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Abstract

Purpose—mRNA degradation is an important regulatory step for controlling gene expression
and cell functions. Genetic abnormalities of the genes involved in mMRNA degradation were found
to be associated with cancer risks. Therefore, we systematically investigated the roles of genetic
variants of genes in the general mRNA degradation pathway in lung cancer risk.

Experimental desigh—Meta-analyses were conducted in six lung cancer genome-wide
association studies (GWASs) from the Transdisciplinary Research in Cancer of the Lung and
additional two GWASs from Harvard University and deCODE in the International Lung Cancer
Consortium. Expression quantitative trait loci analysis (eQTL) was used for /n silico functional
validation of the identified significant susceptibility loci.

Results—This pathway-based analysis included 4,603 single nucleotide polymorphisms (SNP) in
68 genes in 14,463 lung cancer cases and 44,188 controls, of which 20 SNPs were found to be
associated with lung cancer risk with a false discovery rate threshold of <0.05. Among the 11
newly identified SNPs in CNOT®6, which were in high linkage disequilibrium, the rs2453176 with
a RegulomDB score “1f” was chosen as the tag SNP for further analysis. We found that the
rs2453176 T allele was significantly associated with lung cancer risk (odds ratio=1.11, 95%
confidence interval=1.04-1.18, A=0.001) in the eight GWASS. In the eQTL analysis, we found that
levels of CNOT6 mRNA expression were significantly correlated with the rs2453176 T allele,
which provided additional biological basis for the observed positive association.

Conclusion—The CNOT61s2453176 SNP may be a new functional susceptible locus for lung

cancer risk.

Keywords
lung cancer risk; pathway analysis; molecular epidemiology

Introduction

Lung cancer is one of the most frequently diagnosed cancers with about 1.8 million new
lung cancer cases reported in 2012 worldwide, accounting for about 13% of total cancer
diagnoses [1]. In the United States, 224,390 new lung cancer cases are estimated to occur in
2016 [2]. In addition to other factors, such as occupational and environmental carcinogens,
cigarette smoking is the major risk factor for lung cancer [3,4], but not all smokers develop
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lung cancer, which suggests that genetic predisposition play an essential role in the lung
carcinogenesis [5].

In recent years, some genome-wide association studies (GWASS) of lung cancer have been
conducted, and a number of genetic variants, i.e., single nucleotide polymorphisms (SNPs),
have been found to be associated with lung cancer risk. For example, the significant
susceptibility loci associated with lung cancer risk include 5p15.3 (rs401681, rs4975616 and
rs472010 in CLPTMIL and rs2736100 in TERT) [6-11], 6p21.3 (rs3117582 in BAG6 or
APOM and rs2395185 in HLA-DRB5 or HLA-DRBY) [6,8,9,11], 6g22.1 (rs9387478 in
RAPIBP3or DCBLDI) [11] and 15025.1 (rs8034191 in HYKK and rs1051730 in
CHRNAJ) [6,8,9,12-15]. Among these SNPs, rs1051370, rs3117582 and rs2731600 were
found to be specifically associated with risk of lung adenocarcinoma (AD) [9], whereas
rs12296850 (mapped to 12923.1) in SLC17A8or NR1H4 was found to be a susceptibility
locus for risk of squamous cell carcinoma (SC) [16]. Interestingly, the vast majority of the
SNPs identified by GWASSs are in introns or intergenic regions, and their functional evidence
is limited. In the present study, we employed the pathway-based strategy that dramatically
decreases the number of SNPs to be analyzed and thus significantly reduced multiple testing
with the aim to identify possible lung cancer risk-associated functional SNPs that may have
not been revealed by previous lung cancer GWASs.

The degradation of mMRNA is an important regulatory step for controlling gene expression
and cell functions [17,18]. The general cytoplasmic mMRNA decay pathway usually begins
with the deadenylation, which removes the poly(A) tail Ccr4-Not complex [19], followed by
degradation of mRNA proceeding in two directions of 5°-3” or 3’-5’. The 5’-3" MRNA
degradation initiates with decapping N’-methylguanosine (m’G) cap mainly by DCP1/DCP2
proteins and subsequently degraded by the exoribonuclease Xrnl, while the 3’-5" mRNA
degradation is mainly catalyzed by 10-12 subunit exosome [20].

Some studies suggest that genetic abnormalities of genes involved in the general mMRNA
degradation pathway may be associated with lung cancer. For example, various genetic
variants in LSM2-LSMB, which encode cofactors for mRNA decapping, were recently found
in lung cancer cell lines [21]. Therefore, we hypothesize that genetic variants of the general
mMRNA degradation pathway are associated with lung cancer risk. To test the hypothesis, we
conducted the comprehensive meta-analysis of the eight published lung cancer GWASs from
the ILCCO (International Lung Cancer Consortium)-TRICL (Transdisciplinary Research in
Cancer of the Lung) consortia, focusing on the SNPs of the genes in the general mMRNA
degradation pathway.

Materials and Methods

Study populations

The first part of the study populations came from the TRICL consortium, which included
12,160 lung cancer cases and 16,838 controls (all Europeans) of six previously published
GWASs from: the MD Anderson Cancer Center (MDACC), the Institute of Cancer Research
(ICR), the National Cancer Institute (NCI), the International Agency for Research on Cancer
(IARC), Toronto study from Samuel Lunenfeld Research Institute study (Toronto), and the
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German Lung Cancer Study (GLC) [22]. The second part of the study populations included
GWASs of European ancestry from Harvard Lung Cancer Study (984 cases and 970
controls) [23] and Icelandic Lung Cancer Study (deCODE) (1,319 cases and 26,380
controls) [15] of the ILCCO. Written informed consents were achieved for all participants,
and the present study was approved by each institutional review board of the participating
institutions.

GWAS genotyping and imputation

Genotyping in the eight GWASs was performed by Illumina HumanHap 317, 317+240S,
370Duo, 550, 610 or 1M arrays. The imputation was conducted by IMPUTE2 v2.1.1 or
MaCH v1.0 software using the reference panel from the 1000 Genomes Project (phase |
integrated release 3, March 2012). Standard quality control on samples was performed on all
scans in the analysis, excluding any participants with low call rate (< 90%), extremely high
or low heterozygosity (P < 1.0x10~4), non-European (with the HapMap phase 1l CEU,
JPT/CHB and YRI populations as a reference) and imputed SNPs with an information score
<0.40 in IMPUTE2 or r2 < 0.30 in MaCH.

Gene and SNP selection

Genes in the general mMRNA degradation pathway were identified from the Molecular
Signatures Database [24] and the literature [19]. Overall, 75 genes located on autosomal
chromosomes were selected. Among them, seven genes were pseudogenes or duplicates or
withdrawn from updated NCBI. After removal of these genes, genotypes of 68 genes were
abstracted from the GWAS datasets (detailed in Supplementary Table S1). The final meta-
analysis contained 4,603 SNPs with the following standards: genotyping rate = 90%, minor
allele frequency = 5%, and Hardy Weinberg Equilibrium exact Pvalue = 107>, The overall
workflow is shown in Figure 1.

In silico functional validation

Two /n silicotools, SNPinfo (http://snpinfo.niehs.nih.gov/snpinfo/snpfunc.htm) [25],
RegulomeDB (http://regulomedb.org/) [26], were used to predict potential functions.
Expression quantitative trait loci (eQTL) analysis was performed by using the expression
data of lymphoblastoid cell lines from 373 Europeans available in the 1000 Genomes Project
(http://www.1000genomes.org/category/frequently-asked-questions/gene-expression) [27]
and The Cancer Genome Atlas (TCGA)( https://tcga-data.nci.nih.gov/tcga/)[28].

Statistical analysis

Logistic regression model was used to calculate the odds ratios (ORs) and their 95%
confidence intervals (CIs) in an additive genetic model with PLINK (v1.06) software. A
meta-analysis with the inverse variance method was employed on the 4,603 SNPs with Stata
software (v12, State College, Texas, US). Cochran's Q statistic was applied to test for
heterogeneity and the /2 statistic for the proportion of the total variation in the meta-analysis
[29]. The fixed-effects model was used when there was no heterogeneity among GWASs (Q-
test £>0.100 and /2 < 50%): otherwise, the random-effects model was used. Multiple
testing correction was conducted with false discovery rate (FDR) with a threshold < 0.050
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[30]. A linear regression model was also performed to evaluate the correlation between
SNPs and mRNA expression levels of the corresponding genes. A paired t-test was used to
compare the mMRNA expression levels of genes in the lung cancer and normal adjacent tissue
from the TCGA database. LocusZoom (http://locuszoom.sph.umich.edu/locuszoom/) was
applied to construct regional association plots using Europeans from the 1000 Genomes
Project as the reference (phase | integrated release 3, March 2012) [31]. Haploview v4.2 was
used to generate the Manhattan plot and LD plots [32]. All analyses were conducted with
SAS (version 9.4; SAS Institute, Cary, NC, USA) except for those specified otherwise.

Associations of the SNPs with lung cancer risk

We first performed a meta-analysis in the TRICL database consisted of six previously
published GWAS datasets with 12,160 cases and 16,838 controls. The basic information of
these six studies is presented in Supplemental Table S2. A total of 4,603 SNPs in the
pathway were extracted, of which 318 SNPs were associated with lung cancer risk at <
0.05 in the additive model and 20 SNPs on LSMZSKIVZ2L and CNOT6 remained
significantly associated with lung cancer risk with FDR < 0.05 after multiple testing
corrections (Figure 2A and Table 1). Among these SNPs, we excluded those of LSMZ2and
SKIVZ2L, because they were mapped to and in high LD with previously GWAS-reported
locus at 6p21.33 [6,8]. As a result, 11 SNPs of CAVOT6 located at 5035.3 were left for
further analysis. In the LD analysis, these 11 SNPs shared moderate to high LD (r2 > 0.60,
Figure 2B and 2C). We finally chose rs2453176 as the tag SNP, because it was significantly
associated with lung cancer risk (OR = 1.13, 95% CI = 1.06-1.19, P= 4.33x107°) (Table 1)
and potentially functional according to function prediction and its imputation quality was the
best among the 11 SNPs (Table 2). We used the forest plot to illustrate the association
between rs2453176 and lung cancer risk in the six GWASs (Figure 3), and the rs2453176 T
allele was associated with an increased lung cancer risk in five GWASs, except for the GLC
GWAS.

We expanded our analysis to include additional two independent lung cancer GWASs
(Supplemental Table S2). The deCODE GWAS validated our result of the CNOT6
rs2453176 tag SNP (OR = 1.14, 95% CI = 1.01-1.28, A= 0.032), while the GWAS from
Harvard University displayed the same trend as the GLC GWAS (OR = 0.85, 95% CI =
0.68-1.05, P=0.133) (Figure 3 and Table 3).

As we combined all the data from the eight GWASSs, the functional CNOT6 52453176 tag
SNP was found to be significantly associated with an increased risk of lung cancer (OR =
1.11, 95% CI = 1.04-1.18, £=0.001) after the FDR correction (Figure 3 and Table 3).

Stratified analyses by lung cancer histology

Since lung cancer has different histological types that could have distinct biological
behaviors, we performed AD and SC subgroup analysis and found that the rs2453176 T
allele was associated with a borderlinely increased risk in AD (OR =1.13, 95% CI = 1.00-
1.27, P=0.050, Table 3), but it was significantly associated with SC risk (OR = 1.12, 95%
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Cl =1.03-1.22, P=0.006, Table 3). Because smoking is a major risk factor for lung cancer,
we further stratified the data into smokers and non-smokers and found that that the
rs2453176 T allele was associated with a significantly increased risk in smokers (OR = 1.09,
95% Cl =1.02-1.17, P=0.011, Table 4), while the allele was not statistically significant in
non-smokers (OR = 1.10, 95% CI = 0.89-1.36, A= 0.363, Table 4). Homogeneity tests
suggested that there was no heterogeneity between strata either in subgroups of histologic
types or smoking status (Table 3 and Table 4, all #>0.05).

Functional validation by eQTL analysis

Because the CNOT6rs2453176 SNP was predicted with a score of "1f", suggesting the most
confident functional annotation by regulomeDB [26], we further explored the underlying
molecular mechanism by performing the eQTL analysis. With mRNA expression data of
lymphoblastoid cell lines from 373 Europeans available from the 1000 Genomes Project, We
found that expected mMRNA expression levels of CNOT6 were significantly decreased with
an increased number of the rs2453176 T allele in both the additive (£ = 0.008) (Figure 4A)
and dominant (P = 0.007) (Figure 4B) models but not the recessive model (Figure 4C). We
also used the 105 normal adjacent tissue samples in the TCGA to further explore the
correlation between the rs2453176 genotypes and their corresponding mRNA expression
levels, but we did not observe a statistical significance (P> 0.05) (Supplemental Figure
S1A-S1C). We also compared the mRNA expression level of CNOT6 in the 107 paired
samples and did not find a statistically significant difference (£> 0.05) (Supplemental
Figure S1D).

Discussion

In the present study, we found that a novel potentially functional susceptibility locus
rs2453176 C>T of CNOTG6 in the general mMRNA degradation pathway was associated with
an increased lung cancer risk in 14,463 cases and 44,188 controls. This association was
further supported by a significant correlation between a decreased mRNA expression level
and an increasing number of the A allele in the eQTL analysis.

Gene expression disorder is one of cancer hallmarks, and instability of mMRNA may result in
altered transcprit/protein levels of oncogenes and tumor repressor genes [33]. The
degradation of mRNA is a key step in controlling the expression of genes related to cell
proliferation. For example, the CCR4-Not complex consists of highly conserved
exoribonucleases and adaptor proteins that hydrolyze and shorten the poly(A) tail, which
starts the initial and the rate-limiting step of mMRNA degradation [19]. Located at 5935.3,
CNOTG6 encodes a protein that has a 3'-5' RNase activity and acts as a catalytic subunit of the
CCR4-Not deadenylation complex [34]. Although it remains unclear how the catalytic
subunit works during the deadenylation process, some studies reported that its expression
level was associated with carcinogenesis or prognosis. For example, one study of lung
cancer found that the CNOT®6 overexpression in lung SC predicted a significantly less
metastasis [33]. Another study of acute leukemia discovered that CNOT6 had a significantly
lower expression in patients than in controls [35]. These two studies suggest that high
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expression levels of CNOT6 may promote the degradation of mMRNA of some oncogenes and
the suppression of cell proliferation in carcinogenesis.

In the present study, we identified that the CANOT6rs2453176 T allele was associated with
an increased risk of lung cancer, which was supported by the association of CNOT6
rs2453176 T allele with a decreased mMRNA expression level in lymphoblastoid cell lines
from 373 Europeans. This finding is consistent with the role of CNOT®6 in lung cancer
prognosis as previously described [33]. The ENCODE project data from University of
California Santa Cruz show that the CANOT6rs2453176 locus is located at the DNase |
hypersensitive region (Supplemental Figure S2). Usually such an area has a loose chromatin
structure and renders it a region with a high affinity for transcription factors (TFs). As a
result, some TFs, including MAFK and MAFF, bond to this region in many cell types
(Supplemental Figure S2). For example, MAFK and MAFF were found to form
heterodimers with a series of TFs and suppressed gene transcriptions [36,37]. Based on
these, we speculate that the rs2453176 T allele may have a relatively high affinity with
MAFK or MAFF and thus leads to the decreased mRNA expression of CNOTE. It is likely
that a reduced quantity of CNOT6 may not be optimal in the mRNA degradation of some
aberrant genes, which may in turn increases lung cancer risk, but these speculations need to
be further investigated.

In the stratification analysis, rs2453176 was associated with lung cancer risk in both AD and
SC subtypes, which is not surprising, because smoking has been established as a
predominant risk factor for developing lung cancer, regardless histologic types [38]. Genetic
susceptibility to smoking-related lung cancer risk may determine smoking behavior and
tobacco metabolism [39]. Indeed, we found that the rs2453176 T allele was associated with
a higher risk of lung cancer in smokers than in non-smokers. One study reported that
smoking would enhance the activity of the GATA family [40], and another study reported
that nicotine would increase the expression of EP300 and promote the lung cancer growth
[41]. From the Supplemental Figure S2, GATAL1, GATA2 and EP300 are the TFs that bind to
the rs2453176 locus, possibly explaining why carriers of the rs2453176 T allele may have an
increased risk of lung cancer in smokers than non-smokers.

There are some limitations in the present study. First, we employed the gene set enrichment
analysis with a collection of annotated gene sets to define the general mMRNA degradation
pathway to be investigated, but we may have missed some newly discovered genes in the
pathway. However, we searched the literatures and added genes as many as possible.
Second, due to the data limitation, we had no access to family history and others factors that
may have an impact on lung cancer risk. Third, we used the eQTL analyses from
lymphoblastoid cell lines and normal adjacent tissue in TCGA database to validate the risk
association. Although the results from the cell lines support our identified association, they
may only reflect the baseline or genetically determined expression levels without exposure
to smoking. The gene expressions in the normal adjacent lung tissues may be in some degree
different from the normal lung tissue and did not support the association.

Overall, the present study of eight published GWASs identified a novel CNOT6 52453176
SNP in the general mMRNA degradation pathway to be significantly associated with lung
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cancer risk in European populations, and the risk was more evident in smokers than in non-
smokers. Although we used the publically available gene expression database from blood to
confirm the biological significance of the variant, further functional evaluations in normal
lung tissue are warranted to validate our findings.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Study workflow
SNP: single nucleotide polymorphism; FDR: false discovery rate; TRICL: Transdisciplinary

Research in Cancer of the Lung; GWAS: genome-wide association study; eQTL.: expression
quantitative trait loci.
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Figure 2. Screening of SNPs in the general mRNA degradation pathway
A, Manhattan Plot of genome-wide association results from the general MRNA degradation

pathway in TRICL. The x-axis shows SNPs’ positions on each chromosome. The y-axis
shows the association P values with lung cancer risk (as —log10 Pvalues). The FDR
threshold of 0.05 was shown by a horizontal blue line. The P value of 0.05 was shown by a
horizontal red line. B, Regional association plot for SNP rs2453176 in 500 kb up- and
downstream region. The left-hand y-axis shows Pvalues of the SNPs, which are transformed
as —log10 (AP) against chromosomal base pair positions. The right-hand y-axis shows the
recombination rate estimated from HapMap Data Rel 22/phase 11 European population; C,
The linkage disequilibrium plots of 11 SNPs in CNOT&. The value within each diamond
represents the pairwise correlation between SNPs (measured as r2) defined by the upper left
and the upper right sides of the diamond.
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participants
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A. additive model, A= 0.008; B. dominant model, = 0.007; C. recessive model, P= 0.634.
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