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Abstract

One in six men will develop prostate cancer in his life time. Early detection and accurate diagnosis 

of the disease can improve cancer survival and reduce treatment costs. Recently, imaging of 

prostate cancer has greatly advanced since the introduction of multi-parametric magnetic 

resonance imaging (mp-MRI). Mp-MRI consists of T2-weighted sequences combined with 

functional sequences including dynamic contrast-enhanced MRI, diffusion-weighted MRI, and 

MR spectroscopy imaging. Due to the big data and variations in imaging sequences, detection can 

be affected by multiple factors such as observer variability and visibility and complexity of the 

lesions. In order to improve quantitative assessment of the disease, various computer-aided 

detection systems have been designed to help radiologists in their clinical practice. This review 

paper presents an overview of literatures on computer-aided detection of prostate cancer with mp-

MRI, which include the technology and its applications. The aim of the survey is threefold: an 

introduction for those new to the field, an overview for those working in the field, and a reference 

for those searching for literature on a specific application.
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INTRODUCTION

Prostate cancer (PCa) is currently the most common cancer in men and the second leading 

cause of cancer-related deaths among men in the United States [1]. In 2015, it is estimated 

that the number of estimated new cases and deaths will be 220,800 and 27,540, respectively, 

accounting for 26.0% of new cancer cases and 8.8% of cancer deaths for American men [1].

The prostate is subdivided into the base, mid-gland, and apex from superior to inferior. The 

prostate also has four anatomic zones: the transition zone (TZ), which contains 5% of the 

glandular tissue and accounts for around 25% of PCa; the central zone (CZ), which contains 

20% of the glandular tissue and accounts for around 5% of PCa; the peripheral zone (PZ), 

which contains 70–80% of the glandular tissue and accounts for about 70% of PCa; and the 

non-glandular anterior fibromuscular stroma. Accurate localization of PCa within the TZ or 

the PZ is extremely important as TZ prostate cancer is associated with favorable pathologic 

features and better recurrence-free survival [2].

At present, the clinical standard for definitive diagnosis of prostate cancer is transrectal 

ultrasound (TRUS)-guided sextant or systematic biopsy. The PSA blood test and DRE 

results are considered to identify patients who need biopsy. The actual impact of MRI for 

prostate cancer management is through guided biopsies and improved cancer diagnosis and 

staging yield. In recent years, magnetic resonance imaging (MRI) targeted prostate biopsies 

have been showing better disease localization and more accurate sampling than conventional 

TRUS-guided biopsy in various studies [3–6]. MRI-based computer-assisted sophisticated 

imaging for individual patients would offer such a significant role in defining an optimal 

targeted biopsy and interventional approach. Several approaches have been explored to 

improve the accuracy of image-guided targeted prostate biopsy, including in-bore MRI-

guided, cognitive fusion, and MRI/transrectal ultrasound fusion-guided biopsy [7].

MR imaging provides excellent soft-tissue contrast and has become an imaging modality of 

choice for localization of prostate tumors. Multiparametric MRI (mp-MRI) includes high-

resolution T2-weighted (T2W) MRI, diffusion-weighted imaging (DWI), dynamic contrast-

enhanced imaging (DCE-MR), and MR spectroscopy (MRS). The mp-MRI has proven to be 

an effective technique to localize high-risk prostate cancer [8, 9]. The combined use of 

anatomic and functional information provided by the multiparametric approach increases the 

accuracy of MR imaging in detecting and staging prostate cancer [8, 9]. It can also help 

guide biopsies to achieve a higher tumor detection rate and better reflect the true Gleason 

grade. The European Society of Urogenital Radiology (ESUR) in 2012 established the 

Prostate Imaging-Reporting and Data System (PI-RADS) scoring system for 

multiparametric MRI of the prostate [10]. The MR PI-RADS aims to enable consistent 

interpretation, communication and reporting of prostate mp-MRI findings [10, 11]. A joint 

steering committee formed by the American College of Radiology, ESUR, and the 

AdMeTech Foundation have recently announced an updated version of the proposals of PI-

RADS Version 2 [12]. Prostate mp-MRI at 3 T had been recommended in PI-RADS Version 

2. Generally, CAD systems are classified into two categories: computer-aided detection 

(CADe) and computer-aided diagnosis (CADx) systems. Currently, most CAD systems in 

prostate MRI focus on local suspicious lesions and discrimination between benign and 
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malignant lesions; most of them are computer-aided diagnosis systems. As the combination 

of various MR images creates large amounts of data, supportive techniques or tools, such as 

computer-aided diagnosis (CADx), are needed in order to make a clinical decision in a fast, 

effective, and reliable way.

In the past 10 years, computer-aided techniques have developed rapidly. Automated 

computer-aided detection and diagnosis may help improve diagnostic accuracy of PCa, and 

reduce interpretation variation between and within observers [13, 14]. Prostate cancer 

diagnosis requires an experienced radiologist to read prostate MRI, and such expertise is not 

widely available. Addition of CADx may significantly improve the performance of less-

experienced observers in prostate cancer diagnosis. When less-experienced observers used 

CADx, they reached similar performance as experienced observers [13]. In a more recent 

study, the use of CAD can also improve prostate mp-MRI study interpretation in 

experienced readers [15]. For cases in which radiologists are less confident, they can get 

higher performance by using the computer output. A recent study showed a pattern 

recognition system enables radiologists to have a lower variability in diagnosis, decreases 

false negative rates, and reduces the time to recognize and delineate structures in the prostate 

[16]. The benefit of CADx also includes guiding biopsy using cancer location information 

from MRI [14]. Therefore, along with rapid development of MR technique, CADx of 

prostate cancer has become an active field of research in the last five years.

This paper starts with the review of MR image acquisition technology and then focuses on a 

comprehensive review of the state-of-the-art image quantification methods. The part on 

validation and clinical applications is a reference of the literatures available in the clinical 

management of the disease. The paper closes with a discussion and future perspectives.

A PubMed electronic database search for the terms "computer-aided," "CAD," "prostate," 

and "MRI" was completed for articles about CAD of prostate cancer up to September 11, 

2015.

MR IMAGE ACQUISITIONS

Contemporary MR imaging of the prostate combines anatomic images from high-resolution 

T1W and T2W sequences and functional information obtained from DWI, DCEI, and MRS. 

The combination of conventional anatomical and functional MRI is known as 

multiparametric MRI. The PI-RADS Prostate MR Guidelines published in 2012 suggest the 

use of T2W images plus 2 functional techniques [10]. The anatomy of the prostate gland is 

visualized with T2W images; DWI and MRS add specificity to lesion characterization, while 

DCE-MRI has a high sensitivity in cancer detection. In the PI-RADS ™ v2, the essential 

components of the mp-MRI prostate examination are T2W, DWI, and DCE [12]. For the PZ, 

DWI is the primary determining sequence. For the TZ, T2W is the primary determining 

sequence. In order to obtain high and stable accuracy, a combination of anatomical and 

functional imaging is necessary in clinical practice. Recent studies showed an increasing 

interest in developing CADx systems to detect and characterize prostate cancer on the basis 

of an mp-MR imaging approach [14, 15, 17, 18]. T2W MR images are frequently used in 
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mp-MRI CADx systems. T2W plus DWI and DCE-MRI are also commonly used among the 

combinations.

T2WI and T2 mapping

The anatomy of the prostate gland is best visualized with T2W images. The acquisition of 

high-resolution T2W images of the prostate is the first and most important step in an mp-

MR imaging protocol. In T2W images, the peripheral zone of the prostate has hyperintense 

signal, whereas the central and transition zones have low signal, allowing the zonal anatomy 

of the prostate to be clearly delineated (Figure 1). In T2W images (Figure 2), PCa in the 

peripheral zone is usually depicted as a low-signal area. However, the growth pattern and the 

aggressiveness of the tumor can alter its appearance. T2W MR imaging has been advocated 

as an accurate technique in the detection of PCa in the transition zone [19, 20]. The value of 

T2W MR images is also in predicting pathological stage and extra-capsular extension of 

PCa [21].

Because T2W MR images play an important role in both location and staging of PCa, T2W 

MRI is the basis and important sequence in CADx systems for PCa. In T2W MR images, the 

tumor region of interest (ROI) has more dark pixels than bright pixels, whereas the normal 

tissue ROI has more bright pixels than dark pixels. Different features, including fractal 

features, textural features and signal intensity can be used by CADx. Because prostate 

cancers at the central gland and peripheral zone usually have significantly different texture 

on T2W MR images [22], and because the use of mp-MRI may have challenges for 

detecting cancer at the transition zone [23], a CADx system that can analyze features based 

on the lesion’s location may be able to aid in the detection of suspicious lesions.

T2 maps offer quantitative T2 values. As the standard T2 mapping approach of performing 

multiple single spin-echo acquisitions with a range of TE settings requires excessive scan 

times, the T2 mapping is not include in most clinical applications. Recently, some new 

sequences can provide an effective approach to speed up T2 quantification [24, 25]. T2 

values of histologically proven malignant tumor areas were significantly lower than the 

suspicious lesions but nonmalignant lesions or normal areas [26]. The use of quantitative T2 

measurement improves the specificity and/or sensitivity of prostate cancer detection [27] and 

aggressiveness assessment [28, 29]. There is a potential benefit of incorporating quantitative 

T2 values into CADx systems.

Dynamic contrast-enhanced MRI (DCE-MRI)

DCE-MRI, which enables visualization of vascular permeability and perfusion, is an 

important tool in oncology to define tumor. DCE-MRI is sensitive to alterations in vascular 

permeability, extracellular space, and blood flow. The clinical application of DCE-MRI for 

prostate cancer is based on data showing that malignant lesions show earlier and faster 

enhancement and earlier contrast agent washout compared with healthy prostate tissues 

(Figure 3) [30].

The DCE-MRI data can be analyzed with various semiquantitative or quantitative models to 

extract parameters related to vascular permeability, extracellular space, blood flow, and 

water exchange [31]. Semi-quantitative DCE-MRI analysis: As semi-quantitative DCE-MRI 
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data are only relative to the patient, the baseline intensity is highly variable depending on the 

patient and the MRI protocol. It is necessary to use indicators relating to signal amplitude. 

The most commonly used quantitative approach of analyzing DCE-MRI is two-compartment 

pharmacokinetic (PK) models that can be used to generate pharmacokinetic parameters such 

as Ktrans (transfer of gadolinium contrast from the vasculature to the tumor, representing 

forward vascular perfusion and permeability) and Kep (reverse transfer of contrast agent 

from the extracellular space back to the plasma, representing backward leakage) in order to 

quantify tumor enhancement and the contrast uptake and wash-out [32]. However, 

pharmacokinetic model implementation typically involves assuming some prior knowledge; 

and the arterial input function (AIF) estimation methodology can have significant effects on 

the parameters estimated by PK modeling [33]. The empirical approach based on 

phenomenological universalities (PUN) is able to reproduce experimental data from a DCE-

MRI acquisition [34] [35].

Different CADx systems have been developed to analyze the DCE-MRI data. Vos et al. 

developed a CADx system capable of discriminating PCa from non-malignant disorders in 

the peripheral zone and achieved a diagnostic accuracy of 0.83 (0.75–0.92) [36]. They also 

developed an automated segmentation per patient calibration method to improve the 

diagnostic accuracy of CADx [37]. Puech et al. designed a prostate CADx software to 

provide a 5-level cancer suspicion score for suspicious foci detected in DCE-MRI and T1-

weighted images [38, 39].

DCE-MRI usually has lower spatial resolution than other sequences, especially when DCE-

MRI is performed rapidly in a short period of time. Limitations in the interpretation of DCE-

MRI data include overlap in enhancement properties between benign and malignant regions 

in the transition zone. Benign prostatic hyperplasia and other benign inflammatory 

conditions within the transition zone also exhibit substantial hypervascularity [40]. 

Diagnostic models containing contrast enhancement parameters have reduced performance 

when applied across zones, so zone-specific models can improve classification of prostate 

cancer on multi-parametric MRI [41].

Diffusion-weighted MR imaging (DWI)

The diffusion properties of tissue are related to the amount of interstitial free water and 

permeability. In general, cancer tends to have more restricted diffusion than normal tissue, 

because of the higher cell densities and abundance of intra- and intercellular membranes in 

cancer [42]. Diffusion weighted MRI images can be used to detect prostate cancer from 

differences in the diffusion of water molecules of the normal and tumor tissues (Figure 4) 

[42]. The diffusion-weighted image is usually generated with different b values which can be 

used to calculate the apparent diffusion coefficient (ADC), and the ADC for each pixel of 

the image is displayed as ADC map. Diffusion of water molecules in tumor tissue is thought 

to reflect tissue architecture such as cell density and nucleus/cytoplasm ratio, and reductions 

in ADC values. For these reasons, ADC values have received the attention as a predictor of 

Gleason score in prostate cancer [43, 44]. Studies show that DWI findings may indicate 

tumor aggressiveness [27, 45, 46].
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Technologic advances enable performance of diffusion-weighted imaging (DWI) at high b- 

or ultrahigh b-values (greater than 1,000 s/mm2). High b-value images can be obtained in 

one of two ways: either directly by acquiring a high b-value DWI sequence, or by 

calculating (synthesizing) the high b-value image by extrapolation from the acquired lower 

b-value data. Previous research has shown that high b-value DWI images allow for increased 

delineation between tumors and healthy tissue which makes the prostate cancer detection 

more robust [47, 48]. Whereas contrast in ADC maps does not significantly change with 

different b values, contrast ratios of DWI images are significantly higher at b-values of 1500 

and 2000 s/mm2 in comparison to b values of 800 and 1000 s/mm2 [49].Wang et al. have 

reported that DWI images and ADC maps using b = 1500 s/mm2 should be considered more 

effective than those at b = 2000 s/mm2 or b = 1000 s/mm2 for detecting prostate cancer at 3 

T MRI [50].

DWI images and ADC maps are the key component of the prostate mp-MRI exam. Several 

CADx systems adopting DWI images or ADC maps have been developed. DWI was mostly 

often combined with T2W in these CADx systems. Peng et al. demonstrated that the 

combination of 10th percentile ADC, average ADC, and T2-weighted skewness with CADx 

is promising in the differentiation of prostate cancer from normal tissue [27]. Niaf et al. 

presented a CADx system based on T2W, DWI and DCE for assisting cancer identification 

in the PZ [18]. Stember et al. develop a software system that identifies suspicious regions at 

the prostate transition zone (TZ) using signal and textural features on T2W and ADC maps, 

free of user input [51]. Kwak et al. recently designed a prostate CADx combined T2W and 

high b-value (b = 2000 s/mm2) DWI. They obtained an AUC of 0.89 [52].

MR Spectroscopy (MRS)

In MRS, the position of each metabolite peak in the output graph reflects the resonant 

frequencies or chemical shifts of its hydrogen protons, and the area of each peak reflects the 

relative concentration of that metabolite [53]. The dominant peaks observed in prostate MRS 

are from protons in citrate (2.60 ppm), creatine (3.04 ppm), and choline compounds (3.20 

ppm) (Figure 5) [53].

As a metabolic biomarker for PCa, MRS has not gained wide acceptance in routine clinical 

practice due to a variety of factors including the length and complexity of data acquisition, 

zonal anatomy, processing, and analysis. Visual interpretation of the spectra by a trained 

spectroscopist is time-consuming and requires accurate knowledge of prostate anatomy. 

Therefore, a method for automated analysis of prostate MRS data is necessary.

Over the last decade, with a view to assisting radiologists in interpretation and analysis of 

MRS data, several researchers have begun to develop CADx schemes for PCa identification 

from spectroscopy. Tiwari et al. developed an approach that integrated a manifold learning 

scheme (spectral clustering) with an unsupervised hierarchical clustering algorithm to 

identify spectra corresponding to cancer on prostate MRS [54]. The scheme successfully 

identified MRS cancer voxels with a sensitivity of 77.8%, a false positive rate of 28.92%, 

and a false negative rate of 20.88% [54]. They also presented a CADx scheme that integrated 

nonlinear dimensionality reduction (NLDR) with an unsupervised hierarchical clustering 

algorithm to automatically identify suspicious regions on the prostate using MRS [55]. They 

Liu et al. Page 6

Acad Radiol. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



introduced the use of wavelet embedding to map MRS and T2-W texture features into a 

common space to identify the voxels that are affected by prostate cancer [56]. They recently 

presented a computerized decision support system called Semi Supervised Multi Kernel 

Graph Embedding (SeSMiK-GE) that may be developed into a powerful diagnostic and 

prognostic tool for distinguishing high and low grade PCa in vivo. Matulewicz et al. used an 

artificial neural network (ANN) model to automatically detect cancerous voxels from 

prostate MRS datasets and found that the additional information concerning the prostate’s 

zonal anatomy can improve the performance of the detection [57].

Other imaging methods

Although T2W, DWI, DCE-MRI and MRS are more commonly used in mp-MRI, some MRI 

methods, including diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), and 

MR elastography (MRE), have been investigated for characterizing prostate cancer [58–61]. 

Other MRI methods, including proton density-weighted (PD-W) image [62] and T1 

map[14], had also been added for feature calculation purposes in some CADx system.

DTI has been widely used in clinical applications, especially in neuro- and musculoskeletal 

imaging. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values 

provided from DTI data reflect the degree of water diffusion restriction in different tissue. 

Pathological processes may cause change in normative FA values and disruption of fibers in 

tractography. The feasibility of performing DTI of the prostate had been demonstrated by 

some studies; and DTI tractography can successfully visualize fiber tracts around the 

prostate [58]. DTI tractography might be applicable to the estimation of structures of the 

prostate [59], the characterization of prostate cancer [60], and monitoring prostatic structural 

changes under radiotherapy [61].

The novel technique, diffusion kurtosis imaging, enables characterization of non-Gaussian 

water diffusion behavior. DK model may add value in PCa detection and diagnosis, and DKI 

potentially offers a new metric for assessment of PCa[63]. A recent study demonstrated no 

significant benefit of DKI for detection and grading of PCa as compared with standard ADC 

in the peripheral zone determined from b values of 0 and 800 s/mm [64].The mechanical 

properties of the tissue of interest are calculated from the wave fields and displayed as an 

image, commonly referred as an elastogram. In MR elastography (MRE), an external 

mechanical excitation is applied to the tissue of interest to induce tissue vibrations [65]. 

MRE has been shown to be of clinical value in MRI for its ability to detect tissue 

abnormalities in organs such as the liver [66], brain [67] and breast [68–70]. More recently, 

researchers have also focused on the development of MRE methods to detect prostate cancer 

[71–73]. The resulting wave fields are imaged using a motion-sensitized MRI pulse 

sequence. Elastograms may add another dimension to current mp-MRI techniques for 

diagnosing prostate cancer, and may further increase the sensitivity and specificity of such 

techniques.

T1 maps offer quantitative T1 values and can be produced by a variety of methods, such as 

multiple inversion or multiple repetition time acquisitions, typically requiring lengthy 

acquisition times. Another approach taken in the context of the prostate has been to employ 

spoiled gradient-echo (SPGR) sequences where it is possible to obtain T1 estimates in 
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relatively short acquisition times by varying the RF flip angle [74]. The T1 mapping is not 

including in most CADx systems. Vos, et al. [14] had presented a fully automatic CADx by 

combining a histogram analysis on mpMR images including T1, pharmacokinetic, T2 and 

ADC maps.

MR lymphography has been used for the investigation of the lymphatic channels and lymph 

glands. Different imaging techniques, including nanoparticle-enhanced [75, 76] and non-

contrast MR lymphography [77, 78], had been developed for detection of nodal metastases. 

MR lymphography is a noninvasive technique that is well suited for the examination of 

regional (intrapelvic) lymph node metastases in PCa.

MR IMAGE QUANTIFICATION METHODS

General framework

Development of computer-aided detection systems includes several aspects: image 

preprocessing, algorithm development, methodology for assessing CADx performance, 

validation using appropriate cases to measure performance and robustness, observer 

performance studies, assessing performance with a clinical trial, and ultimately 

commercialization. The development must confront several challenges. Computerized image 

procedure may cover different aspects of segmentation, registration, feature extraction, and 

classifiers. A computer algorithm should be developed based on the understanding of image 

reading by radiologists, such as how radiologists detect certain lesions, why they may miss 

some abnormalities, and how they can distinguish between benign and malignant lesions. It 

is important to develop CADx systems that extracts quantitative data in a more accurate and 

automated fashion.

Many different types of CADx systems are produced to locate/diagnose prostate cancer in 

MR imaging, including T2W, DWI, DCE-MRI and MRS. Considering the particularity of 

prostate cancer in anatomy, pathology and clinic, the core of a CADx system for the 

detection of prostate cancer is associated with its computerized algorithms. In general, the 

pipeline of the CADx system for prostate cancer is visualized schematically in Figure 6. In 

the initial stage, lesion candidates are selected within a likelihood map that is generated by a 

voxel classification of one or more images. Hereafter, the lesion candidates are segmented 

into a region of interest from which region-based features are extracted. Finally, the 

extracted information is fused by a classifier into malignancy likelihood. The following 

sections describe each step in detail.

Preprocessing

The purpose of preprocessing is to normalize the MR data or to transform the MR data to a 

domain in which prostate lesions can be easily detected.

For T2W-MRI, the image intensities can vary, even using the same protocol and the same 

scanner. The quality of images depends on the acquisition conditions such as temperature, 

calibration adjustment, B0 intensity, coil position, and the receiver gain value. In addition, 

the intensity variation will increase when different scanners are used. This relationship must 

be taken into account for MR image analysis. Collewet et al. [79] proposed four schemes for 
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the intensity normalization. The most used method is that intensities are proportionally 

normalized by defining the median+2* (inter-quartile range).

ADC maps calculated from DWI are useful for detecting prostate cancer with a relatively 

high specificity. However, it has lower resolution than T2W-MRI and is subject to magnetic 

susceptibility artifacts [17]. ADC represents a quantitative assessment of water diffusion. 

Lower ADC value is associated with higher rate of malignancy. Prostate cancer can be 

identified as a low signal region on ADC maps against a background of normal tissue with 

higher signal intensity [17].

Intensity inhomogeneity arises from the imperfections of the image acquisition, which can 

reduce the accuracy of segmentation, classification, and registration. The most intuitive 

method to correct intensity inhomogeneity is image smoothing or homomorphic filtering 

[80]. Vovk et al. [81] classify inhomogeneity correction methods into two categories, which 

are prospective and retrospective. Prospective methods aim at the calibration and 

improvement of image acquisition processes. Retrospective methods rely exclusively on the 

information of the acquired images or on a priori knowledge. Sled et al. [82] proposed a 

nonparametric non-uniform intensity normalization (N3) method for inhomogeneity 

correction, which is independent of pulse sequence. Tustison et al. [83] proposed a variant of 

N3 for bias field correction. Similar to the N3, the source code, testing, and technical 

documentation are publically available and the package is "N4ITK". This algorithm is 

available to the public through the Insight Toolkit of the National Institutes of Health.

Segmentation

The segmentation aims to reduce the burden of the classifier in the later stages. Therefore, 

the classifiers only focus on the prostate region obtained by segmentation methods. T2W 

imaging provides the best resolution and contrast to show the anatomy of the prostate and 

has a very high sensitivity for prostate cancer. Therefore, T2W-MRI is the most useful image 

sequence in determining the contours of prostate.

Extensive studies were developed to segment the prostate from MR images [62, 84–90]. It 

can be a challenging task to obtain accurate prostate volume in T2W-MRI. Firstly, the 

contrast between the prostate and the surrounding tissues can be low. Therefore, it may be 

difficult to accurately segment the boundary of the prostate. Secondly, the prostate shapes of 

different patients can be significantly different. Even for the same patient, the prostate 

motion at different patient positions can be large, which results in a shape difference on MR 

images. Thirdly, MR image appearance, quality, and the presence of artifacts can be affected 

by different scanners, which in turn can have a large influence on the performance of 

computerized algorithms. All these aspects need to be considered when developing a robust 

and accurate segmentation method for prostate MR images.

Contour and shape based methods [91–95]exploit edge and shape features to segment the 

prostate, which contains two categories. The first category is edge based segmentation 

methods. The edge detection operators are used to produce edges on MR images. The 

candidate edges are picked up and then connected to obtain the prostate boundary. 

Zwiggelaar et al [91] developed a semi-automatic method to segment the prostate in MRI 
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data. Their method exploits the characteristics of the anatomical shape of the prostate when 

represented in a polar transform space. The edge detection and non-maximum suppression 

are used to track the boundary of the prostate.

The second category is deformable model based segmentation methods. Kass et al [96] 

proposed an active contour model and used the image gradient to evolve a curve. The 

internal spline force pushes the curve toward the salient image feature, while external force 

is responsible for putting the curve near the object. Chan and Vese [97] proposed a level set 

algorithm of the piecewise constant variant of the Mumford-Shah model [98] for 

segmentation.

Atlas based methods are also used to segment the prostate in MR images [99]. An atlas 

consists of original image data and its corresponding manual segmentation. The atlas can be 

used as a reference to segment the prostate of a new patient. Klein et al. [99] proposed an 

automatic method for segmenting the prostate in 3D MR images. Their method is based on 

non-rigid registration of a set of pre-labeled atlas images. The label images of the deformed 

atlas are fused to yield a segmentation of images from a new patient.

Besides the above methods, a global optimization algorithm called graph cut [100, 101] is 

becoming more and more popular due to its efficient global minimization. The segmentation 

problem can be formulated as a minimization of an energy minimization. Egger [102] 

proposed a graph-based approach to automatically segment prostate based on a spherical 

template. The minimal cost on the graph is optimized by a graph cut algorithm, which can 

get the segmentation of the prostate volume. Mahapatra and Buhmann [85] proposed a fully 

automatic method for prostate segmentation using random forests classifiers and graph cuts. 

The prostate probability map was generated based on a random forests classifier. The 

negative log-likelihood of the probability maps was used as the penalty cost in an energy 

function, which was minimized by graph cuts. Tian et al. [103] proposed a supervoxel-based 

segmentation method for the prostate. The prostate segmentation problem was considered as 

assigning labels to supervoxels. An energy function with both data and smoothness terms 

was used to model the labels, which was minimized using graph cuts. The segmentation 

results are shown in Figure 7. Other segmentation methods were also developed for the 

prostate [104, 105]. Ghose et al. [105] reviewed segmentation methods for the prostate in 

TRUS, MR and CT images. They studied the similarities and differences among the different 

methods, highlighted their advantages and disadvantages in order to assist in the choice of an 

appropriate segmentation methods. They also showed a comprehensive description of the 

existing methods in all TRUS, MR and CT images, and highlighted their key-points and 

features. They provided a strategy for choosing segmentation method for a given image 

modality.

A publicly available data set called MICCAI Challenge Prostate MR Image Segmentation 

(PROMISE12) [104] can be used to evaluate the performances of the new proposed 

methods. This data set contains 50 cases with ground truths for training, and 30 cases 

without ground truths for test, which are 3D T2w MR transverse images of the prostate. The 

MR images were obtained from multicenter, multivendor, and different acquisition protocols 

(i.e., with/without endorectal coil, differences in slice thickness).
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Registration

Image registration is a process of aligning two or more images, which aims to find the 

optimal transformation that best aligns the structures of interest in the input images. Image 

registration is needed in order to integrate the features from different images of mp-MRI 

such as DCE-MRI and T2W MRI. The registration of images requires the selection of the 

feature space, a similarity measure, a transformation type, and a search strategy [106]. The 

DICOM header of MR images can provide coordination and orientation information that are 

useful for registering T2W, ADC, and Ktrans maps. T2W-MRI is considered as the reference. 

Other modalities can be registered to T2W-MRI by aligning the coordinates of their origins, 

which are obtained from the DICOM header. If necessary, resolution adjustment is also 

performed after the alignment.

Registration is also used to validate in vivo MR imaging using ex vivo histologic images 

[107, 108]. To obtain the reliable ground truth of the prostate cancer region, whole-mount 

histology is performed on ex vivo prostate. The pathologist labels the cancer region in the 

histology images. Based on the registration between the whole-mount histology and T2W 

MRI, the labelling of the cancer in histology can be mapped to T2W MRI for validation 

[107, 108]. Kalavagunta et al. [108] proposed a method to register MRI and histology using 

local affine transformations guided by internal structures. First, the histologic and MR 

images are first segmented, scaled, and translated. Second, the prostate capsule and internal 

structure masks are identified to constrain the pathology transformation. A transformation 

matrix is obtained by registering two images based on capsule and internal structure masks. 

Third, the pathology images are warped using a computed transformation matrix. Fourth, a 

transformation matrix is applied for each annotated cancer region. The warped cancer 

regions are superposed on registered pathology images. Last, the cancer regions in MRI can 

be obtained by mapping the cancer regions of pathologic images to MR images. In another 

study, Chappelow et al. [107] presented a new registration method that maximizes the 

combined mutual information shared by the intensity of the reference image and multiple 

representations of the floating images in multiple feature spaces. The method provides 

enhanced registration performance by combining the intensity information with transformed 

feature images from the images. These feature images are not as susceptible to intensity 

artifacts and provide additional similarity information regarding the reference image but not 

contained in the floating image. This method is particularly useful for registering MRI and 

histology.

Feature extraction

Feature extraction plays an important role in prostate MRI CADx systems. Classic features 

for medical images include intensity, shape, texture, and statistical features. For medical 

image classification, choosing the right features for a classifier is more important than 

choosing the classifier itself [62].

Litjens et al. classified the features into five types: intensity, pharmacokinetic, texture, 

blobness, and anatomical features [62]. For the intensity feature, a T2-estimate map is 

generated by using the MR signal equation, the proton density image and a reference tissue 

[88]. Anatomical features include the relative distance to the prostate boundary and the 
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relative position feature. Both the relative distance and relative position features are 

calculated with respect to the prostate surface obtained by segmentation methods. For the 

pharmacokinetic feature, the traditional analysis is incorporated in their CADx system by 

using a curve fitting-technique to fit a bi-exponential curve to the time data, as presented in 

[109]. For the texture feature, a Gaussian texture bank was used to capture the textural 

distortions [22]. For the blobness feature, it was found that prostate cancer tends to appear as 

a blob-like lesion in DWI and DCE-MRI. The blobness-filter presented by Li et al. was 

chosen as a blobness measure [110]. Blobness is calculated on the ADC, tau and LateWash 

images, and on the Ktrans and Kep images as well [110].

Shah et al. [17] created an mp-MRI feature set for CADx systems (Figure 8). First, in order 

to reduce interpatient variability, normalized T2W maps were calculated from the transversal 

T2W intensities using the average fat signal adjacent to the prostate as a reference. Second, 

quantitative ADC maps were computed from the transversal DWI by fitting the dependence 

of the signal intensity in each pixel. Third, each dynamic curve was de-noised by using a 

wavelet filter for DCE-MRI. The pharmacokinetic parameters were extracted by using the 

generalized kinetic model (GKM) [111, 112]. Then, the GKM was fitted to the measured 

concentration time curves, using the linear least-squared method [112] to yield the volume 

transfer constant Ktrans, and the rate constant kep. Finally, the normalized T2W and ADC 

maps were resized to have a pixel resolution equal to the T1 and Ktrans and kep maps in order 

to form the final feature set for the CADx system.

Niaf et al. extracted about 140 kinds of features for a CADx system [18]. Most of these 

features were chosen based on their proven efficiency between cancer and non-cancer. Two 

categories of features were proposed: image features and functional features. For image 

features, there were three types: grey-level features, texture features, and gradient features. 

The image intensity values of T2, DCE and ADC maps were used as grey-level features. 

First order texture measurements were computed for each pixel over a local window, which 

includes mean, median, standard deviation and average deviation. Second order texture 

features were computed based on two neighboring pixels, which includes co-occurrence 

matrix. The Sobel and Kirsch filters and numerical gradient operators were used to compute 

gradient features (Figure 9).

Radiomics is an emerging field for the quantification of tumor phenotypes by applying a 

large number of quantitative image features [113, 114]. Radiomics can provide 

complementary and interchangeable information to improve individualized treatment 

selection and monitoring. Since medical imaging technology is routinely used in clinical 

practice worldwide, radiomics may have a high clinical impact on future patient 

management. The workflow of radiomics consists of three steps [113]. The first step is the 

acquisition of standardized images for diagnostic or planning purposes. On the images, the 

tumor regions are extracted by an algorithm or an experienced radiologist. Second, 

quantitative imaging features are extracted from the tumor regions. These features involve 

tumor image intensity, texture, and shape and size of the tumor. Last, all the extracted 

features are analyzed and selected by a model. The most informative features are identified 

and incorporated into predictive models for treatment outcome. Radiomics, as a high 

dimensional mineable feature space, can be used for prostate cancer. Cameron et al. had 
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constructs a comprehensive radiomics feature model to detect tumorous regions using mp-

MRI [115]. New radiomics-driven texture feature models had been developed for the 

detection of prostate cancer and for the classification of prostate cancer Gleason scores by 

utilizing mp-MRI data [116–118].

Classification

Image classification involves training and testing with features extracted from image data 

and its corresponding labels [62]. A classifier is usually trained by using the labeled image 

data set and applied to unseen image data sets. Several classification techniques from the 

machine learning field have been developed for picking up discriminative features. Support 

vector machines (SVMs) and random forests could achieve good performance based on the 

positive and negative training samples [17, 119]. A pixel classification provides a likelihood 

between 0 and 1 for each pixel, with 0 indicating no suspicion of prostate cancer and 1 

indicating high suspicion of cancer.

Litjens et al. [62] experimented with three different classifiers: a linear discriminate 

classifier, a Gentle Boost classifier [120], and a random forests classifier [119] with 

regression trees. Shah et al. used SVM to create a classifier model [17]. Because real data 

are not linearly separable, the SVM implementation was used to allow relaxed constraint for 

misclassified points. SVMs “kernel trick” was also implemented to enable operations to be 

performed in the input space rather than the potentially high-dimensional feature space 

[121].

Chan et al. [122] investigated the use of a statistical classifier for detecting prostate cancer 

by combining information from MR images. SVM is used to predict the tumor likelihood in 

the peripheral zone using the derived features. For SVM training, they randomly sampled 

10% of the PZ data and retained all the tumor data to confine the training dataset to a 

manageable size for SVM training convergence. The radial basis function kernel was used 

for SVM. These works indicate that the SVM classifiers and random forests work well on 

the problem of classifying prostate tumors on mp-MRI.

VALIDATION

When developing a CADx system for prostate MRI, the accuracy of the “gold standard” is 

important. Histopathology, as the ground truth, usually includes findings from prostatectomy 

specimens or biopsy specimens. The validation of CADx systems is summarized in Table 2. 

In order to transfer the labels from pathology to MR images, MR images usually need to be 

registered with pathological sections of the prostate. An accurate registration of histologic 

and MR images serves as the bridge between in vivo anatomical information and ex vivo 
pathologic information, which is valuable in developing a CADx system.

Whole-mount sections are generated from tissue slices and microscopic slices are stained 

with hematoxylin-eosin staining after being embedded in paraffin [111, 123]. Pathologists 

outline each lesion on the microscopic slices. Gleason scores of different regions may also 

be provided on the microscopic slices. For correlation between MR images and 

histopathologic images, the corresponding anatomical landmarks and cancerous regions are 
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manually labeled by an expert. The urethra may serve as a guide for correlating the images. 

In order to improve the accuracy and efficiency of the correlation, some automatic methods 

have been developed [111, 124].

There are several challenges in establishing automatic correlation between in vivo MR 

images and histopathologic images. The orientation of the specimen and its sections may be 

different from that of in vivo MR imaging. There are mismatches between MR imaging and 

histopathology, which make it difficult to assess the true accuracy of MRI. Once the 

anatomic orientation in the body is lost, it may be difficult to section the prostate in the same 

plane as that of in vivo MR images. The specimen can be marked with separate colors on the 

left, right, and anterior aspects for anatomic orientation [111]. Using image processing, 

computer-aided design, and rapid prototyping technology, a customized mold has been used 

to process prostatectomy specimens for each patient [124]. The customized mold holds the 

prostate in the same position and the same shape as those of in vivo MR images and guides 

the cutting knife to obtain tissue blocks that correspond to the image slices.

The prostate is an easily deformable organ, hence, the gland deforms during and after 

prostatectomy. Additionally, prostate MRI is often performed by using an endorectal coil, 

which further deforms the gland. Specimen formalin fixation and paraffin embedding also 

induce variable tissue shrinkage. Deformable image registration provides a high degree of 

flexibility for registration of histologic images with in-vivo/ex-vivo MR images, and can 

assist in more accurate evaluation of MRI findings. Boundary landmarks and internal 

landmarks of the same prostate have been used in a deformable registration algorithm. 

Mazaheri et al. describe a semi-automatic method by using a free-form deformation (FFD) 

algorithm based on B-splines [125]. This method enabled successful registration of 

anatomical prostate MR images to pathologic slices. Jacobs et al.[126] proposed a method 

for the registration and warping of MR images to histologic sections. This method consists 

of a modified surface-based registration algorithm followed by an automated warping 

approach using nonlinear thin plate splines to compensate for the distortions between the 

datasets.

There are two general approaches to map ex vivo histological PCa extent to pre-operative 

MR images. The first method, perhaps the more intuitive approach, is to reconstruct the 3D 

histologic volume, and then register the 3D histologic volume with the 3D MR volume [127, 

128]. The second approach is to register each 2D histology slice to its corresponding 2D 

MRI slice separately [107, 129]. In the first approach, one critical prerequisite was the 

accurate reconstruction of the histologic volume; while in the second approach, the 

prerequisite was to determine the histology-MRI slice correspondence. In some cases, the 

former prerequisite may not be achievable hence the only solution is to take the second 

approach. There is an increasing interest in the registration of 3D histopathology with 

prostate MR imaging. Three-dimensional reconstruction of prostate histology facilitates 

these registration-based evaluations by reintroducing 3D spatial information lost during 

histology processing [130, 131]. Patel et al. [132] presented a scheme for the registration of 

digitally reconstructed whole mount histology to pre-operative in vivo mp-MRI using 

spatially weighted mutual information. McGrath et al. [133] used reference landmarks that 

are visible in both data sets to assist 3D histopathology reconstruction and thus can provide 
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important information on the deformation effects of fixation, and hence improved 

registration accuracy. Histostitcher, a software system designed to create a pseudo whole 

mount histology section from a stitching of four individual histology quadrant images, is 

another alternative for reconstructing pseudo whole-mount prostate images [134].

Registering pathologic information to mp-MRI is a challenging problem in developing a 

CADx system for mp-MRI (Figure 10). Chappelow et al. [135] described a method based on 

mutual information that registers T2W, DCE-MRI, and ADC. However, this method is based 

on 2D histology and requires considerable expertise to determine the correspondence 

between histologic and MR images. Orczyk et al. [136] described a method based on the 

present registration method and were the first to create a 3D counterpart within the same 

reference space between histology and both anatomical and functional sequences provided 

by prostate mp-MRI (Figure 11). The method enables a true, deformable transformation and 

achieves an accuracy of 1–2 mm. The registration of different MR images is critical 

considering prostate motion, especially related to rectal peristalsis. Orczyk et al. [136] used 

rigid registration to correct motion between difference sequences.

Although whole mount prostate histological analysis provides accurate label information for 

training a CADx system, whole mount histology is expensive and registering whole mount 

histologic slices with 3D mp-MRI is a challenging problem. Therefore, histologic 

interpretations from biopsy specimens are used to determine the ground truth in some 

studies [14, 62, 122, 137, 138]. In vivo biopsy can only label the pathology of the core inside 

the prostate. Radiologists must manually define lesion boundaries on mp-MRI 

retrospectively based on the biopsy results.

Meyer et al. [139] reviewed the registration methods of 3-D medical images and 

histopathology of the prostate. They examined the registration process and techniques for 

registering MRI or PET with whole-mounted prostatectomy specimens.

CLINICAL APPLICATIONS

Diagnosis

The functional MR imaging data, like DCE-MRI and MRS, are more complex and larger in 

amounts than anatomic MR imaging. There are clinical needs to develop fast, cost-effective, 

supportive techniques, such as computer-aided analysis tools, for easy and more 

reproducible diagnosis of prostate cancer. Researchers have focused on developing CADx 

methodology for automated prostate MRS classification and DCE-MRI analysis. Because all 

functional MR imaging techniques have their strengths and shortcomings, single technique 

cannot adequately detect and characterize PCa. The combination of anatomic (T2W) images 

and functional techniques has been shown to increase the accuracy of MR imaging for 

diagnosis of PCa. Table 1 compares the performance of the major published prostate CADx 

systems [13, 14, 16–18, 22, 26, 27, 36, 37, 39, 51, 52, 54–57, 62, 122, 129, 140–151]. Chan 

et al. were one of the first groups who implemented an mp-MRI CADx system for the 

diagnosis of prostate cancer [122]. In their approach they used line-scan diffusion, T2 and 

T2-weighted images to identify predefined areas of the peripheral zone of the prostate for 

the presence of prostate cancer. Viswanath et al. [129] present an mp-MRI CADx system for 
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PCa detection by integrating functional and structural information obtained via DCE and 

T2W MRI. Liu et al. [141] present fuzzy MRF models for prostate cancer detection of 

multispectral MR prostate images. Tiwari et al. [55] investigated the use of MR spectroscopy 

in combination with T2W MRI to identify the voxels that are affected by prostate cancer. 

They also introduced the use of wavelet embedding to map MRS and T2-W texture features 

into a common space. In a study by Peng et al. [27], the combination of 10th percentile 

ADC, average ADC, and T2-weighted skewness with CADx yielded an AUC value of 0.95 

in differentiating prostate cancer from normal tissue. The combination achieved higher 

accuracy than any MR parameter alone. In a more recent study by Litjens et al [62], they 

developed a fully automated computer-aided detection system which consists of two stages. 

The first (detection) stage consists of segmentation of the prostate on the transversal T2W 

MRI, extraction of voxel features from the image volumes, classification of the voxels and 

candidate selection. The second (diagnosis) stage consists of candidate segmentation, 

candidate feature extraction and candidate classification. The system was evaluated on a 

large consecutive cohort of 347 patients, and yielded an AUC value of 0.889.

Aggressiveness

Treatment choice for prostate cancer is based on initial PSA level, clinical stage of disease, 

and Gleason score, together with baseline urinary function, comorbidities, and patient age 

[152, 153]. Therefore, there is an urgent clinical need to detect high-grade cancers and to 

differentiate them from the indolent, slow-growing tumors. The Gleason system, using a 

rating system to determine the grade of prostate cancer, remains one of the widely used 

prognostic factors in prostate cancer. The higher grade tumors have a tendency to grow 

quickly and to spread faster than lower grade tumors.

DWI, DCE-MRI, and MRS are noninvasive assessment methods of PCa aggressiveness. The 

Gleason grading system is a fundamental indicator of the aggressive nature of prostate 

cancer. Studies found that ADC image features correlate with Gleason scores [27, 28, 46, 

154–156]. A study by Yamamura et al. found a highly significant negative correlation 

between ADC-value and the Gleason score, while MRS did not show a significant 

correlation [157]. Recently, Zhang et al. found that transrectal ultrasound (TRUS)-guided, 

MRI-directed biopsies improved the prediction of PCa aggressiveness in comparison with 

12-core TRUS-guided biopsies. DWI directed biopsies had a superior performance when 

compared with MRS directed biopsies in the peripheral zone [6]. Diffusion of water 

molecules in tumor tissue was thought to reflect tissue architecture such as cell density and 

nucleus/cytoplasm ratio, and reductions in ADC values in tumor tissue in fact correlates well 

with increases in cellular density [158–160]. For these reasons, ADC value has received 

more attention as a predictor of Gleason score in prostate cancer.

DCE-MRI is based on the permeability of blood vessels and extravasation of contrast agent 

into the surrounding tissue. Investigators have observed that quantitative parameters (Ktrans 

and Kep) and semi-quantitative parameters (wash-in and wash-out) derived from DCE-MRI 

have the potential to assess the aggressiveness of PCa. Oto et al. found a moderate 

correlation between kep and microvessel density of prostate cancer [154]. Peng et al. found 

Ktrans moderately correlate with Gleason scores [27].
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In vivo MRS imaging has revealed a trend towards an increased (choline+ creatine)/citrate 

(CC/C) ratio with increased Gleason score [161, 162]. This relationship has also been 

demonstrated by ex vivo HR-MAS MRS [163]. However, other in vivo MRS imaging 

studies have found no correlation between metabolite ratios and aggressiveness [164, 165].

On T2W MRI, changes in signal intensity for prostate cancer detection have been associated 

with its aggressiveness [166]. In a large retrospective study with 220 patients [166], T2W 

MRI and MRS imaging scores based on a three-point scale for clinical prostate cancer 

aggressiveness were significantly correlated to biologic markers such as androgen receptor 

levels, which were associated with prostate cancer progression. In that study, the 

combination of biomarkers with T2W MRI and MRS imaging results can discriminate 

clinically unimportant prostate cancer. If mp-MRI can potentially aid in identifying low-

grade disease in vivo, this might allow PCa patients to opt for active surveillance rather than 

immediately opting for aggressive therapy. Lee et al. demonstrated that the simple 

measurement of the diameter of suspicious tumor lesions on DWI could improve the 

prediction of insignificant prostate cancer in candidates for active surveillance therapy [167].

Although these MRI metrics are related to Gleason score, the power and threshold value of 

each metric are different and how to combine these anatomic and functional MRI 

information is still a problem. Developing a computerized decision support system may help 

in noninvasive assessment of PCa aggressiveness. Recently, a system called Semi-

Supervised MultiKernel Graph Embedding (SeSMiK-GE), was developed to quantitatively 

combine T2WI and MRS data for distinguishing benign versus cancerous, and high- versus 

low-Gleason grade PCa regions in vivo [148].

Biopsy guidance

Transrectal ultrasound (TRUS)-guided sextant or systematic prostate biopsy is the clinical 

standard for definitive diagnosis of prostate cancer. The Gleason score derived from biopsy 

specimens is important for appropriate treatment selection. However, PCa is often 

heterogeneous and multicentric [168]. In addition, the biopsy, which samples a small portion 

of the prostate, might not represent the whole gland efficiently. Traditionally, it is believed 

that Gleason score in systematic random TRUS-guided biopsy tends to downgrade the 

surgical specimen, because a less differentiated pattern may not have been sampled in the 

biopsy [169, 170]. Systematic random TRUS-guided biopsies often require repeated biopsy 

procedures, which are associated with discomfort and potential morbidity [171]. In order to 

reduce the overtreatment and the number of biopsies, lesions must be accurately detected, 

characterized and targeted during biopsy. More effective imaging-guided targeted biopsy 

techniques are under investigation in order to improve the detection rate of prostate biopsies.

Optimization of prostate biopsy requires addressing the shortcomings of standard systematic 

TRUS-guided biopsy, including false-negative rates, incorrect risk stratification, detection of 

clinically insignificant disease and the need for repeat biopsy. MRI is an evolving 

noninvasive imaging modality that increases the accurate localization of prostate cancer at 

the time of biopsy, and thereby enhances clinical risk assessment and improves the ability to 

appropriately counsel patients regarding therapy.
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Use of mp-MRI for targeted prostate biopsies has the potential to reduce the sampling error 

associated with conventional biopsy by providing better disease localization and sampling, 

and also has a potential role in avoiding biopsy and reducing over detection/overtreatment. 

MRI-compatible biopsy systems were developed for this purpose [172]. More accurate risk 

stratification through improved cancer sampling may impact therapeutic decision making. 

Optimal clinical application of MRI targeted biopsy remains under investigation.

There are three different manners in which an MRI-detected lesion can be targeted for 

biopsy: (1) Direct targeting within the magnet using MR-compatible devices, also called in-

bore MRI guided biopsy; (2) Use of fusion software to allow an MRI–defined lesion to be 

identified on ultrasound during a TRUS-guided biopsy procedure (Figure 12); or (3) 

Cognitive targeting, in which the physician reviews the MRI data before the procedure and 

attempts to target the suspected area during the TRUS-guided biopsy using anatomic 

landmarks as reference [173]. An MRI-guided robotic prostate biopsy system, named APT-

MRI robotic biopsy system, has been reported with an accuracy within 2 mm [174]. A real-

time phase-only cross correlation (POCC) algorithm-based sequence has been used in 

transrectal 3T in-bore MR-guided prostate biopsies [175]. Fusion of pre-biopsy MR images 

onto interventional TRUS images might increase the overall biopsy accuracy [176, 177]. A 

novel method to identify the 2D axial MR slice from a pre-acquired MR prostate volume 

that closely corresponds to the 2D axial TRUS slice obtained during prostate biopsy has 

been reported by Mitra et al. [178].

Treatment planning and therapeutic response assessment

MRI-based techniques are used for computer-aided treatment procedures such as treatment 

planning of radiotherapy, MRI-guided radioactive seeds placement in prostate 

brachytherapy, and MRI-guided local ablation procedures [179–190].

The excellent soft-tissue contrast of MRI means that the technique is having an increasing 

role in contouring the gross tumor volume (GTV) and organs at risk (OAR) in radiation 

therapy treatment planning systems (TPS). MRI-planning scans from diagnostic MRI 

scanners are currently incorporated into the planning process by being registered to CT data. 

The soft-tissue data from the MRI provides target outline guidance and the CT provides a 

solid geometric and electron density map for accurate dose calculation on the TPS computer 

[191].

A number of minimally invasive, focal, organ-preserving methods have been used in recent 

years as further alternatives to the radical treatment of prostate cancer [170]. The focal 

therapy methods used to date for the prostate include cryotherapy, high-intensity focused 

ultrasound, laser-induced thermal ablation, and radioactive seed placement. Mp-MRI makes 

it possible to determine the exact location of tumor foci that are generally accessible for 

ablation or radioactive seed placement. Moreover, mp-MRI can also monitor treatment 

during and after minimally invasive therapy. A CADx system for the prostate may have 

potential value in helping clinicians to target tumor foci during treatment.

Mp-MRI can also be used as an imaging biomarker for monitoring therapeutic response, 

including radiotherapy of localized prostate cancer [191] and systemic therapy for metastatic 
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disease. Successful treatment response to therapy is usually depicted by reductions in signal 

intensity accompanied by ADC increases [192–194]. There are clinical needs to develop 

mp-MRI-based CADx systems for monitoring therapeutic response of the prostate in the 

future.

DISCUSSION AND FUTURE DIRECTIONS

Unlike breast and lung cancer, prostate cancer CADx systems for MR images have not been 

widely used in daily clinical work for detection or diagnosis. The majority of the prostate 

CADx systems reported the AUC in the range from 0.80 to 0.89 [179], while one reported 

AUCs of 0.96 [46], which represented a high performance. However, most systems 

generated lesion candidates based on manually selected ROIs, which may be data set 

dependent, and employed a relatively small data set. Validation on a large-scale data set with 

several hundred patients is required. A prostate CADx system should be tested in 

multicenter trials to make the systems widely usable in clinical work.

One challenge of prostate CAD is related to mp-MRI protocols. Both 3T protocols and 

endorectal coils have the advantage of increasing the signal-to-noise ratio (SNR). At 3T 

without the use of an endorectal coil (ERC), image quality can be comparable with that 

obtained at 1.5 T with an endorectal coils [195]. Turkbey et al. found that dual-coil prostate 

MRI detected more cancer foci than non-endorectal coil MRI at 3T on T2W and DWI [196]. 

At 3 T MRI, DWI images and ADC maps using b = 1500 s/mm2 should be considered more 

effective than those at b = 2000 s/mm2 or b = 1000 s/mm2 for detecting prostate cancer [50]. 

Most members of the PI-RADS steering committee recommend 3 T for prostate MRI. There 

is no consensus among experts concerning the potential benefits of the use of endorectal 

coils [12]. The impact of the mp-MRI protocol on CADx systems should been considered 

and researched in the future. The combination of T2W, DWI, and DCE-MRI is the most 

commonly used set of parameters for the detection or diagnosis of prostate cancer. MRS 

with other parameters is also used in some research. The introduction of new imaging 

modalities or new modality combinations for mp-MRI may lead to better CADx systems. 

Combining CAD prediction and PIRADS into a combination score has the potential to 

improve diagnostic accuracy [197]. The MR PI-RADS system may provide a platform for 

CAD system development in the future.

The diagnostic value of these parameters for discrimination between benign and malignant 

tissue depend on the lesion’s location. The parameter values of PCa are in the range of those 

of nonmalignant diseases or conditions such as prostatitis, fibromuscular benign prostatic 

hyperplasia (BPH), post-biopsy hemorrhagic change, making for poor diagnostic value, 

especially in the transition zone. TZ and PZ cancer possess distinct quantitative imaging 

features on MRI. Computer-extracted parameters may be useful for cancer detection in the 

PZ, but are not suited in the TZ. In recent years, research focus has shifted from PZ prostate 

cancer to whole prostate cancer. There are more challenges in developing a CADx system 

for both PZ and TZ lesions than for PZ lesions only. Applications of anatomical 

segmentation from MRI as an additional input to ANN improve the accuracy of detecting 

cancerous voxels from MRSI [198]. A CAD system, utilizing two MRI sequences, such as 

T2-MRI and high-b-value (b = 2000 s/mm2) DWI, and texture features based on local binary 
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patterns, is able to detect the discriminative texture features for cancer detection and 

localization, and the performance of the CADx system was not dependent on the specific 

regions of the prostate [52]. Future direction should also include whether zonal segmentation 

of the prostate is necessary when some new imaging sequences being used.

Ex vivo whole mount prostate histological analysis provides more accurate label information 

for training a CADx system. However, whole mount histology is expensive, and registering 

whole mount histological slices with 3D mp-MRI is a challenging problem. This is 

especially true during the preparation of the prostate histological data for training a CADx 

system. Pathologists must collect a large amount of training data from many patients, apply 

reliable biomarkers for each patient, prepare blocks, scan a large number of histological 

slices, and manually define lesion boundaries on histological slices. However, these are 

laborious and time-consuming procedures. Therefore, the histological image preparation 

procedures need to be performed by some automatic methods to improve efficacy. A 

software system has been designed to create a pseudo whole mount histology section [134]. 

A computer-aided system to automatically grade pathological images according to the 

Gleason grading system has also been investigated [199]. A scheme, including automatic 

diagnosis from histologic images, 3D histologic reconstruction and registration, should be 

developed for ground truth definition in the future.

Image quantification methods, such as accurate image registration for motion correction, 

compartment modeling for functional parameters estimation, feature extraction in high 

dimensional data, automatic image classification for differentiating cancer from normal 

tissue, and correlation analyses among radiological data and genomic information, will play 

key roles in the future development of intelligent CAD systems.

Radiomics, as a high dimensional extraction of large amounts of image features with high 

throughput from radiographic images, can provide valuable diagnostic, prognostic or 

predictive information. Cameron et al. had developed a quantitative radiomics feature model 

for performing prostate cancer detection using mp-MRI [115]. Khalvati et al. [118] present 

new texture feature models for radiomics-driven detection of prostate cancer utilizing mp-

MRI data. Radiomics are emerging as a useful tool for prostate cancer detection. Further 

work is needed to build radiomics-based CAD systems for prostate cancer diagnosis, 

treatment planning, treatment prediction and treatment response evaluation.

The Gleason grade of PCa is the most widely used prognostic factor for prostate cancer. MR 

metrics on T2W, DWI, DCE-MRI and MRS imaging relate to microenvironment and 

microstructure. Therefore these MR metrics can predict the Gleason grade of the caner. 

Building a CAD system based on mp-MRI and Gleason score is feasible. It can play a 

significant role in prognostic prediction, guiding biopsy, identifying suitable patients under 

active surveillance and making a decision of appropriate treatment. CAD systems for 

prediction of Gleason score should be developed in the future.

As the anatomic information is important when analyzing functional data, T2W images are 

frequently used in mp-MRI CADx systems. T2W plus DWI and DCE-MRI are commonly 

used as the combinations. Chan et al. constructed a summary statistical map of the 
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peripheral zone based on the utility of multichannel statistical classifiers by combining 

textural and anatomical features in PCa areas from T2W, DWI, proton density maps, and T2 

maps [122]. Langer et al. included DCE-MRI and pharmacokinetic parameter maps as extra 

features to a CADx system for detecting prostate cancer at the peripheral zone [111]. They 

evaluated their system in predefined regions of interest, but on a per voxel basis. Vos et al. 

implemented a two-stage CADx system for prostate cancer using an initial blob detection 

approach combined with a candidate segmentation and classification using statistical region 

features [14]. Litjens et al. recently investigated a fully automated computer-aided detection 

system including a novel combination of segmentation, voxel classification, candidate 

extraction and classification }[62].

Promising preliminary results have been obtained with CADx systems that combine the 

analysis of statistical, structural, and functional MR imaging features and the use of an 

adapted classification scheme. Likelihood maps have been obtained by combining 

information from mp-MRI using mathematical descriptors. These studies showed the 

discrimination between benign and malignant tissues is feasible with good performances 

[62, 111].

CONCLUSION

We comprehensively reviewed mp-MRI based, computer aided technology for prostate 

cancer detection. Prostate CADx systems are a complicated composition of preprocessing, 

segmentation, registration, feature extraction, and classification modules. There are some 

challenges in accurate registration of MRI and histopathology, which is important for ground 

truth definition. Clinical applications of computer aided systems include localization, 

diagnosis, staging, aggressiveness assessment, guiding biopsy, treatment planning, and 

therapeutic response assessment. Although the performance of some CADx systems is good, 

there is no such a system that has been wildly used in clinic. It is likely that more 

improvements in quantitative image analysis and computer-aided methods would need to be 

made in order to meet the clinical needs in near future work.
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Abbreviation

T2W T2-weighted

ADC Apparent diffusion coefficient

DCE Dynamic contrast-enhanced

MRS Magnetic resonance Spectroscopy

DWI Diffusion-weighted imaging

T1-PC (principal component of T1-weighted dynamic series)

T1 T1 mapping

T2 T2 mapping

SVM Support vector machine

P-SVM Probabilistic SVM

FLD Fisher linear discriminant

MRFs Markov random fields

NLDR Nonlinear dimensionality reduction

CRF Conditional random fields

EMPrAvISEEnhanced Multi-Protocol Analysis via Intelligent Supervised Embedding

QDA Quadratic Discriminant Analysis

ANN Artificial neural network

SeSMiK-GESemi Supervised Multi Kernel Graph Embedding

LDA Linear discriminant analysis

PCA Principal component analysis

PCA-VIP Variable importance on projection measure for PCA

LLE Locally linear embedding
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AUC Area under a receiver operating characteristic curve

Se Sensitivity

Sp Specificity

FP False positive

FN False negative

TZ Transition zone

PZ Peripheral zone

CG Central gland

WP Whole prostate

WMHS Whole mount histological sections
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Figure 1. 
High-resolution T2-weighted MRI. T2-weighted MR images can differentiate the normal 

intermediate- to high-signal-intensity peripheral zone ( Region 1) from the low-signal-

intensity central and transition zones (Region 2).
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Figure 2. 
High-resolution T2-weighted MR images of prostate cancer. (A) There is a low–signal 

intensity lesion on the right peripheral zone (white arrows) at the mid-gland of the prostate. 

At prostatectomy, the lesion was classified as a Gleason grade 7 (4+3) prostate 

adenocarcinoma. (B) An ill-defined homogeneous low–signal intensity area at the left 

transition zone (white arrows) at mid-gland of the prostate in another patient. TRUS-guided 

biopsy showed a Gleason grade 8 (4 + 4) prostate adenocarcinoma on the corresponding 

position (Images from Neto JA, Parente DB: Multiparametric magnetic resonance imaging 

of the prostate. Magn Reson Imaging Clin N Am 2013, 21:409–426).
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Figure 3. 
Dynamic contrast enhanced MRI (DCE-MRI) of the prostate. (a) Axial T1 GRE unenhanced 

image. After contrast agent administration, an area with early enhancement is seen on the 

right in the peripheral zone (b, ROI1) with significant washout in the late-phase image (c). 

The curve (red) with early enhancement is a typical finding in the case of prostate cancer, 

while healthy prostate tissue is characterized by a steady slow enhancement (green). High 

transport constants Ktrans (e) and kep (f) can confirm suspicion of prostate cancer. Prostate 

adenocarcinoma with a Gleason score of 4+5=9 was diagnosed after prostatectomy (Image 

from Durmus, T, Baur, A, Hamm, B: Multiparametric magnetic resonance imaging in the 

detection of prostate cancer. Aktuelle Urol 2014, 45:119–126).
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Figure 4. 
Multiparametric MRI (mp-MRI) of the prostate. Axial T2 TSE (A) and coronal T2 TSE (B) 

images show a well-defined T2 hypointense lesion in the peripheral zone (arrow) with 

corresponding high signal on DWI (C) and low signal on the ADC map (D). Biopsy of this 

region was positive for Gleason 4 + 3 prostate cancer (Images from Yacoub, JH, Oto, A, 

Miller, FH: MR Imaging of the Prostate. Radiologic Clinics of North America 2014, 

52:811–837).

Liu et al. Page 38

Acad Radiol. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
MR spectroscopy (MRS) of prostate cancer. (A) Axial T2-weighted MR images at the level 

of the prostate mid-gland to apex, shows a large hypointense lesion on the left peripheral 

zone. (B) A 3D MRS shows a normal spectrum on the right peripheral zone (red box) with 

normal choline plus creatine-to-citrate ratio of 0.48. In the voxel placed over the lesion on 

the left peripheral zone (blue box), the curve shows an increased choline peak and the citrate 

peak is markedly reduced. Random systematic biopsy showed a Gleason grade 9 (4 + 5) 

prostate adenocarcinoma on the left apex (Images from Neto JA, Parente DB: 

Multiparametric magnetic resonance imaging of the prostate. Magn Reson Imaging Clin N 

Am 2013, 21:409–426).
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Figure 6. 
Flowchart for computer aided detection of prostate cancer in mp-MRI.
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Figure 7. 
Prostate segmentation on MR images. Left: 2D MR image and segmentation results where 

the red curve represents the segmentation from a computer algorithm while the blue curve is 

the ground truth labeled by a radiologist. Right: 3D visualization after segmentation. The 

gold region is the prostate surface obtained by the computer algorithm while the red region 

is the ground truth.
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Figure 8. 
Flowchart for a CAD system based on a multiparametric MRI. The cancer probability map 

is the final outcome of the algorithm (Image from Shah V, Turkbey B, Mani H, Pang Y, 

Pohida T, Merino MJ, Pinto PA, Choyke PL, Bernardo M: Decision support system for 

localizing prostate cancer based on multiparametric magnetic resonance imaging. Med Phys 

2012, 39:4093–4103).
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Figure 9. 
Image features for prostate cancer detection. (a) With prostate cancer superposed in green. 

(b) First order statistics (standard deviation). (c) Sobel-Kirsch feature. (d) second order 

statistics (contrast inverse moment). (e) Corresponding time-intensity curves for CaP (red) 

and benign (blue) regions are shown based on DCE-MRI data (Images from Viswanath S, 

Bloch BN, Rosen M, Chappelow J, Toth R, Rofsky N, Lenkinski R, Genega E, Kalyanpur A, 

Madabhushi A: Integrating Structural and Functional Imaging for Computer Assisted 

Detection of Prostate Cancer on Multi-Protocol 3 Tesla MRI. Proc Soc Photo Opt Instrum 

Eng 2009, 7260:72603I).
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Figure 10. 
Registration between multiparametric MRI and histology.
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Figure 11. 
Registration between MRI and histology. Top: Workflow for pathology-mp-MRI registration 

in a surgical 3D space. Bottom: 3D deformable registration of virtual whole-mount histology 

(1), fresh specimen (2), T2 weighted MRI (3), perfusion (4), and diffusion (5) sequences 

(ADC) applied to prostate cancer (Image from Orczyk C, Rusinek H, Rosenkrantz AB, 

Mikheev A, Deng FM, Melamed J, Taneja SS: Preliminary experience with a novel method 

of three-dimensional co-registration of prostate cancer digital histology and in vivo 

multiparametric MRI. Clin Radiol 2013, 68:e652–658).
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Figure 12. 
MRI and ultrasound fusion for targeted biopsy of the prostate. (A and B) Anterior lesion of 

the high suspicious lesion identified on mp-MRI. (C) Real-time ultrasound targeting the 

corresponding lesion. (D and E) 3D models demonstrate the target (blue), prostate (brown), 

and biopsy cores (tan cylinders). (F) Radical prostatectomy pathology confirmed a 2.3 cm 

Gleason 8 (4+4) cancer centered in the right anterior prostate (Images from Sonn, GA, 

Margolis, DJ, Marks, LS: Target detection: Magnetic resonance imaging-ultrasound fusion–

guided prostate biopsy. Urologic Oncology: Seminars and Original Investigations 2014, 

32:903–911).
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Table 2

Validation of CADx systems

Reference Ground truth on
the histology

Candidate on MR image Image Registration

Chan et al.
(2003)[122]

Biopsy MO NA

Puech et al.
(2007)[39]

Needle biopsy or
prostatectomy

MO NA

Tiwari et al. (2007)
[54]

Biopsy Sextant location determined by
radiologist

NA

Vos et al.
(2008)[36]

WMHS+ MO MO 3D rendering mode

Viswanath et
al.(2008)[140]

WMHS+ MO MANTRA Multimodal image
registration

Viswanath et
al.(2009)[129]

WMHS MANTRA Multimodal image
registration

Vos et al.(2009)[37] WMHS Not specified Not specified

Liu et
al.(2009)[141]

WMHS+ MO MO +ex vivo MRI Manual

Tiwari et
al.(2009)[55]

WMHS+ sextant
boundaries

A joint review session of trial
imagers and pathologists

NA

Artan et
al.(2010)[142]

WMHS+ MO Tumor location is transferred to
the in vivo MRI from histologic
images +ex vivo MRI

NA

Vos et
al.(2010)[143]

WMHS+ MO MO Mutual information
registration

Viswanath et
al.(2011)[144]

WMHS+ MO Registration from histologic
images

MACMI

Lopes et
al.(2011)[145]

WMHS+ drawn by
urologists

Drawn by urologists manual correspondence

Liu and Yetik
(2011)[26]

WMHS+ MO MO +ex vivo MRI Manual registration

Sung et
al.(2011)[146]

Radical
prostatectomy+ MO

The radiologist matched the
pathologic slices with
corresponding MRI

NA

Tiwari et
al.(2012)[56]

WMHS MO +ex vivo MRI Manual registration

Viswanath et
al.(2012)[22]

WMHS+MO Registration from histologic
images

Multimodal Elastic
Registration

Vos et al.(2012)[14] Needle biopsy Combining the findings with,
histopathology of MR-guided
samples by radiologist.

NA

Niaf et
al.(2012)[18]

WMHS+MO MO Manual registration

Artan et
al.(2012)[147]

WMHS+MO MO +ex vivo MRI Manual registration

Shah et
al.(2012)[17]

WMHS+MO Not specified PSM

Matulewicz et
al.(2013)[57]

WMHS+MO MO Manual registration

Hambrock et
al.(2013)[13]

WMHS+MO MO Manual registration
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Reference Ground truth on
the histology

Candidate on MR image Image Registration

Tiwari et
al.(2013)[148]

WMHS+MO MO Manual registration

Peng et al.
(2013)[27]

WMHS MO Manual registration

Ginsburg et
al.(2014)[149]

WMHS+MO Registration from histologic
images

Nonlinear registration

Stember et
al.(2014)[51]

Needle biopsy Not specified NA

Niaf et
al.(2014)[150]

Prostatectomy+MO MO Manual registration

Garcia Molina et
al.(2014)[16]

Prostatectomy+MO MO Manual registration

Litjens et
al.(2014)[62]

Needle biopsy Not specified NA

Kwak et
al.(2015)[52]

Needle biopsy Determined by radiologists NA

Zhao et
al.(2015)[151]

Biopsy MO NA

MO: manual outlined regions of lesions

MANTRA: multi-Attribute, non-initializing, texture reconstruction based ASM

MACMI: multi-attribute, higher order mutual information based elastic registration scheme

PSM: patient-specific molds

WMHS: whole mount histological sections

NA: no registration was used
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