrylamide electro-

phoresis. As shown in Figure 3A, the chromatography step 

results in a dramatic size-dependent fractionation: polyP 

chains shorter than 60-80 residues were not retained by 

the column and appeared in the flow-through (which is 

usually discarded). This fractionation by size drastically 

decreased polyP recovery in the eluate which, upon quanti-

fication by degradation with rPpx1 and determination of 

the released phosphate, was estimated to be around 30-

40% of the initial amount of polymer measured after the 

ethanol precipitation method (Figure 3B). Therefore, while 

extraction of polyP with the neutral phenol/chloroform 

method does not appear to introduce significant size selec-

tion bias (compare Figure 3A in this work with Figure 3 in 

reference [29]), subsequent column purification results in 

size fractionation leading to significant underestimation of 

the amount of cellular polyP.  

Finally, we examined different factors that might affect 

the recovery in the process of precipitating polyP with eth-

anol. To this end, we added to the mixture various mono-

valent cations, magnesium or glycogen (as carrier). As de-

duced from Figure 3C, none of these components had sig-

nificant effect on the recovery of polyP. 

 

 

 

 

FIGURE 3: Ethanol precipitation method yields 

a broader spectrum of polyP sizes than affinity 

column purification. (A) PAGE and DAPI staining 

of polyP differently purified. polyP was extract-

ed using the neutral phenol/chloroform proce-

dure from a yeast pellet equivalent to 10
7 

loga-

rithmically growing yeast cells. The aqueous 

phase was treated with DNAse and RNAse solu-

tion, and purified by affinity columns or by eth-

anol precipitation. The resulting polyP fractions: 

precipitated (in the case of the ethanol) and 

eluted and flow-through (in the case of the af-

finity column) were analyzed by PAGE followed 

by DAPI staining. (B) Percentage of polyP rela-

tive to the purification method. polyP amount 

was determined using the same fractions ob-

tained in panel A. The graph represents the 

Mean ± SEM from 3 independent experiments. 

(C) Relative amount of polyP obtained after the 

precipitation of polyP in the presence of differ-

ent monovalent salts, divalent salts and a carri-

er. Aqueous phase from panel A was used. The 

graph represents the percentage of polyP rela-

tive to precipitation with NaOAc. Mean ± SEM 

from 3 independent experiments is shown. GLC, 

glycogen. 
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Characterizing the conditions for recombinant Ppx1-based 

polyP determinations 

As described above, degradation of polyP by the exopoly-

phosphatase activity of yeast Ppx1 followed by measuring 

released phosphate is a common method for polyP deter-

mination. Therefore, it was considered of interest to test a 

number of practical aspects of this reaction suitable to be 

optimized. Ppx1 purified from yeast was reported to be 

fairly active up to 47°C [20], so we first examined the pos-

sibility to reduce the period of digestion with the enzyme 

by raising the incubation temperature. As shown in Figure 

S1A, the enzyme was highly active at 60°C but only for a 

relatively short period of time (20 min), followed by a sud-

den decline in activity, likely due to a thermal inactivation 

process (Figure S1B). In contrast, when incubated at 37°C, 

rPpx1 showed lesser, but constant activity during the ex-

periment (60 min). As a result, incubation at 37°C resulted 

in a more exhaustive digestion of the polyP. However, 

since usually the amount of polyP to be measured is far 

smaller than the four µg used in this assay, it could be fea-

sible to shorten the incubation time (and thus the duration 

of the assay) by raising the incubation temperature. We 

also tested the range of pH suitable for the use of the re-

combinant Ppx1 (Figure S1C). As observed, the enzyme was 

highly active in the pH range of 5.5 to 8.5, which fits well 

with the range reported for the native enzyme [20]. 

We observed that equivalents amounts of polyP either 

obtained by synthesis or purified from yeast (by neutral-

phenol extraction followed by ethanol precipitation) dis-

played different degradation kinetics, being slower that of 

the polymer extracted from yeast (Figure 4A). Because 

certain charged molecules, such as heparin [30, 31] or 

 

FIGURE 4: rPpx1 activity is inhibited by the presence of DNA and RNA. (A) Kinetic of the rPpx1 polyP digestion. rPpx1 (10 ng) was incubat-

ed with 250 ng of commercial polyP or yeast polyP, in 20 mM Tris-HCl pH 7.50 containing 5 mM magnesium acetate and 100 mM ammoni-

um acetate at 37°C. Samples were taken at the indicated times to quantify the released Pi. Mean ± SEM from 3 independent experiments is 

shown. (B) rPpx1 activity on polyP in the presence of increasing amount of DNA. rPpx1 (10 ng) was incubated with 100 ng of commercial 

polyP in 20 mM Tris-HCl pH 7.50 containing 5 mM magnesium acetate and 100 mM ammonium acetate and at 37°C during 20 min with 

increasing concentrations of DNA (both circular and linear). The graph represents the released Pi in each condition. Mean ± SEM from 3 

independent experiments is shown. (C) rPpx1 activity on polyP in the presence of increasing amount of RNA. Same experiment as in B, but 

with increasing concentrations of RNA. The graph represents the released Pi in each condition. Mean ± SEM from 3 independent experi-

ments is shown. (D) Kinetics of rPpx1 polyP digestion in the presence of DNA and RNA.  rPpx1 (1 ng) was incubated with 250 ng of yeast 

polyP previously treated or not with a DNAse/ RNAse solution in 20 mM Tris-HCl pH 7.50 containing 5 mM magnesium acetate and 100 mM 

ammonium acetate at 37°C. Samples were taken at the indicated times and the released Pi was quantified. Mean ± SEM from 3 independ-

ent experiments is shown. 
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spermidine [20], act as inhibitors of Ppx1 activity, we con-

sidered this behavior a symptom of the presence of inhibi-

tory molecules. Ethanol precipitation is extensively used to 

concentrate nucleic acids, such as DNA and RNA, which are 

negatively charged. Given that the polyP samples used in 

this assay were not treated with RNAse or DNAse, and to 

test the possible interference of nucleic acids in the effi-

ciency of polyP degradation, we incubated polyP with 10 

ng (0.22 pmol) of rPpx1 in the presence of increasing 

amounts of linear or circular DNA. As showed in Figure 4B, 

linear DNA had a very strong inhibitory capacity, with total 

loss of enzymatic activity at an enzyme/DNA ratio of ∼20. 

In contrast, circular DNA was less harmful to the process. 

Incubation with RNA resulted in some inhibition of the 

enzyme, although higher amounts of ribonucleic acid were 

needed. As documented in Figure 4D, treatment of the 

ethanol precipitated material extracted from yeast with a 

mixture of DNAse and RNAse not only accelerates the rate 

of the degradation reaction but also leads to a higher value 

for the amount of PolyP determined. These results would 

suggest a functional interaction between nucleic acids 

(mostly linear DNA) and Ppx1. Remarkably, poly(A) poly-

merase, an RNA-modifying enzyme, has been found to be 

inhibited by polyP [32]. Therefore, it must be concluded 

that accompanying nucleic acids can significantly interfere 

with the determination of polyP and that an excess of 

rPpx1 is recommend if it is likely the presence of nucleic 

acids in the assay. 

 

rPpx1 degradation followed by free phosphate determi-

nation offers a better linear range than DAPI quantifica-

tion 

An alternative to the enzymatic degradation of polyP fol-

lowed by quantification of the released phosphate is the 

electrophoretic resolution of polyP chains and subsequent 

staining of the polymers with DAPI. To compare the lineari-

ty of both methods we quantified a range of polyP from 0.5 

to 8 µg by both enzymatic degradation and free Pi deter-

mination and DAPI staining of electrophoretically resolved 

polyP samples. As shown in Figure S2A the enzymatic 

method was linear within the entire tested range, whereas 

DAPI staining, due to saturation of the signal, was linear 

only for amounts of polyP up to 2 µg. 

 

Experimental comparison of reported methods for polyP 

determination 

Our precedent results indicate that the different steps in 

the determination of polyP from yeast cells can be a source 

of variation and could be at the origin of the large disper-

sions of values found in the literature (see Figure 1A). To 

directly test this possibility were carried out in our labora-

tory, for the same amount of cells, the determination of 

polyP using the procedures described by Neef and Kladde 

[33], Lichko and coworkers [23] and Hürliman et al. [25], in 

comparison with the one recently employed by our group 

[26]. All these methods have in common the enzymatic 

hydrolysis of polyP with exopolyphosphatase and chemical 

determination of the phosphate released, but differs in the 

upstream methodology. 

As it can be seen in Figure 5A, the procedure described 

in Bru and coworkers, based in neutral phenol/chloroform 

extraction and ethanol precipitation after DNAse and 

RNAse treatment yielded an intracellular polyP concentra-

tion (expressed as Pi) of nearly 95 mM. This value is used 

here as reference. In contrast, the method described by 

Hürliman and coworkers gave the lower yield, likely be-

cause the extraction in this method is carried out by sulfu-

ric acid treatment, which has a detrimental impact in the 

recovery of polyP (see Figure 2C), and because this step is 

followed by a Qiagen PCR column purification step, which 

is a second factor leading to polyP loss. Therefore, the ac-

cumulation of two detrimental steps in the entire process 

likely justifies the very low recovery observed for this 

method compared with the previous one (almost 20-fold 

lower). The method described by Neef and Kladde uses 

acid phenol and glass beads for extraction of polyP, which 

according to our results does not affect polyP recovery. 

However, these authors do not degrade nucleic acids with 

DNAses or RNAses prior enzymatic polyP degradation. Giv-

en the significant effect of these biomolecules on Ppx1 

activity and polyP recovery (Figure 4), omission of this step 

could explain the somewhat lower recovery (about 30%) 

obtained with this procedure compared with that de-

scribed in Bru et al. [26]. Finally, the method described by 

Lichko and coworkers is based in the extraction of polyP 

with perchloric acid, which also has a detrimental effect in 

polyP recovery (see Figure 2C). This might explain a polyP 

recovery of about one third compared with the reference 

value.  

It is important to note that the procedure utilized for 

polyP determination can substantially affect the conclu-

sions extracted from a given experiment. For instance, we 

have observed that the marked size-specificity of the 

chromatography column method used in the purification 

step can introduce a substantial bias when comparing dif-

ferent physiological conditions. As an example, we recently 

characterized the changes in cellular polyP in yeast cells 

exposed to sudden alkalization of the medium by using a 

column chromatography purification step [34]. Our results 

indicated a very rapid decrease, in a matter of few minutes, 

up to 15% of the initial polyP values. We were puzzled by 

such dramatic change, which was much faster than that 

obtained by depletion of Pi in the medium, and considered 

the possibility that it might be influenced by the determi-

nation procedure. Therefore, we repeated the experiment 

under identical conditions (using the neutral phenol extrac-

tion procedure) except that in one sample polyP was puri-

fied by affinity column and in the other the ethanol precipi-

tation procedure was followed. As it can be observed in 

Figure S3, in untreated cells, utilization of the column step 

yields about 50% of the value obtained by the ethanol pre-

cipitation method. More importantly, according to the 

former method, alkalization of the medium leads to virtual-

ly complete depletion of polyP in about 2 min, whereas the 

later procedure yields a decrease of only 25% of the origi-

nal value. Time-course electrophoretic analysis of the sam-
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ples provides an explanation for such disparate results: 

high pH stress provokes rapid depletion of the largest pol-

yP chains (the ones retained by the column). This result is 

not devoid of interest, as it might indicate that extracellu-

lar alkalization triggers the rapid activation of cellular en-

dopolyphosphatases. 

In conclusion, it is likely that most protocols described 

so far incur in one or more steps that negatively affect the 

yield of quantitated polyP and are at the basis of the dis-

persion of results obtained in many laboratories. Because 

there can be other (sometimes unavoidable) sources for 

variation in polyP content in yeast cells, such as the genetic 

background or the nature of the culture media, it is im-

portant to standardize as much as possible those factors 

that can be chosen at will. In this work we propose a pro-

tocol for total polyP extraction that integrates steps ex-

tracted from the literature with others shaped on the basis 

of the evidence presented here. This protocol is summa-

rized in Figure 5B. Finally, our preliminary results (not 

shown) suggest that the protocol for polyP extraction and 

purification presented here can also be used for quantifica-

tion of polyP from mammalian sources. 

 

MATERIALS AND METHODS 

Yeast strains and growing conditions 

Saccharomyces cerevisiae BY4741 yeast strain [35] was 

used in all the experiments. Yeast cells were grown in 5 ml 

of YPD medium (1% Yeast extract, 2% Peptone, 2% Dex-

trose) overnight at 30°C, diluted to OD (wavelength 660 

nm) = 0.4 in 10 ml of fresh YPD and let them grow to OD = 

1.5. The cells were harvested by centrifugation and instant-

ly frozen by immersion in dry ice. In the alkaline stress ex-

periments, cells were grown and harvested as in [36]. In all 

cases, pellets for polyP extraction were stored at -80°C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 5: Comparison of different polyP extraction and purifica-

tion methods. (A) Amount of polyP corresponding to 10
7
 logarith-

mically growing yeast cells extracted and purified with the follow-

ing methods: neutral-phenol/chloroform and ethanol precipitation 

[26], acid-phenol/chloroform and ethanol precipitation [33], per-

chloric acid [23], and sulfuric acid and affinity columns [25]. Mean ± 

SEM from 3 independent experiments is shown. (B) Scheme of the 

polyP extraction and purification protocol using neutral phenol and 

ethanol purification. In brackets appears the figure supporting this 

particular step. For details and tips see Materials and Methods. 
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PolyP extraction and purification methods 

Method 1: Neutral phenol/chloroform and ethanol precipi-

tation 

1-2*10
7
 exponentially growing cells were collected, the 

pellet was resuspended with 400 μl of AE buffer (50 mM 

sodium acetate (pH 5.3), 10 mM EDTA) at 4°C, transferred 

to a screw cap tube containing 300 μl phenol and 40 μl 

10% SDS, mixed by inversion 4 times, vortexed 5 sec to 

homogenize, incubated at 65°C for 5 min and chilled for 1 

min on ice. Three-hundred μl of chloroform were added, 

mixed by inversion 4 times, vortexed 5 sec to homogenize 

and centrifuged at room temperature for 2 min at 13,000 

g. The top aqueous phase (around 450 μl) containing the 

polyP was transferred to a prepared 1.5 ml screw cap tube 

containing 350 μl chloroform (it is important not to carry 

over any phenol during pipetting by avoid touching the 

bottom phase or the white protein containing interphase), 

mixed by inversion 4 times, vortexed 5 sec to homogenize, 

centrifuged at room temperature for 2 min at 13,000 g and 

the aqueous phase was transferred to a new 1.5 ml micro-

centrifuge tube (it is important not to carry over any phe-

nol). 2 μl of RNAse A 10 mg/ml (Sigma R6513) and 2 μl of 

DNAse I 10 mg/ml (Applichem, A3778.0100) were added, 

incubated 1 h at 37°C, transferred to a pre-cold at -20°C 1.5 

ml microcentrifuge tube containing 1 ml of absolute etha-

nol and 40 μl of 3 M sodium acetate (pH 5.3), leaved 3 h at 

-20°C to precipitate polyP and centrifuged for 20 min at 

13,000 g at 4°C. The supernatant was discarded by de-

cantation, 500 μl of 70% ethanol were added, centrifuged 

for 5 min at 13,000 g at 4°C, the supernatant was discarded 

by decantation, centrifuged 1 min at 13,000 g and the last 

traces of ethanol were removed by pipetting. The tube was 

left open to dry the small translucent-white polyP pellet at 

room temperature for 5 min or until the pellet is complete-

ly dry. Finally, the polyP was resuspended in 50 μl of Milli-

Q water. The polyP sample can be directly measured or 

stored at -20°C. 

 

Method 2: acid phenol/chloroform and ethanol precipita-

tion 

PolyP extraction and purification was performed as de-

scribed in [33]. Briefly, 10
7 

logarithmically growing yeast 

cells were centrifuged at 9,000 g for 1 min. Pellets were 

resuspended in 350 µl of LETS buffer (0.1 M LiCl, 10 mM 

EDTA, 10 mM Tris pH 8.0, 0.5% SDS) and 350 µl of phenol 

pH 4.8, lysed with the addition of 500 µl glass beads and 

vortexed for 15 min at 4°C. After centrifugation of the mix-

ture at 18,000 g for 15 min, the aqueous phase was trans-

ferred to a new Eppendorf tube and subjected to chloro-

form extraction as above. The supernatant was precipitat-

ed by adding 1 ml of absolute ethanol followed by over-

night incubation at -20°C. The pellet containing the polyP 

was resuspended in 50 µl of 0.1% SDS, 1 mM EDTA, 10 mM, 

Tris-HCl, pH 7.4. 

 

Method 3: sulfuric acid extraction and affinity columns 

purification 

PolyP extraction and purification was performed as de-

scribed in [22]. Briefly, 10
7
 logarithmically growing yeast 

cells were centrifuged at 9,000 g for 1 min. The pellets 

were incubated with 50 µl of 1 M sulfuric acid for 5 min at 

room temperature. The suspension was neutralized by 

adding 50 µl of 2 M NaOH and cell debris removed by cen-

trifugation. Finally, polyP was purified using Macherey-

Nagel PCR affinity purification columns, and eluted in 50 µl 

of MilliQ water. 

 

Method 4: perchloric acid extraction and purification 

PolyP extraction and purification was performed as de-

scribed in [23]. Briefly, 10
7
 logarithmically growing yeast 

cells were centrifuged at 9,000 g for 1 min. The pellet was 

resuspended in 250 µl of 1 M perchloric acid, lysed by add-

ing 500 µl of glass beads, vortex for 5 min at 4°C, and cen-

trifuged at 18,000 g for 5 min at 4°C. The suspension was 

neutralized by adding 150 µl of KCE solution (1 M K2CO3, 5 

mM EDTA), and cooled down in ice for 2 h. Cells debris was 

removed by centrifugation at 18,000 g. Finally, the super-

natant was transferred to a new Eppendorf tube to be 

quantified. 

 

polyP quantification 

PolyP amount was determined as a measure of the inor-

ganic phosphate produced by the complete digestion of 

the polyP by treatment with recombinant rPpx1 polyphos-

phatase protein [37]; briefly, E. coli BL21 cells transformed 

with pTrcPPX1 plasmid (kindly provided by A. Kornberg) 

containing yeast PPX1 were grown over night at 37°C in 50 

ml of LB (Luria Bertani medium), and the culture used as 

inoculum to a 500 ml culture in the same LB medium con-

taining 0.5 mM IPTG as inducer. Growth was continued for 

6 h at 25°C, E. coli cells were harvested by centrifugation, 

lysed and the recombinant proteins purified using Ni-

nitrilotriacetic acid agarose (Qiagen, ID:30210). The puri-

fied polyP samples to be measured were diluted in 100 µl 

of a solution containing 20 mM Tris-HCl (pH 7.5), 100 mM 

NH4 acetate, 5 mM Mg acetate, and 10 ng (measured by 

Bradford method) of rPpx1 for 1 h at 37°C. To quantify the 

released Pi, 86 µl of 28 mM ammonium heptamolybdate in 

2.1 M sulfuric acid and 64 µl of 0.41 mM malachite green 

were added to the digested solution [38]. The OD595 was 

measured in a Synergy HT Elisa Reader and interpolation in 

a standard curve was used for obtaining absolute Pi 

amount values. 

 

polyP detection by PAGE 

Purified polyP was resolved electrophoretically using a 20% 

polyacrylamide gel (acrylamide 10:1 bisacrylamide) con-

taining 7 M urea in TBE buffer pH 8.3, at 250 V/h for 5 h at 

4°C. The dimensions of the gel were 200 mm height, 200 

mm wide and 1.5 mm thick. The gel was stained by soaking 

it in the staining solution (25% methanol, 5% glycerol, 2 

µg/ml DAPI, 50 mM Tris pH 10.5) for 30 min, and destained 

by soaking it in destaining solution (same as the staining 

solution but without DAPI) for 1 h. Finally, to visualize the 

polyP the gel was exposed to 254 nm UV light in Syngene 

G-BOX trans-illuminator. 
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Assessment of rPpx1 optimal activity 

The optimal temperature, and pH value for rPpx1 activity 

was determined by incubating 1 ng of rPpx1 and 5 µg of 

commercial polyP (Shiba Regenetiss, Inc.) at several tem-

peratures and pH values respectively in 20 mM Tris-HCl pH 

7.50 (when temperature was varied) containing 5 mM 

magnesium acetate and 100 mM ammonium acetate. In 

the case of the pH optimal value assessment the incuba-

tion temperature was 37°C. 

The influence of DNA or RNA presence in the activity of 

rPpx1 was assayed using 10 ng of rPpx1 and 100 ng of 

commercial polyP in the same buffer as above but adding 

increasing amounts of DNA (circular pUC19 vector or a 

lineal PCR fragment of 1.7 Kb) or RNA (yeast tRNA from 

Sigma). 

rPpx1 activity is expressed as ng of Pi released/ min/ ng 

of enzyme. 
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