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ABSTRACT  Etiology, transmission and protection: Neisseria gonorrhoeae (the 

gonococcus) is the etiological agent for the strictly human sexually transmit-

ted disease gonorrhea. Infections lead to limited immunity, therefore individ-

uals can become repeatedly infected. Pathology/symptomatology: Gonorrhea 

is generally a non-complicated mucosal infection with a pustular discharge. 

More severe sequellae include salpingitis and pelvic inflammatory disease 

which may lead to sterility and/or ectopic pregnancy. Occasionally, the organ-

ism can disseminate as a bloodstream infection. Epidemiology, incidence and 

prevalence: Gonorrhea is a global disease infecting approximately 60 million 

people annually. In the United States there are approximately 300, 000 cases 

each year, with an incidence of approximately 100 cases per 100,000 popula-

tion. Treatment and curability: Gonorrhea is susceptible to an array of antibi-

otics. Antibiotic resistance is becoming a major problem and there are fears 

that the gonococcus will become the next “superbug” as the antibiotic arsenal 

diminishes. Currently, third generation extended-spectrum cephalosporins 

are being prescribed. Molecular mechanisms of infection: Gonococci elabo-

rate numerous strategies to thwart the immune system. The organism engag-

es in extensive phase (on/off switching) and antigenic variation of several 

surface antigens. The organism expresses IgA protease which cleaves mucosal 

antibody. The organism can become serum resistant due to its ability to si-

alylate lipooligosaccharide in conjunction with its ability to subvert comple-

ment activation. The gonococcus can survive within neutrophils as well as in 

several other lymphocytic cells. The organism manipulates the immune re-

sponse such that no immune memory is generated which leads to a lack of 

protective immunity. 
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INTRODUCTION 

Neisseria gonorrhoeae (the gonococcus) is a Gram-negative 

diplococcus, an obligate human pathogen, and the etiolog-

ic agent of the sexually transmitted disease, gonorrhea. 

The gonococcus infects a diverse array of mucosal surfaces, 

some of which include the urethra, the endocervix, the 

pharynx, conjunctiva and the rectum [1]. In 2013, the Cen-

ters for Disease Control and Prevention (CDC) reported 

that there were 333,004 new cases of gonorrhea in the 

United States, with an incidence of 106.1 cases per 

100,000 population [2]. Worldwide, 106.1 million people 

are infected by N. gonorrhoeae annually [3]. In most cases, 

the disease is a noncomplicated mucosal infection. Howev-

er, in a few patients, generally with women, more serious 

sequelae can occur and include salpingitis (acute inflamma-

tion of the fallopian tubes), pelvic inflammatory disease 

(PID; an infection in the upper part of the female reproduc-

tive system), or, in rare cases, as a bacteremic infection [4]. 

If left untreated, these more serious complications can 

result in sterility, ectopic pregnancy, septic arthritis, and 

occasionally death. Approximately 3% of women present-

ing with a urogenital infection develop the most severe 

forms of the disease [5]. However, the occurrence of PID 

has significantly decreased over time [6–8], with an esti-

mated 40,000 cases of infertility in women annually [9]. 

Dissemination rarely occurs, but when the bacteria do 
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AMR – antimicrobial resistance, 

BURST – based upon related sequence 

types, 

CEACAM – carcinoembryonic antigen 

cell adhesion molecule, 

DGI – disseminated gonococcal 

infection, 

ESC – extended spectrum 

cephalosporine, 

LOS – lipooligosaccharide, 

MIC – minimum inhibitory 

concentration, 

MLST – multilocus sequence typing, 

Opa – Opacity-associated protein, 

PMN – polymorphnuclear leucocytes, 

PPNG – penicillinase producing N. 

gonorrhoeae, 

Tbp – Transferrin binding protein. 
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cross the endothelium, they can spread to other locations 

in the body. Currently, a more worrying trend has emerged, 

in that, there now appears to be an increased risk for HIV 

infection in patients that are also infected with N. gonor-

rhoeae [10]. 

Gonorrhea the disease was initially described approxi-

mately 3,500 years ago, but it was not until 1879 that Al-

bert Neisser determined the etiologic agent of the disease 

[11]. The Neisseriae are usually regarded as microaero-

philic organisms. However, under the appropriate condi-

tions, they are capable of anaerobic growth [12]. In vitro 

cultivation of this fastidious organism has always been 

problematic and it was not until the development of an 

improved Thayer-Martin medium that early epidemiologi-

cal studies could be undertaken. Subsequently, other 

commercial growth mediums have since been developed 

which has allowed for a greater understanding of the dis-

ease process. 

 

VIRULENCE FACTORS OF N. GONORRHOEAE  

Like many Gram-negative bacterial pathogens, N. gonor-

rhoeae possesses a wide range of virulence determinants, 

which include the elaboration of pili, Opa protein expres-

sion, lipooligosaccharide expression (LOS), Por protein ex-

pression and IgA1 protease production that facilitates ad-

aptation within the host.  

 

Type IV pili (Tfp) 

Considerable attention was paid to pili stemming from the 

observations of Kellogg and coworkers [12, 13] that viru-

lent (T1, T2 organisms) and avirulent (T3, T4 organisms) 

strains could be differentiated on the basis of colony mor-

phology following growth on solid medium. Subsequently, 

it was established that all freshly isolated gonococci pos-

sessed thin hair-like appendages (pili) which were predom-

inantly composed of protein initially called pilin but subse-

quently renamed PilE [14]. The elaboration of pili is a criti-

cal requirement for infection as this structure plays a pri-

mary role in attaching to human mucosal epithelial cells 

[15], fallopian tube mucosa [16, 17], vaginal epithelial cells 

[16, 18] as well as to human polymorphonuclear leuko-

cytes (PMN’s; neutrophils) [19, 20]. Due to their prominent 

surface location, pili were initially thought to be an ideal 

vaccine candidate as pilus-specific antibodies were ob-

served in genital secretions [18]. However, two prominent 

vaccine trials failed, with evidence indicating that pilus 

protein(s) underwent antigenic variation [21]. 

Gonococcal pili are categorized as Type IV pili, as the 

PilE polypeptide is initially synthesized with a short (7 ami-

no acid) N-terminal leader peptide, which is then endo-

proteolytically cleaved [22]. The mature PilE polypeptide is 

then assembled at the inner membrane into an emerging 

pilus organelle with the PilE polypeptides being stacked in 

an α-helical array [23]. The PilE polypeptide consists of 

three functional domains based on sequence characteris-

tics [24]. The N-terminal domain is highly conserved and is 

strongly hydrophobic, with this region of the protein com-

prising the core of the pilus structure [23]. The central part 

of the PilE monomer is partially conserved and structurally 

aligned as a β-pleated sheet. As the C-terminal domain is 

hydrophilic, this segment of the protein is exposed to the 

external environment [23] and undergoes antigenic varia-

tion which allows the bacteria to avoid recognition by the 

human host’s immune cells (reviewed [25, 26]). 

Assembly of the pilus structure is complicated and in-

volves other proteins besides PilE (e.g., the pilus tip-

located adhesion, PilC) [27] as well as other minor pilus 

components PilD, PilF, PilG, PilT, PilP and PilQ [28]. During 

pilus biogenesis, and prior to assembly, the leader peptide 

is removed from PilE by the PilD peptidase [23]. The N-

terminal domain then facilitates translocation across the 

cytoplasmic membrane allowing PilE subunits to be pol-

ymerized at the inner membrane [29, 30]. As the pilus 

structure is assembled, it is extruded to the exterior of the 

outer membrane using the PilQ pore forming complex [29–

31]. PilC is a minor protein located at the tip of pilus as well 

as being present at its base. The pilC gene exists as 2 ho-

mologous, but non-identical copies, pilC1 and pilC2 in most 

gonococcal strains, with only the pilC2 gene being ex-

pressed in piliated N. gonorrhoeae MS11 strains [27]. pilC 

expression is also  subject to RecA-independent phase var-

iation (on/off switching) due to frequent frameshift muta-

tions occurring within homo-guanine tracts located within 

its signal peptide region [27]. PilC participates in pilus bio-

genesis as well as in host cell adherence, as pilC mutants 

prevent the formation of pili by negatively affecting their 

assembly process, which leads to the bacteria being unable 

to adhere to human epithelial cells [32]. 

In addition to promoting attachment to host cells, type 

IV pili are also involved in bacterial twitching motility, bio-

film formation, and DNA transformation [33]. N. gonor-

rhoeae is naturally competent for transformation in that it 

can take up exogenously produced Neisseria-specific DNA 

containing a 10-bp uptake sequence (GCCGTCTGAA; DUS) 

[34]. pilE mutations resulting in loss of pilus expression 

lead to transformation incompetence [28, 35]. The binding 

and uptake of exogenous DNAs by N. gonorrhoeae requires 

type-IV-pili-structurally-related components, including 

ComP protein [36, 37]. Despite sharing sequence similarity 

to PilE in the N-terminal domain, ComP was shown to be 

dispensable to Tfp biogenesis [36]. Instead the bacteria 

were unable to take up extraneous DNA; subsequent over-

expression of ComP increased sequence-specific DNA bind-

ing, suggesting that ComP functions in the DNA binding 

step of transformation [37]. Recently, ComP has been 

shown to preferentially bind to DUS-containing DNAs via 

an electropositive stripe on its surface [38] with uptake of 

the DNA being facilitated by de-polymerization of the pilus 

structure through PilT hydrolytic activity [39]. The coordi-

nated physical retraction and elongation of pili can lead to 

“twitching”, a form of motility that propels the cell along a 

surface. Retraction is facilitated by PilT activity (an ATPase), 

whereas PilF protein promotes pilus elongation at the in-

ner membrane [39, 40].  
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Por protein 

The outer membrane porin protein, Por, is the most abun-

dant protein in the gonococcus accounting for approxi-

mately 60% of the total protein content [1]. The molecular 

size of Por varies between strains, yet, within individual 

strains, it exists as only a single protein species [41]. Por 

has been used as the basis for serological classification of 

gonococci [41] with nine distinct serovars being identified 

[42]. Overall, there are two distinct structural classes (PorA 

and PorB) [42], with the PorA subgroup tending to be asso-

ciated with the more complicated aspects of the disease, 

whereas the PorB subgroup is more likely to be involved 

with uncomplicated mucosal infections [43]. 

Porins allow the transport of ions and nutrients across 

the outer membrane and can also contribute to the surviv-

al of the bacteria in host cells [44]. Moreover, gonococcal 

Por protein has been shown to translocate from the outer 

membrane into artificial black lipid membranes [45] as well 

as into epithelial cell membranes, following attachment of 

the bacteria [46]. Por can also transfer into mitochondria 

of infected cells which leads to the formation of porin 

channels in the mitochondrial inner membrane, causing 

increased permeability [47]. This causes the release of cy-

tochrome c and other proteins, leading to apoptosis of 

infected cells [48]. However, Por-induced apoptosis re-

mains controversial. In direct contrast to events with the 

gonococcus, Neisseria meningitidis Por, which also inter-

acts with mitochondria, apparently protects cells from un-

dergoing apoptosis [49]. Interestingly, mitochondrial porins 

and Neisseria PorB share similar properties, with both pro-

tein species being capable of binding nucleotides and ex-

hibiting voltage-dependent gating [50]. Por protein also 

modulates phagosome maturation by changing the phago-

somal protein composition through the increase of early 

endocytic markers and the decrease of late endocytic 

markers, which ultimately delays phagosome maturation 

[51].  

 

Opacity-associated protein (Opa) 

Opa proteins are integral outer membrane proteins and 

cause colonies to appear opaque due to inter-gonococcal 

aggregation when viewed by phase-contrast microscopy 

[52–54]. Opa proteins belong to a multigene family with a 

single gonococcal cell possessing up to 12 opa genes that 

are constitutively transcribed [55, 56]. Each gene contains 

conserved, semivariable and 2 hypervariable regions, with 

the hypervariable segments of the proteins being located 

on the outside of the outer membrane [55]. Opa protein 

expression can undergo phase variation due to changing 

the numbers of pentameric repeat units (-CTCTT-) that are 

located within the leader peptide encoding region, which 

results in on/off switching of expression [57]. A single cell is 

capable of expressing either none to several different Opa 

proteins [57, 58].  

Unlike pili, Opa expression is not required for the initial 

attachment of gonococci to the host. However, as an infec-

tion proceeds, Opa expression varies [58], and Opa-

expressing bacteria can be observed in epithelial cells and 

neutrophils upon re-isolation from infected human volun-

teers [59, 60]. The invasive capacity of N. gonorrhoeae is 

determined by the differential expression of Opa [61]. Indi-

vidual Opa proteins bind to a variety of receptors on hu-

man cells through their exposed hypervariable regions. The 

binding specificity for human receptors falls into two 

groups: OpaHS which recognize heparin sulfate proteogly-

cans [62, 63]; and, OpaCEA which recognize the carci-

noembryonic antigen cell adhesion molecule (CEACAM) 

family that is comprised of the various CD66 molecules 

[64–67]. CEACAMs are the major receptors of Opa proteins 

and are expressed on many different cell types including 

epithelial, neutrophil, lymphocyte and endothelial cells 

[68].  

 

Lipooligosaccharide (LOS) 

As with all Gram-negative bacteria, gonococci possess lipo-

polysaccharide in the outer membrane. Gonococcal LPS is 

composed of lipid A and core polysaccharide yet lacks the 

repeating O-antigens [1]. Accordingly, gonococcal LPS has 

been designated as lipooligosaccharide (LOS). Due to its 

surface exposure, gonococcal LOS is a primary immune 

target along with the major outer membrane protein Por 

[69–71]. Gonococcal LOS is also toxic to fallopian tube mu-

cosa causing the sloughing off of the ciliatory cells [72]. The 

LOS oligosaccharide composition is highly variable both in 

length and in carbohydrate content. Consequently, hetero-

geneous LOS molecules can be produced by a single cell. 

However, distinct forms of LOS may be a prerequisite for 

infection in men [73]. The most common carbohydrates 

associated with isolated LOS molecules are lacto-N-

neotetraose (Galβ(1-4)GlcNAcβ(1-3)Galβ(1-4)Glc) and diga-

lactoside Galα(1-4)Gal and switching from one form to 

another occurs at high frequency [74] through phase varia-

tion of glycosyl transferases [75, 76]. The variable oligosac-

charide portions of LOS can also mimic host glycosphin-

golipids, thus promoting bacterial entry [74]. In addition, 

gonococcal LOS can also be sialylated which renders the 

bacteria resistant to serum killing [77–80]. Consequently, 

gonococcal LOS contributes to gonococcal pathogenicity by 

facilitating bacterial translocation across the mucosal bar-

rier as well as by providing resistance against normal hu-

man serum [81, 82]. 

 

IgA protease 

Immunoglobin A (IgA) protease is another virulence factor 

in N. gonorrhoeae [83]. Upon release from the cell, the 

protein undergoes several endo-proteolytic cleavages, 

leading to maturation of the IgA protease [84]. During an 

infection, the mature protease specifically targets and 

cleaves IgA1 within the proline-rich hinge region of the 

IgA1 heavy chain. The human IgA2 subclass is not cleaved 

by gonococcal IgA protease since it lacks a susceptible du-

plicated octameric amino acid sequence [85]. Neisseria IgA 

protease also cleaves LAMP1 (a major lysosome associated 

membrane protein), which leads to lysosome modification 

and subsequent bacterial survival [86]. Furthermore, iga 

mutants are defective in transcytosis of bacteria across an 

epithelial monolayer [87]. 

 



S. A. Hill et al. (2016)  Molecular pathogenesis of gonorrhea 

 
 

OPEN ACCESS | www.microbialcell.com 374 Microbial Cell | SEPTEMBER 2016 | Vol. 3 No. 9 

PATHOGENESIS 

Neisseria gonorrhoeae primarily colonizes the urogenital 

tract after sexual contact with an infected individual [88]. 

The gonococcus can exist as both an extracellular and in-

tracellular organism, with the bulk of its genes being de-

voted to colonization and survival, due to the fact that it 

cannot survive outside of a human host [89]. Transmission 

is generally a consequence of sexual intercourse. Upon 

arrival into a new host, micro-colony formation commenc-

es on non-ciliated columnar epithelial cells approximately 1 

to 2 hours post-infection [90, 91]. Once the micro-colonies 

achieve a cell density of approximately 100+ diplococci, 

cytoskeletal rearrangement and host protein aggregation 

occurs, which leads to pilus-mediated attachment of the 

gonococcus to the CD46 host cell-surface receptor (Fig. 1) 

[89, 92]. Once bound, the pilus structures on some organ-

isms are retracted through PilE depolymerization [39] 

which promotes tighter contact with the host cells through 

Opa binding to the CEACAM receptors (Fig. 1) [65, 66]. 

Upon CEACAM binding, actin polymerization and rear-

rangement is induced within the host cell which results in 

bacterial engulfment, transcellular transcytosis and release 

of the bacteria into the subepithelial layer (Fig. 1) [68, 93]. 

 In vivo, the coordinated expression of pili and Opa var-

ies considerably [94]. Organisms isolated from the male 

urethra generally co-express pili and one of several Opa 

proteins [58]. However, in women, Opa expression varies 

depending upon the stage of the menstrual cycle and 

whether or not the patient is taking oral contraceptives 

[94]. At mid-cycle, bacteria isolated from the cervix express 

Opa, whereas those isolated during menses tend to be Opa 

negative [17]. Moreover, organisms isolated from infected 

fallopian tubes are almost universally Opa negative, even 

though Opa expressing organism can be isolated from the 

cervix of the same patient [17]. These observations can 

perhaps be explained by the fact that cervical secretions 

during menstruation contain more proteolytic enzymes 

than during the follicular phase. Consequently, non-Opa 

expressing cells may be selected due to the extreme sensi-

tivity of Opa proteins to trypsin-like enzymes. However, 

with the recent studies demonstrating Opa interactions 

with CECAM receptors, it has been observed that fallopian 

epithelial tube cell cultures do not appear to express 

CECAM receptors [95]. Nonetheless, in the absence of the-

se receptors, gonococci were found to still adhere and in-

vade. Consequently, CECAM expression, or the lack of it, 

possibly allows for in vivo phenotypic selection of distinct 

gonococcal populations on various tissues [96]. Overall, 

FIGURE 1: Schematic represen-

tation of a Neisseria gonor-

rhoeae infection. 1) Piliated, 

Opa-expressing gonococci in-

teract with the mucosal epithe-

lium.  The thin, hair-like pilus 

appendages provide the initial 

contact with receptors on the 

surface of the mucosal cells. 2) 

Pili are then retracted which 

allows for more intimate, Opa-

mediated attachment of the 

bacteria with the CD66 antigens 

located on the mucosal cells. 3) 

Following Opa-mediated at-

tachment, the bacteria are en-

gulfed and are internalized into 

the mucosal cells. 4) Following 

internalization, some bacteria 

can transcytose to the basolat-

eral side of the mucosal epithe-

lium. 5) Depending upon which 

Opa protein is being expressed, 

gonococci can also reside and 

survive inside of neutrophils. 6) 

Following transcytosis, gono-

cocci can enter the blood-

stream where heavy sialylation 

of lipooligosaccharide renders 

the bacteria serum resistant. 

This figure is based on [98]. 
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Opa expression does appear to increase gonococcal fitness 

within the female genital tract [97]. Generally, Opa expres-

sion is absent in most re-isolates from female disseminated 

infections. 

 

Inflammation    

The hallmark symptom of a non-complicated gonorrhea 

infection is a massive recruitment of neutrophils to the site 

of infection leading to the formation of a pustular dis-

charge. Initially, Opa protein expression was suspected to 

be intimately involved in PMN stimulation [20, 99–101]. 

Subsequently, it was shown that following attachment of 

gonococci to the mucosa, the pro-inflammatory cytokines 

IL-6 and TNF-alpha as well as the chemokine IL-8 are re-

leased leading to the recruitment of neutrophils [102]. In 

addition, upon arrival at the sub-epithelial layer, gonococci 

release LOS and lipoproteins which further stimulate cyto-

kine production [103] as these outer membrane compo-

nents are detected by Toll-like receptors (TLRs) on immune 

cells [104]. Host cells also respond to bacterial peptidogly-

can fragments within outer membrane vesicles via cyto-

plasmic NOD-like receptors (NLRs) which also contribute to 

the secretion of additional pro-inflammatory cytokines 

[105].   

Despite the active recruitment of PMNs to a site of in-

fection, gonococci can survive the oxidative and non-

oxidative defense mechanisms (Fig. 1) [106]. Survival ap-

pears to correlate with gonococci selectively triggering 

Th17-dependent host defense mechanisms by modulating 

expression of IL-17 [107]. Gonococci also must combat 

considerable oxidative stress by elaborating a number of 

different enzymes during the inflammatory response in 

order to detoxify superoxide anions (O2•−), hydrogen per-

oxide (H2O2), and hydroxyl radicals (HO•) [108, 109]. Gono-

cocci must remove H2O2 because in the presence of ferrous 

ions the Fenton reaction is initiated (Fe
2+

 +  H2O2 → Fe
3+

 + 

OH
.
 + OH

−
) which yields additional hydroxyl radicals [110, 

111]. Catalase is used by the gonococcus to eliminate H2O2 

(which significantly increases the organism’s ability to re-

sist in vitro neutrophil killing) [112] in conjunction with a 

periplasmic cytochrome c peroxidase (Ccp) [110]. Normally, 

superoxide ions are removed by superoxide dismutase 

enzymes (SOD) which convert superoxide to H2O2 and wa-

ter. However, the majority of N. gonorrhoeae strains have 

no measurable SOD activity [108, 111], suggesting that 

oxidants may be removed via an alternative mechanism. It 

appears that N. gonorrhoeae utilize manganese ions (Mn
2+

) 

to combat reactive oxygen species accumulation. Manga-

nese accumulates within the cell through the Mn uptake 

system (MntABC), with Mn(II) and Mn(III) both scavenging 

superoxide and hydrogen peroxide molecules non-

enzymatically. Furthermore, Mn(II)-pyrophosphate and 

Mn(III)-polyphosphate complexes are also effective in elim-

inating hydroxyl radicals that are formed via the Fenton 

reaction [110].   

 

 

 

The need for iron 

Despite the problems associated with the Fenton reaction, 

iron is a vital nutrient, with pathogens expending consider-

able resources on scavenging the element from their hu-

man host. This becomes even more complicated during an 

infection, as the host responds to inflammation by limiting 

iron availability, as well as by decreasing free iron within 

the bloodstream [113]. Even though humans keep their 

iron sequestered in iron-protein complexes such as trans-

ferrin, lactoferrin, haemoglobin, and ferritin, the Neisseria 

are capable of scavenging iron from both transferrin and 

haemoglobin [114], and express receptors for both trans-

ferrin and lactoferrin that provide a selective advantage 

within the host [115]. Because Neisseria do not produce 

siderophores, they must directly extract iron from transfer-

rin. To achieve this, the iron transport system consists of 

two large surface proteins, transferrin binding protein A 

(TbpA) and transferrin binding protein B (TbpB), with both 

of these proteins being found in all clinical isolates of path-

ogenic Neisseria [116]. TbpA is an outer membrane trans-

porter essential for iron uptake that binds both apo- and 

iron-containing transferrin with similar affinities, whereas 

TbpB, a surface-exposed lipoprotein, only associates with 

iron-bound transferrin [117]. As the affinity of the bacterial 

receptor for iron is similar to transferrin’s affinity, this ena-

bles the gonococcus to compete with the host for this nec-

essary nutrient [118]. Subsequently, it was shown that the 

expression of the transferrin receptor was absolutely re-

quired for gonococcal infectivity [119].   

 

Serum resistance  

Bactericidal antibody-mediated killing was found to vary 

greatly between patients presenting genital infections 

[120]. Subsequently, it was soon recognized that gonococ-

cal surface components were the primary targets of anti-

body-dependent complement killing, with LPS-specific an-

tibodies being the most effective at inducing bactericidal 

responses [121]. Two forms of serum resistance were ini-

tially described; stable and unstable serum resistance 

[77,122]. Unstable serum resistance is due to the modifica-

tion of gonococcal LOS through the addition of sialic acid 

molecules to terminal galactose residues using cytidine 5’-

monophosphate N-acetylneuraminic acid (CMP-NANA) 

which is abundant in human serum, as well as in various 

mucosal secretions and within professional phagocytes. 

Sialic acid transfer uses the conserved outer membrane-

located enzyme 2,3-sialyltransferase [79]. Sialylation of LOS 

mediates both the entry of gonococci into host mucosal 

cells as well as influencing bacterial resistance to killing by 

complement [82]. Gonococcal cells harboring lightly si-

alylated LOS molecules are able to invade host epithelial 

cells more efficiently than heavily sialylated-LOS variants. 

However, lightly sialylated-LOS expressing cells are more 

susceptible to complement-mediated killing, whereas, 

heavy sialylation of LOS renders the bacteria resistant to 

normal human serum by masking the target sites for bacte-

ricidal antibodies [78, 80] which prevents the functional 

activation of the complement cascade (Fig. 1) [81].   
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In contrast, stable serum resistance appears to be 

caused through the faulty insertion of the C5b-C9 mem-

brane attack complex in serum resistant strains [123–125]. 

Accompanying this defect in deposition, blocking antibody 

is also thought to cause the C3 complement component to 

be loaded onto a different site on the outer membrane 

such that it again hinders bactericidal killing [126]. Clearly, 

complement resistance is important for organisms causing 

a disseminated infection, but its value is less clear for those 

organisms causing a mucosal infection. However, seminal 

plasma does contain an inhibitor of complement activation 

suggesting that there is some complement activity at the 

mucosa [127].   

As indicated previously, the major outer membrane 

protein, Por, exists in two forms, Por1A and Por1B, with 

Por1A-expressing gonococci being most often associated 

with disseminated infections [42, 43]. Por1A-expressing 

gonococci also bind complement factor H more efficiently, 

and, as factor H down-regulates alternative complement 

activation, such binding helps explain serum resistance in 

these disseminated strains [128]. Furthermore, it also helps 

explain species-specific complement evasion [129]. Por 

protein also influences activation of the classical comple-

ment pathway, as Por binds to the C4b-binding protein, 

which again down-regulates complement activation [130]. 

Consequently, as factor H and C4b-binding sites on the Por 

proteins impede functional complement deposition these 

may need to be modified in vaccine preparations as this 

may help alleviate problems associated with serum re-

sistance [131]. 

 

Active immunity 

It has long been known that gonorrhea does not elicit a 

protective immune response and nor does it impart im-

mune memory. Consequently, individuals can become re-

peatedly infected. Nonetheless, specific antibodies are 

generated within the genital tract that inhibit adherence to 

the mucosal epithelium, yet their persistence appears to 

be short-lived [18, 132]. Overall, the immune response to 

an uncomplicated genital infection remains modest [133]. 

The general unresponsiveness to an infection appears 

to stem from the organism being able to manipulate the 

host cell response. Transient decreases in T-cell popula-

tions occur within the bloodstream and appear to reflect 

Opa protein interactions with CD4
+
 T-cells which suppress-

es T-cell activation [134]. Moreover, in contrast to Opa-

mediated interactions with CEACAM antigens on other cell 

types, Opa-CEACAM1 T-cell interactions do not appear to 

cause the internalization of bacteria into the T-cells. This 

then leads to a dynamic re-cycling response with the T-cells 

that ultimately suppresses an immune response [135]. 

Likewise, Opa-CEACAM1 interactions on B lymphocytes 

also inhibit antibody production [133,136]. Even with den-

dritic cells, Opa-CEACAM1 interactions do not stimulate 

internalization [136]. Instead, engulfment by dendritic cells 

is mediated through LOS interaction with DC-SIGN antigens. 

Consequently, as LOS molecules vary in composition, this 

allows the gonococcus a further opportunity for immune 

evasion [137]. LOS molecules often activate immune cells 

through interaction with Toll-like receptors. However, LOS 

deacylation can moderate an immune response following 

interaction with its cognate Toll-like receptor leading to B-

cell proliferation where antibody production is down-

regulated [138]. 

Recently, an artificial estradiol-induced mouse infection 

model has been developed for gonococcal infections that 

allows for in vivo assessment [139]. However, major differ-

ences exist between the human and mouse female genital 

tract. For example, the pH of the mouse vagina is higher, 

there is no comparable menstral cycle, fewer anaerobic 

commensal bacteria are present, and as the mice need to 

be treated with antibiotics, this aspect dramatically chang-

es the resident flora [140]. Nonetheless, the mouse infec-

tion model has yielded several interesting observations. 

Using the model, gonococci have been shown to moderate 

the murine innate immune response by stimulating IL-17 

release from TH17 cells which subsequently effects other 

cells [107]. In conjunction with transforming growth factor 

beta (TGF-beta), this coupled cytokine presence suppresses 

Th1/Th2 adaptive responses [141]. Therefore, as the geni-

tal tract is rich in TGF-beta, gonococci naturally inhabit an 

immunosuppressive environment [142]. Again, LOS and 

Opa expression play a major role in these responses, as 

LOS drives the Th17 response with Opa negatively impact-

ing the Th1/Th2 responses [142]. Further manipulation of 

the host response is also seen with gonococcal activation 

of IgM-specific memory B-cells in a T-independent manner. 

Consequently, this elicits a non-specific polyclonal immu-

noglobulin response without generating specific immuno-

logic memory to the gonorrhea infection [143]. Recently, 

human CEACAM transgenic mouse models have been de-

veloped for studying gonococcal in vivo infections [144, 

145]. With these more refined models, gonococci were 

shown to readily infect and cause inflammation in the 

transgenic animals and that Opa-CEACAM interactions 

dramatically reduced exfoliation of the murine mucosal 

surface. As gonococci bind to human CR3 (hCR3) integrin to 

invade cervical cells and that human factor H bridges the 

interaction between the bacteria and hCR3, then future 

transgenic mouse models, expressing both hCR3 and hu-

man factor H, may further mimic a bona fide gonococcal 

infection in vivo. 

 

Antigenic variation 

Neisseria gonorrhoeae can survive either as an extracellu-

lar organism, or, alternatively, as an intracellular organism 

within a variety of different cell types. Which state the 

organism enters depends largely on which surface compo-

nents are expressed and whether these components are 

chemically modified or not. N. gonorrhoeae can modulate 

expression, or, the chemical character of its surface com-

ponents either by phase variation, or, by antigenic varia-

tion [25]. Generally, phase variation is a consequence of 

frame-shifting within a gene which leads to random switch-

ing between on/off states, whereas antigenic variation 

leads to changes in the chemical composition of some 

structural component. Therefore, each gonococcal cell can 

differentially express distinct surface antigens, in various 
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chemical forms, which hinders recognition by host antibod-

ies, facilitates multiple lifestyles [25] and helps explain the 

lack of efficacious vaccines to protect against a gonorrheal 

infection [21].   

From genome analysis, 72 putative genes were identi-

fied that have the capacity to undergo phase variation 

[146]. Consequently, the stochastic expression of various 

surface components leads to the emergence of micro-

populations that allows colonization within unique envi-

ronmental niches [147]. Pilus expression can undergo 

on/off switching due to frameshifting either within the pilE 

gene [35], or, within the pilC gene [27]. Similarly, LOS varia-

tion depends upon frameshifting within various glycosyl 

transferase genes which leads to the random acquisition of 

various sugar moieties on a varying LOS molecule [75, 76]. 

Opa expression relies exclusively on phase variation, as a 

series of pentameric repeats (-CTCTT-) reside towards the 

5′ end of each opa gene [57]. Consequently, the addition 

or subtraction of a repeat(s) will bring each individual opa 

gene either in or out of frame. As expression of individual 

Opa proteins influence the cellular tropism of the organism 

with regards to internalization into either mucosal or lym-

phocytic cells, opa phase variation allows variable gono-

coccal populations to be established that have the poten-

tial to internalize into whatever cell becomes available [56, 

61]. Consequently, phase variation confers a degree of 

fitness on the organism for a specific environment, yet 

provides little with respect to bona fide immune evasion. 

Antigenic variation on the other hand confers remarka-

ble immune evasion. Antigenic variation occurs extensively 

within the pil system as well as in some other minor sys-

tems (maf and fha) [26]. Gonococci possess multiple varia-

ble pil genes; some are deemed silent (pilS) and serve as 

storage loci for variable pil sequence, and act in conjunc-

tion with a single expression locus, pilE, which encodes the 

PilE polypeptide. Recombination frequently occurs be-

tween pilE and an individual pilS leading to changes in the 

chemical composition of PilE. It is estimated that PilE can 

assume 108 chemical forms [148] which helps thwart an 

efficacious immune response due to its prominent surface 

location. Therefore, despite the fact that anti-pilus anti-

bodies can be detected within the genital tract such anti-

bodies do not recognize heterologous strains thus allowing 

for reinfection of an individual [18].  

It is in the coordinated variation of these various sur-

face components that allow gonococci to develop adaptive 

strategies where the organism can exist either externally or 

internally during an infection (Fig. 1). When gonococci re-

side externally, the organisms are generally piliated, with 

PilE undergoing antigenic variation which negates the vari-

ous antibody clearing strategies. When coupled with the 

appropriate LOS composition, these organisms can also 

become heavily sialylated, which impedes serum killing, 

thus facilitating extra-cellular growth. In contrast, internali-

zation into host cells requires the retraction of pili causing 

the cells to become non-piliated. When coupled with phase 

variation of Opa expression and a non-sialylatable LOS 

phenotype, the gonococcus can translocate across the mu-

cosal epithelium at an initial stage of the infection and ul-

timately reside internally within various cell types [25]. 

Eventually, infected host cells will undergo apoptosis, re-

leasing bacteria back onto the mucosal lining, where in the 

presence of seminal plasma the appropriate cell surface 

reappears to facilitate transit into a new host [149]. 

 

Vaccine development 

Vaccine development for sexually transmitted diseases has 

long been a goal of the scientific community [150, 151]. 

However, given the extensive antigenic variation displayed 

by N. gonorrhoeae, coupled with suppression and manipu-

lation of the host immune response, progress has been 

severely impeded. Nonetheless, in the mouse infection 

model, if Th1 responses can be induced, an infection will 

clear and immune memory can be established [152]. Con-

sequently, incorporating Th1-inducing adjuvants within any 

vaccine preparation may be crucial for success in this en-

deavor. 

Two outer membrane proteins have come under con-

siderable scrutiny as potential vaccine components; pilus 

constituents and the major outer membrane protein, Por. 

Because anti-pili antibodies were detected in vaginal secre-

tions following an infection [18], this led to the early de-

velopment of a parenteral pilus vaccine. Unfortunately, 

administration of this vaccine afforded partial protection 

only to homologous strains. Moreover, it also showed poor 

immunogenicity and did not stimulate an adequate anti-

body response at the site of infection [21, 153, 154]. Con-

sequently, other antigens were explored as potential vac-

cine candidates. As neisserial Por proteins can serve as 

adjuvants to B-cells, as well as stimulate Por-specific circu-

lating Th2-cells that appear to migrate to mucosal surfaces, 

Por has come under considerable scrutiny [155, 156]. Por is 

also capable of stimulating dendritic cells where activation 

depends on Toll-like receptor 2. Therefore, as Por composi-

tion is relatively stable, this protein has become a promis-

ing vaccine candidate, especially if Th1-inducing adjuvants 

and Toll-like 2-inducing adjuvants can be included within 

any “designer” vaccine preparation [157–159].   

However, a problem exists in the development of any 

vaccine in that antibodies within normal human serum 

bind to the gonococcal outer membrane protein Rmp with 

binding apparently, having important consequences with 

regard to serum resistance for the organism [160, 161]. 

The presence of cross-reactive Rmp antibodies also facili-

tates transmission [161] and women with Rmp antibody 

titers appear at an increased risk for infection [162]. As the 

Rmp protein is in close association with Por protein [163] it 

would appear to be imperative that Rmp protein is exclud-

ed from any Por-based vaccine preparation. Nonetheless, a 

quiet optimism now pervades the field that an anti-

gonococcal vaccine may be around the corner [152]. 

 

MOLECULAR EPIDEMIOLOGY – A HISTORICAL REVIEW 

Auxotyping and serotyping – 70’s through the early 80’s 

As public health decisions regarding transmissible patho-

genic diseases rely heavily on epidemiological surveillance, 
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it became necessary to accurately identify and characterize 

the different circulating strains of N. gonorrhoeae [164]. 

Initially, isolates were typed through growth responses on 

chemically defined media [165, 166] or by serotyping using 

common protein antigens or lipopolysaccharide [41–43, 

167]. Consequently, the identification of different auxo-

types allowed different N. gonorrhoeae strains to be typed 

with respect to disease severity [168, 169]. Subsequent 

Por-based serotyping allowed isolates to initially be 

grouped into two structurally related forms [41, 44, 170], 

which was then further refined using enzyme-linked im-

munosorbant assays to eventually define nine different 

Por-based serotypes [171]. 

Attempts were then made to differentiate isolates that 

caused uncomplicated, localized infections and those that 

caused disseminated gonococcal infections (DGI) [172]. DGI 

phenotypes included an increased sensitivity to penicillin 

[173], unique nutritional requirements [168] coupled with 

serum resistance which led to increased virulence of DGI 

isolates [172]. Subsequently, it has been shown that the 

majority of DGI isolates belonged to two distinct serotypes 

[43, 174].  

The emergence of antibiotic-resistant strains of N. gon-

orrhoeae identified a need to determine modes of antibi-

otic resistance among strains in order to monitor the de-

velopment of new resistance genes, the lateral transfer of 

resistance genes, or the spread of resistance strains among 

the population. Early genetic mapping identified several 

genes involved in antibiotic resistance [175]. Through epi-

demiologic studies and characterization of penicillinase-

producing N. gonorrhoeae (PPNG), it was determined that 

two independent strains of PPNG arose in geographically 

separate populations; both carried the resistance gene on 

distinct plasmids, with one strain (linked to the Far East) 

being more prevalent than the strain linked to West Africa 

[176]. Analysis of PPNG strains demonstrated that their 

introduction into the United States was due to returning 

military personnel from the Far East. Travel also contribut-

ed to global spread of these strains, as patients would en-

counter penicillin-resistant β-lactamase-producing N. gon-

orrhoeae following rendezvous with overseas prostitutes, 

which would in turn often transmit them to local prosti-

tutes, thereby continuing their spread [169, 177].  

Such analysis of clinical isolates indicated that distinct 

reservoirs of infection could be detected based upon sexu-

al preference. Studies revealed that homosexual men had a 

lower incidence of asymptomatic urethral infections and 

DGIs, yet more frequently acquired infections by strains 

that were more resistant to penicillin G, which at the time, 

accounted for the high failure rate of this antibiotic for 

rectal infections [178]. Also, reservoirs for certain PPNG 

outbreaks could be traced back to female prostitutes, as 

these strains were largely absent from the homosexual 

community. Further epidemiological studies were able to 

identify gonococci that were exclusively present in both 

heterosexual men and women, or within homosexual male 

communities, thus defining sources of infection between 

male and female partners, prostitution and/or same sex 

partners [169]. 

 

“Core group” hypothesis – late 70’s through the 80’s 

As previous gonorrheal infections provide little to no im-

munity to subsequent infections, an alternative model for 

gonorrhea transmission was proposed, t suggesting that all 

cases of the disease are caused by a core group of individ-

uals [179]. This “core group” hypothesis, was later rein-

forced by the emergence and spread of PPNG from the Far 

East [169, 179] and through clinical investigations in the 

United States [180, 181]. The persistence of isolates within 

a community was proposed to be due to a number of fac-

tors including the tendency for these strains to cause 

asymptomatic infections, or, alternatively, to have long 

incubation times prior to the onset of symptoms, which 

provided support to the theory that a core group of trans-

mitters, most likely prostitutes, transmit the disease to 

many sexual partners [169]. Epidemiological studies re-

vealed that a substantial group of individuals (33%) admit-

ted to continual sexual engagement even with the 

knowledge of potential exposure, or, worse, even after the 

onset of symptoms, and that men with new or multiple sex 

partners were more likely to contract gonorrhea [182, 183]. 

Consequently, five sociological trends were identified that 

assisted the rise of gonorrhea infections:  1) frequent 

changes in sex partners, 2) increased population mobility, 

3) increasing gonococcal resistance to antibiotics, 4) de-

creased condom, diaphragm and spermicide use, and 5) 

increasing the use of oral contraceptives [184]. 

 

Linkage disequilibrium - 1993 

With the widespread use of serological typing, coupled 

with the desire for vaccine development, the classification 

and characterization of gonococcal strains invariably fo-

cused on investigating surface exposed antigens [185]. 

However, the combination of auxotyping and serotyping 

proved to be unreliable, as these techniques did not always 

provide adequate resolution [186]. As most pathogens are 

clonal with a disposition towards linkage disequilibrium, 

this property generally allows for classification based upon 

nucleotides that are present at variable sites, which in turn 

allows the serology, pathogenicity, host specificity and the 

presence of virulence genes to be mapped [185, 187]. 

However, panmictic microorganisms, such as the gonococ-

cus, that undergo mutation and frequent recombinational 

exchanges, do not allow stable clones to emerge due to the 

randomization of alleles within a population. Consequently, 

this complicates epidemiological characterization. Also, as 

surface-exposed antigens that are used for serotyping also 

tend to evolve rapidly due to strong diversifying selection 

placed on them by the host immune system, this further 

compounds the problem [185]. Given the above problems, 

it became necessary to index genes that only undergo neu-

tral variation in order to investigate population structure, 

which led to analysis being focused on housekeeping genes 

involved in central metabolism [188]. Consequently, novel 

methods of molecular typing were then devised to define 

outbreaks based on either local or global epidemiology 

[164]. 
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Multilocus enzyme electrophoresis (MLEE) - 90’s 

The advent of multilocus enzyme electrophoresis (MLEE) 

allowed for the presence or absence of linkage disequilib-

rium within a population to be monitored via deviations 

between multiple chromosomal alleles [188–191]. Indeed, 

this approach allowed for global epidemiological studies 

and permitted the identification of strains with an in-

creased tendency to cause disease [164]. Statistical analy-

sis performed on the electrophoretic types of 227 global N. 

gonorrhoeae isolates provided evidence of a panmictic 

population structure, as no single pair of alleles was statis-

tically significant for linkage disequilibrium. Additionally, it 

was determined that the genetic variability of isolates ob-

tained from the same geographic location was as great as 

that found between all geographic locations that were 

analyzed. Consequently, it was concluded that the propen-

sity for individual hosts to carry more than one genotype of 

N. gonorrhoeae, combined with natural competence for 

DNA transformation, promoted the highly panmictic nature 

of this pathogen [189].  

 

Multilocus sequence typing (MLST) – 90’s 

However, MLEE had limitations as it could only detect a 

small proportion of mutations through differences in elec-

trophoretic mobility [164, 185]. Therefore, nucleotide se-

quencing of the core gene set was then introduced leading 

to multilocus sequence typing (MLST) [164]. This proved to 

be extremely effective at detecting relationships between 

identical or closely related isolates by characterizing them 

on the basis of sequence variation [164, 192]. While MLST 

typing could be readily applied to N. meningitidis isolates, 

it was initially thought that clinical isolates of N. gonor-

rhoeae could not be used, as gonococcal housekeeping 

genes appeared to be homologous [164, 185, 193]. Also, as 

frequent recombination occurred within the organism, it 

was initially believed that the genetic relatedness of distant 

isolates may become obscured [194]. However, recombi-

nant exchanges must accrue over long time periods for 

relationships to be masked, and as the field of molecular 

epidemiology is only concerned with very short evolution-

ary time scales, any correlations drawn are unlikely to be 

skewed by recombination [192]. Therefore, MLST studies 

did show that N. gonorrhoeae isolates could be typed using 

the same methods applied to N. meningitidis [164] and N. 

lactamica [186, 195]. It was through comparison of MLST 

data among the Neisseriae, that it was postulated that 

minimal interspecies recombination actually occurs among 

the housekeeping genes [186]. 

 

eBURST – 2000’s 

Typically, MLST allelic profiles were placed into a matrix of 

pairwise differences which allows for detection of identical 

or closely related isolates. However, these do not provide 

the necessary information on the evolutionary descent of 

genotypic clusters, nor do they identify the founder geno-

type [192]. Additionally, in bacterial species such as N. 

gonorrhoeae that undergo frequent recombination, any 

relatedness that may be implied through the use of pair-

wise differences is highly suspect and most likely may not 

be phylogenetically relevant [196]. To account for these 

concerns, the BURST (based upon related sequence types) 

algorithm was designed to analyze microbial MLST data by 

assigning defined sequence types (STs) to lineages which 

allowed the identification of a putative founder genotype 

[197].   

The program was further refined with the development 

of the eBURST algorithm, which differentiates large MLST 

datasets based on isolates with the most parsimonious 

descent pattern from the probable founder, and allows for 

the identification of clone diversification yet also provides 

insight into the emergence of clinically relevant isolates 

[192]. Initially, eBURST was used for analysis of quinolone-

resistant N. gonorrhoeae (QRNG) [198]. Previous epidemio-

logical studies of quinolone resistance strains of N. gonor-

rhoeae could not determine if distinct isolates arose due to 

variation of an original strain or if multiple strains were 

concomitantly introduced into a specific geographic loca-

tion [198–201]. eBURST analysis determined the total 

number of QRNG strains that entered a country, the diver-

gence of loci, and the time period during which the found-

er strains evolved [198]. With the combination of MLST 

and eBURST analysis, disease isolates could now be defined 

with regard to distribution, population structure, and evo-

lution [202]. Consequently, the origins of pathogenic 

strains could now be determined as well as how bacterial 

populations respond to antibiotics and vaccines through 

analysis of recent evolutionary changes [203]. 

 

CHEMOTHERAPY 

Neisseria gonorrhoeae is rapidly evolving and has devel-

oped resistance to all previous and current antimicrobials. 

The recent emergence of multidrug resistant gonococcal 

isolates in Japan [204], France [205], and Spain [206] has 

provoked major concerns in public health circles worldwide, 

especially as drug resistance is spreading rapidly [207]. 

Consequently, we may be entering an era of untreatable 

gonorrhea. Medications such as penicillin, and later, the 

fluoroquinolines, have each been used to treat gonorrhea 

in the past, however, resistance to these antimicrobial 

agents quickly developed, leaving limited options for gono-

coccal treatment [208]. Currently, third generation extend-

ed-spectrum cephalosporins (ESCs); which include ceftriax-

one (injectable form) and cefixime (oral form) are being 

prescribed. However, resistance to ESCs has also emerged 

with resistant isolates having been reported in 17 different 

countries [209, 210].   

The recent emergence of the first N. gonorrhoeae “su-

perbug” strain in Japan (H041, which was later assigned to 

MLST ST7363) has been shown to exhibit extremely high-

level resistance to all ESCs, including cefixime (MIC= 8 

µg/ml), and ceftriaxone (MIC= 2-4 µg/ml) as well as to al-

most all other available therapeutic antimicrobials [204]. 

Since the isolation of the H041 strain, other extensive drug 

resistance (XDR) strains have also been isolated in Quimper, 

France (F89 strain) [205] as well as in Catalonia, Spain [206], 

and both share considerable genetic and phenotypic simi-

larity to the Japanese H041 strain. Unfortunately, transmis-
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sion of these strains is augmented by the fact that XDR 

strains have been isolated from commercial sex workers, 

homosexual men, sex tourists, long distance truck drivers, 

and people undergoing forced migration, suggesting that 

these strains have the potential to spread globally [207].  

N. gonorrhoeae are exceptional bacteria that can rapid-

ly evolve to promote adaptation and survival within differ-

ent niches of the human host. This is facilitated by their 

natural competence which allows DNA uptake from the 

environment via transformation, as well as by engaging in 

bacterial conjugation. Consequently, gonococci can acquire 

various different types of antimicrobial resistance (AMR), 

which include drug inactivation, modification of drug tar-

gets, changing bacterial permeability barriers, and increas-

ing efflux properties [208, 209]. The acquisition of AMR 

genes was initially thought to occur within commensal 

Neisseria spp. that reside in the pharynx, as pharyngeal 

organisms are often exposed to antimicrobials, with the 

fixed mutations then being transferred to gonococci that 

mingle with the commensal bacteria [211]. Neisseria can 

also obtain AMR through spontaneous mutations, although 

such events are comparatively rare. Many resistance de-

terminants originate through the accumulation of chromo-

somal mutations, with only two known plasmid-borne 

genes having been described; penicillin resistance associ-

ated with the blaTEM plasmid [212–214] and tetracycline 

resistance associated with the tetM plasmid [215]. Penicil-

linase-producing strains of Neisseria gonorrhoeae were 

first isolated in Southeast Asia and in sub-Saharan Africa 

[176]. However, less than one percent of gonococcal clini-

cal isolates in the US contain the β-lactamase gene, indicat-

ing that the major mechanism of penicillin resistance ap-

pears to result from accumulation of chromosomal muta-

tions over time [214]. Interestingly, the N. gonorrhoeae 

tetM conjugative plasmid [216] is not only self-

transmissible but is also responsible for transfer of the β-

lactamase plasmids to other gonococci, other Neisseria 

spp., and E. coli [217, 218].    

Chromosomal-mediated resistance to penicillin, as well 

as to other ESCs, generally involves modification of the 

penicillin binding proteins (PBP) coupled with mutations 

that enhance the efflux and decrease the influx of antimi-

crobials. Penicillin-resistant gonococcal strains typically 

contain 5 to 9 point mutations in the penA gene which 

encodes PBP2, the primary lethal target of the β-lactam 

antimicrobials [219, 220]. Penicillin and ESC minimum in-

hibitory concentrations (MICs) can also be elevated in 

strains carrying mtrR and penB mutations which increase 

efflux and decrease influx of the antimicrobials, respective-

ly [204, 205]. Surprisingly, synergy between mtrR and penB 

mutations appears to have very little impact on resistance 

to cefixime which is mainly conferred by penA mosaic al-

leles [221]. 

Once acquired, resistance determinants contributing to 

decreased susceptibility or resistance to certain antibiotics 

are stably carried within Neisseria populations even when 

the antibiotic is withdrawn from treatment regimens [208]. 

The persistence of resistance determinants also suggests 

that these factors do not cause a negative impact on the 

biological fitness of the gonococcus. In fact, antibiotic re-

sistance can be linked with enhanced fitness as demon-

strated with the MtrCDE efflux system that contributes to 

gonococcal virulence and survival during an infection [222, 

223]. This efflux pump can recognize and expel not only 

hydrophobic antibiotics such as penicillin, ESCs, macrolides, 

tetracycline, and ciprofloxacin [224–226], but also antimi-

crobial compounds from the innate host response such as 

antimicrobial peptides, bile salts, and progesterone, allow-

ing the bacteria to survive within host cells [227].  

 

Future directions 

Due to the lack of an efficacious vaccine, control of gono-

coccal infections relies on appropriate antibiotic treatment, 

coupled with prevention, proper diagnosis, and epidemio-

logical surveillance. Recently, novel dual antimicrobial 

therapy, e.g. ceftriaxone and azithromycin [228, 229] or 

gentamicin and azithromycin [230] combination treatment, 

has been evaluated for treatment of uncomplicated gonor-

rhea. However, the emergence of concomitant resistance 

to the available antimicrobials has again compromised 

such an approach [207, 208, 228, 231]. 

Previously developed antibiotics, including gentamicin, 

solithromycin, and ertapenem, are also now being consid-

ered as clinical isolates show a high degree of sensitivity to 

these antibiotics in vitro [232, 233]. The carbapenem, 

ertapenem, is potentially an option for ceftriaxone –

resistant N. gonorrhoeae as these strains display relatively 

low MICs when treated with this agent [234]. However, 

regimens with ertapenem are only applicable if ertapenem 

and ceftriaxone do not share the same resistance mecha-

nism such as strains carrying certain penA, mtrR, and penB 

mutations which coincided with increased carbapenem 

MICs [209, 234]. Consequently, using these antimicrobials 

may only provide a short-term solution for combating mul-

tidrug-resistant gonorrhea [207]. 

To counteract this problem, new antibiotics are being 

developed for anti-gonococcal therapy. The novel macro-

lide-family of antibiotics, such as bicyclolides modithromy-

cin (EDP-420) and EDP-322, display high activity against 

azithromycin-, ESC-, and multidrug-resistant gonococcal 

isolates in vitro. However, these macrolide drugs appear to 

cause some cross-resistance with high-level azithromycin 

resistance [235]. The tetracycline derivatives, glycylcycline 

tigecycline and fluorocycline eravacycline (TP-434), have 

also been shown to be effective against ceftriaxone-

resistant gonococci in vitro, yet, concerns remain regarding 

their usage and effectiveness [236, 237]. Recently, new 

broad-spectrum fluoroquinolones, such as avarofloxacin 

(JNJ-Q2) [238], delafloxacin, sitafloxacin [239], and WQ-

3810 [240], have displayed high potency against multidrug-

resistant gonococcal isolates in vitro including ciprofloxa-

cin-resistant strains. Finally, the lipoglycopeptide dalba-

vancin and 2-acyl carbapenems, SM-295291 and SM-

369926, are among potential antimicrobials that can be 

used in gonorrhea treatment to a limited extent [241].  

Current research has centered on exploring novel an-

timicrobials or compounds designed to inhibit new targets. 

Among these newly developed agents are a protein inhibi-
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tor (pleuromutilin BC-3781), a boron-containing inhibitor 

(AN3365) [242], efflux pump inhibitors, which enhance 

susceptibility to antimicrobials, host innate defense com-

ponents and toxic metabolites [226, 243], non-cytotoxic 

nanomaterials [244], host defense peptides- LL-37 (multi-

functional cathelicidin peptide) [245], molecules that mim-

ic host defensins, LpxC inhibitors [246], species-specific 

FabI inhibitors (MUT056399) [247], and inhibitors of bacte-

rial topoisomerases (VT12-008911 and AZD0914) both of 

which target alternative sites other than the fluoroquino-

lone-binding site [248]. Importantly, all these compounds 

possess potent in vitro activity against multidrug-resistant 

gonococcal strains [208, 249]. The novel spiropyrim-

idinetrione antibacterial compound (AZD0914) which inhib-

its DNA biosynthesis [250] appears to be extremely promis-

ing, as no emerging resistance has been observed in di-

verse multidrug-resistant gonococcal isolates [235]. Conse-

quently, AZD0914 is being seriously considered for its po-

tential use as future oral treatment for gonococcal infec-

tions especially as it lacks cross-resistance exhibited by 

other fluoroquinolone antibiotics [251].  

Ideally, the future treatment for gonorrhea will rely on 

individually-tailored regimens as clinical isolates will hope-

fully be rapidly characterized by novel phenotypic AMR 

tests and rapid genetic point-of-care antimicrobial re-

sistance tests. Unfortunately, no commercial molecular 

diagnostic kit is currently available to detect AMR determi-

nants in gonococci, with the current genetic assays lacking 

sensitivity and specificity [249, 252]. Meanwhile, 

healthcare initiatives need to be immediately undertaken 

to postpone the further widespread dissemination of 

ceftriaxone-resistant N. gonorrhoeae strains. These 

measures should include conducting AMR surveillance on 

global, national, as well as local scales, identifying treat-

ment failures, monitoring the susceptibility of gonococcal 

isolates to prescribed antibiotics, and using appropriate 

and effective antibiotics with optimized quality and doses 

in gonorrhea treatment regimens [209]. 
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