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Abstract

Purpose—mRNA degradation is an important regulatory step for controlling gene expression 

and cell functions. Genetic abnormalities of the genes involved in mRNA degradation were found 

to be associated with cancer risks. Therefore, we systematically investigated the roles of genetic 

variants of genes in the general mRNA degradation pathway in lung cancer risk.

Experimental design—Meta-analyses were conducted in six lung cancer genome-wide 

association studies (GWASs) from the Transdisciplinary Research in Cancer of the Lung and 

additional two GWASs from Harvard University and deCODE in the International Lung Cancer 

Consortium. Expression quantitative trait loci analysis (eQTL) was used for in silico functional 

validation of the identified significant susceptibility loci.

Results—This pathway-based analysis included 4,603 single nucleotide polymorphisms (SNP) in 

68 genes in 14,463 lung cancer cases and 44,188 controls, of which 20 SNPs were found to be 

associated with lung cancer risk with a false discovery rate threshold of <0.05. Among the 11 

newly identified SNPs in CNOT6, which were in high linkage disequilibrium, the rs2453176 with 

a RegulomDB score “1f” was chosen as the tag SNP for further analysis. We found that the 

rs2453176 T allele was significantly associated with lung cancer risk (odds ratio=1.11, 95% 

confidence interval=1.04–1.18, P=0.001) in the eight GWASs. In the eQTL analysis, we found that 

levels of CNOT6 mRNA expression were significantly correlated with the rs2453176 T allele, 

which provided additional biological basis for the observed positive association.

Conclusion—The CNOT6 rs2453176 SNP may be a new functional susceptible locus for lung 

cancer risk.
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Introduction

Lung cancer is one of the most frequently diagnosed cancers with about 1.8 million new 

lung cancer cases reported in 2012 worldwide, accounting for about 13% of total cancer 

diagnoses [1]. In the United States, 224,390 new lung cancer cases are estimated to occur in 

2016 [2]. In addition to other factors, such as occupational and environmental carcinogens, 

cigarette smoking is the major risk factor for lung cancer [3,4], but not all smokers develop 
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lung cancer, which suggests that genetic predisposition play an essential role in the lung 

carcinogenesis [5].

In recent years, some genome-wide association studies (GWASs) of lung cancer have been 

conducted, and a number of genetic variants, i.e., single nucleotide polymorphisms (SNPs), 

have been found to be associated with lung cancer risk. For example, the significant 

susceptibility loci associated with lung cancer risk include 5p15.3 (rs401681, rs4975616 and 

rs472010 in CLPTM1L and rs2736100 in TERT) [6–11], 6p21.3 (rs3117582 in BAG6 or 

APOM and rs2395185 in HLA-DRB5 or HLA-DRB9) [6,8,9,11], 6q22.1 (rs9387478 in 

RAP1BP3 or DCBLD1) [11] and 15q25.1 (rs8034191 in HYKK and rs1051730 in 

CHRNA3) [6,8,9,12–15]. Among these SNPs, rs1051370, rs3117582 and rs2731600 were 

found to be specifically associated with risk of lung adenocarcinoma (AD) [9], whereas 

rs12296850 (mapped to 12q23.1) in SLC17A8 or NR1H4 was found to be a susceptibility 

locus for risk of squamous cell carcinoma (SC) [16]. Interestingly, the vast majority of the 

SNPs identified by GWASs are in introns or intergenic regions, and their functional evidence 

is limited. In the present study, we employed the pathway-based strategy that dramatically 

decreases the number of SNPs to be analyzed and thus significantly reduced multiple testing 

with the aim to identify possible lung cancer risk-associated functional SNPs that may have 

not been revealed by previous lung cancer GWASs.

The degradation of mRNA is an important regulatory step for controlling gene expression 

and cell functions [17,18]. The general cytoplasmic mRNA decay pathway usually begins 

with the deadenylation, which removes the poly(A) tail Ccr4-Not complex [19], followed by 

degradation of mRNA proceeding in two directions of 5’-3’ or 3’-5’. The 5’-3’ mRNA 

degradation initiates with decapping N7-methylguanosine (m7G) cap mainly by DCP1/DCP2 

proteins and subsequently degraded by the exoribonuclease Xrn1, while the 3’-5’ mRNA 

degradation is mainly catalyzed by 10–12 subunit exosome [20].

Some studies suggest that genetic abnormalities of genes involved in the general mRNA 

degradation pathway may be associated with lung cancer. For example, various genetic 

variants in LSM2-LSM8, which encode cofactors for mRNA decapping, were recently found 

in lung cancer cell lines [21]. Therefore, we hypothesize that genetic variants of the general 

mRNA degradation pathway are associated with lung cancer risk. To test the hypothesis, we 

conducted the comprehensive meta-analysis of the eight published lung cancer GWASs from 

the ILCCO (International Lung Cancer Consortium)-TRICL (Transdisciplinary Research in 

Cancer of the Lung) consortia, focusing on the SNPs of the genes in the general mRNA 

degradation pathway.

Materials and Methods

Study populations

The first part of the study populations came from the TRICL consortium, which included 

12,160 lung cancer cases and 16,838 controls (all Europeans) of six previously published 

GWASs from: the MD Anderson Cancer Center (MDACC), the Institute of Cancer Research 

(ICR), the National Cancer Institute (NCI), the International Agency for Research on Cancer 

(IARC), Toronto study from Samuel Lunenfeld Research Institute study (Toronto), and the 
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German Lung Cancer Study (GLC) [22]. The second part of the study populations included 

GWASs of European ancestry from Harvard Lung Cancer Study (984 cases and 970 

controls) [23] and Icelandic Lung Cancer Study (deCODE) (1,319 cases and 26,380 

controls) [15] of the ILCCO. Written informed consents were achieved for all participants, 

and the present study was approved by each institutional review board of the participating 

institutions.

GWAS genotyping and imputation

Genotyping in the eight GWASs was performed by Illumina HumanHap 317, 317+240S, 

370Duo, 550, 610 or 1M arrays. The imputation was conducted by IMPUTE2 v2.1.1 or 

MaCH v1.0 software using the reference panel from the 1000 Genomes Project (phase I 

integrated release 3, March 2012). Standard quality control on samples was performed on all 

scans in the analysis, excluding any participants with low call rate (< 90%), extremely high 

or low heterozygosity (P < 1.0×10−4), non-European (with the HapMap phase II CEU, 

JPT/CHB and YRI populations as a reference) and imputed SNPs with an information score 

< 0.40 in IMPUTE2 or r2 < 0.30 in MaCH.

Gene and SNP selection

Genes in the general mRNA degradation pathway were identified from the Molecular 

Signatures Database [24] and the literature [19]. Overall, 75 genes located on autosomal 

chromosomes were selected. Among them, seven genes were pseudogenes or duplicates or 

withdrawn from updated NCBI. After removal of these genes, genotypes of 68 genes were 

abstracted from the GWAS datasets (detailed in Supplementary Table S1). The final meta-

analysis contained 4,603 SNPs with the following standards: genotyping rate ≥ 90%, minor 

allele frequency ≥ 5%, and Hardy Weinberg Equilibrium exact P value ≥ 10−5. The overall 

workflow is shown in Figure 1.

In silico functional validation

Two in silico tools, SNPinfo (http://snpinfo.niehs.nih.gov/snpinfo/snpfunc.htm) [25], 

RegulomeDB (http://regulomedb.org/) [26], were used to predict potential functions. 

Expression quantitative trait loci (eQTL) analysis was performed by using the expression 

data of lymphoblastoid cell lines from 373 Europeans available in the 1000 Genomes Project 

(http://www.1000genomes.org/category/frequently-asked-questions/gene-expression) [27] 

and The Cancer Genome Atlas (TCGA)( https://tcga-data.nci.nih.gov/tcga/)[28].

Statistical analysis

Logistic regression model was used to calculate the odds ratios (ORs) and their 95% 

confidence intervals (CIs) in an additive genetic model with PLINK (v1.06) software. A 

meta-analysis with the inverse variance method was employed on the 4,603 SNPs with Stata 

software (v12, State College, Texas, US). Cochran's Q statistic was applied to test for 

heterogeneity and the I2 statistic for the proportion of the total variation in the meta-analysis 

[29]. The fixed-effects model was used when there was no heterogeneity among GWASs (Q-

test P > 0.100 and I2 < 50%); otherwise, the random-effects model was used. Multiple 

testing correction was conducted with false discovery rate (FDR) with a threshold < 0.050 
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[30]. A linear regression model was also performed to evaluate the correlation between 

SNPs and mRNA expression levels of the corresponding genes. A paired t-test was used to 

compare the mRNA expression levels of genes in the lung cancer and normal adjacent tissue 

from the TCGA database. LocusZoom (http://locuszoom.sph.umich.edu/locuszoom/) was 

applied to construct regional association plots using Europeans from the 1000 Genomes 

Project as the reference (phase I integrated release 3, March 2012) [31]. Haploview v4.2 was 

used to generate the Manhattan plot and LD plots [32]. All analyses were conducted with 

SAS (version 9.4; SAS Institute, Cary, NC, USA) except for those specified otherwise.

Results

Associations of the SNPs with lung cancer risk

We first performed a meta-analysis in the TRICL database consisted of six previously 

published GWAS datasets with 12,160 cases and 16,838 controls. The basic information of 

these six studies is presented in Supplemental Table S2. A total of 4,603 SNPs in the 

pathway were extracted, of which 318 SNPs were associated with lung cancer risk at P < 

0.05 in the additive model and 20 SNPs on LSM2SKIV2L and CNOT6 remained 

significantly associated with lung cancer risk with FDR < 0.05 after multiple testing 

corrections (Figure 2A and Table 1). Among these SNPs, we excluded those of LSM2 and 

SKIV2L, because they were mapped to and in high LD with previously GWAS-reported 

locus at 6p21.33 [6,8]. As a result, 11 SNPs of CNOT6 located at 5q35.3 were left for 

further analysis. In the LD analysis, these 11 SNPs shared moderate to high LD (r2 ≥ 0.60, 

Figure 2B and 2C). We finally chose rs2453176 as the tag SNP, because it was significantly 

associated with lung cancer risk (OR = 1.13, 95% CI = 1.06–1.19, P = 4.33×10−5) (Table 1) 

and potentially functional according to function prediction and its imputation quality was the 

best among the 11 SNPs (Table 2). We used the forest plot to illustrate the association 

between rs2453176 and lung cancer risk in the six GWASs (Figure 3), and the rs2453176 T 

allele was associated with an increased lung cancer risk in five GWASs, except for the GLC 

GWAS.

We expanded our analysis to include additional two independent lung cancer GWASs 

(Supplemental Table S2). The deCODE GWAS validated our result of the CNOT6 
rs2453176 tag SNP (OR = 1.14, 95% CI = 1.01–1.28, P = 0.032), while the GWAS from 

Harvard University displayed the same trend as the GLC GWAS (OR = 0.85, 95% CI = 

0.68–1.05, P = 0.133) (Figure 3 and Table 3).

As we combined all the data from the eight GWASs, the functional CNOT6 rs2453176 tag 

SNP was found to be significantly associated with an increased risk of lung cancer (OR = 

1.11, 95% CI = 1.04–1.18, P = 0.001) after the FDR correction (Figure 3 and Table 3).

Stratified analyses by lung cancer histology

Since lung cancer has different histological types that could have distinct biological 

behaviors, we performed AD and SC subgroup analysis and found that the rs2453176 T 

allele was associated with a borderlinely increased risk in AD (OR = 1.13, 95% CI = 1.00–

1.27, P = 0.050, Table 3), but it was significantly associated with SC risk (OR = 1.12, 95% 
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CI = 1.03–1.22, P = 0.006, Table 3). Because smoking is a major risk factor for lung cancer, 

we further stratified the data into smokers and non-smokers and found that that the 

rs2453176 T allele was associated with a significantly increased risk in smokers (OR = 1.09, 

95% CI = 1.02–1.17, P = 0.011, Table 4), while the allele was not statistically significant in 

non-smokers (OR = 1.10, 95% CI = 0.89–1.36, P = 0.363, Table 4). Homogeneity tests 

suggested that there was no heterogeneity between strata either in subgroups of histologic 

types or smoking status (Table 3 and Table 4, all P > 0.05).

Functional validation by eQTL analysis

Because the CNOT6 rs2453176 SNP was predicted with a score of "1f", suggesting the most 

confident functional annotation by regulomeDB [26], we further explored the underlying 

molecular mechanism by performing the eQTL analysis. With mRNA expression data of 

lymphoblastoid cell lines from 373 Europeans available from the 1000 Genomes Project, We 

found that expected mRNA expression levels of CNOT6 were significantly decreased with 

an increased number of the rs2453176 T allele in both the additive (P = 0.008) (Figure 4A) 

and dominant (P = 0.007) (Figure 4B) models but not the recessive model (Figure 4C). We 

also used the 105 normal adjacent tissue samples in the TCGA to further explore the 

correlation between the rs2453176 genotypes and their corresponding mRNA expression 

levels, but we did not observe a statistical significance (P > 0.05) (Supplemental Figure 

S1A-S1C). We also compared the mRNA expression level of CNOT6 in the 107 paired 

samples and did not find a statistically significant difference (P > 0.05) (Supplemental 

Figure S1D).

Discussion

In the present study, we found that a novel potentially functional susceptibility locus 

rs2453176 C>T of CNOT6 in the general mRNA degradation pathway was associated with 

an increased lung cancer risk in 14,463 cases and 44,188 controls. This association was 

further supported by a significant correlation between a decreased mRNA expression level 

and an increasing number of the A allele in the eQTL analysis.

Gene expression disorder is one of cancer hallmarks, and instability of mRNA may result in 

altered transcprit/protein levels of oncogenes and tumor repressor genes [33]. The 

degradation of mRNA is a key step in controlling the expression of genes related to cell 

proliferation. For example, the CCR4-Not complex consists of highly conserved 

exoribonucleases and adaptor proteins that hydrolyze and shorten the poly(A) tail, which 

starts the initial and the rate-limiting step of mRNA degradation [19]. Located at 5q35.3, 

CNOT6 encodes a protein that has a 3'-5' RNase activity and acts as a catalytic subunit of the 

CCR4-Not deadenylation complex [34]. Although it remains unclear how the catalytic 

subunit works during the deadenylation process, some studies reported that its expression 

level was associated with carcinogenesis or prognosis. For example, one study of lung 

cancer found that the CNOT6 overexpression in lung SC predicted a significantly less 

metastasis [33]. Another study of acute leukemia discovered that CNOT6 had a significantly 

lower expression in patients than in controls [35]. These two studies suggest that high 
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expression levels of CNOT6 may promote the degradation of mRNA of some oncogenes and 

the suppression of cell proliferation in carcinogenesis.

In the present study, we identified that the CNOT6 rs2453176 T allele was associated with 

an increased risk of lung cancer, which was supported by the association of CNOT6 
rs2453176 T allele with a decreased mRNA expression level in lymphoblastoid cell lines 

from 373 Europeans. This finding is consistent with the role of CNOT6 in lung cancer 

prognosis as previously described [33]. The ENCODE project data from University of 

California Santa Cruz show that the CNOT6 rs2453176 locus is located at the DNase I 

hypersensitive region (Supplemental Figure S2). Usually such an area has a loose chromatin 

structure and renders it a region with a high affinity for transcription factors (TFs). As a 

result, some TFs, including MAFK and MAFF, bond to this region in many cell types 

(Supplemental Figure S2). For example, MAFK and MAFF were found to form 

heterodimers with a series of TFs and suppressed gene transcriptions [36,37]. Based on 

these, we speculate that the rs2453176 T allele may have a relatively high affinity with 

MAFK or MAFF and thus leads to the decreased mRNA expression of CNOT6. It is likely 

that a reduced quantity of CNOT6 may not be optimal in the mRNA degradation of some 

aberrant genes, which may in turn increases lung cancer risk, but these speculations need to 

be further investigated.

In the stratification analysis, rs2453176 was associated with lung cancer risk in both AD and 

SC subtypes, which is not surprising, because smoking has been established as a 

predominant risk factor for developing lung cancer, regardless histologic types [38]. Genetic 

susceptibility to smoking-related lung cancer risk may determine smoking behavior and 

tobacco metabolism [39]. Indeed, we found that the rs2453176 T allele was associated with 

a higher risk of lung cancer in smokers than in non-smokers. One study reported that 

smoking would enhance the activity of the GATA family [40], and another study reported 

that nicotine would increase the expression of EP300 and promote the lung cancer growth 

[41]. From the Supplemental Figure S2, GATA1, GATA2 and EP300 are the TFs that bind to 

the rs2453176 locus, possibly explaining why carriers of the rs2453176 T allele may have an 

increased risk of lung cancer in smokers than non-smokers.

There are some limitations in the present study. First, we employed the gene set enrichment 

analysis with a collection of annotated gene sets to define the general mRNA degradation 

pathway to be investigated, but we may have missed some newly discovered genes in the 

pathway. However, we searched the literatures and added genes as many as possible. 

Second, due to the data limitation, we had no access to family history and others factors that 

may have an impact on lung cancer risk. Third, we used the eQTL analyses from 

lymphoblastoid cell lines and normal adjacent tissue in TCGA database to validate the risk 

association. Although the results from the cell lines support our identified association, they 

may only reflect the baseline or genetically determined expression levels without exposure 

to smoking. The gene expressions in the normal adjacent lung tissues may be in some degree 

different from the normal lung tissue and did not support the association.

Overall, the present study of eight published GWASs identified a novel CNOT6 rs2453176 

SNP in the general mRNA degradation pathway to be significantly associated with lung 
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cancer risk in European populations, and the risk was more evident in smokers than in non-

smokers. Although we used the publically available gene expression database from blood to 

confirm the biological significance of the variant, further functional evaluations in normal 

lung tissue are warranted to validate our findings.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Study workflow
SNP: single nucleotide polymorphism; FDR: false discovery rate; TRICL: Transdisciplinary 

Research in Cancer of the Lung; GWAS: genome-wide association study; eQTL: expression 

quantitative trait loci.
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Figure 2. Screening of SNPs in the general mRNA degradation pathway
A, Manhattan Plot of genome-wide association results from the general mRNA degradation 

pathway in TRICL. The x-axis shows SNPs’ positions on each chromosome. The y-axis 

shows the association P values with lung cancer risk (as –log10 P values). The FDR 

threshold of 0.05 was shown by a horizontal blue line. The P value of 0.05 was shown by a 

horizontal red line. B, Regional association plot for SNP rs2453176 in 500 kb up- and 

downstream region. The left-hand y-axis shows P values of the SNPs, which are transformed 

as −log10 (P) against chromosomal base pair positions. The right-hand y-axis shows the 

recombination rate estimated from HapMap Data Rel 22/phase II European population; C, 
The linkage disequilibrium plots of 11 SNPs in CNOT6. The value within each diamond 

represents the pairwise correlation between SNPs (measured as r2) defined by the upper left 

and the upper right sides of the diamond.
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Figure 3. Forest plots for associations between CNOT6 rs2453176 and lung cancer risk for all 
participants
(P = 0.0013).
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Figure 4. The eQTL analysis of CNOT6 mRNA expression for rs2453176 with lymphoblastoid 
cell data of 373 Europeans from 1000 Genomes Project
A. additive model, P = 0.008; B. dominant model, P = 0.007; C. recessive model, P = 0.634.
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