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ABSTRACT Lambda interferon (IFN-�) has potent antiviral effects against multiple
enteric viral pathogens, including norovirus and rotavirus, in both preventing and
curing infection. Because the intestine includes a diverse array of cell types, how-
ever, the cell(s) upon which IFN-� acts to exert its antiviral effects is unclear. Here,
we sought to identify IFN-�-responsive cells by generation of mice with lineage-
specific deletion of the receptor for IFN-�, Ifnlr1. We found that expression of IFNLR1
on intestinal epithelial cells (IECs) in the small intestine and colon is required for en-
teric IFN-� antiviral activity. IEC Ifnlr1 expression also determines the efficacy of
IFN-� in resolving persistent murine norovirus (MNoV) infection and regulates fecal
shedding and viral titers in tissue. Thus, the expression of Ifnlr1 by IECs is necessary
for the response to both endogenous and exogenous IFN-�. We further demonstrate
that IEC Ifnlr1 expression is required for the sterilizing innate immune effects of
IFN-� by extending these findings in Rag1-deficient mice. Finally, we assessed
whether our findings pertained to multiple viral pathogens by infecting mice spe-
cifically lacking IEC Ifnlr1 expression with reovirus. These mice phenocopied Ifnlr1-
null animals, exhibiting increased intestinal tissue titers and enhanced reovirus
fecal shedding. Thus, IECs are the critical cell type responding to IFN-� to control
multiple enteric viruses. This is the first genetic evidence that supports an essential
role for IECs in IFN-�-mediated control of enteric viral infection, and these findings
provide insight into the mechanism of IFN-�-mediated antiviral activity.

IMPORTANCE Human noroviruses (HNoVs) are the leading cause of epidemic gas-
troenteritis worldwide. Type III interferons (IFN-�) control enteric viral infections in
the gut and have been shown to cure mouse norovirus, a small-animal model for
HNoVs. Using a genetic approach with conditional knockout mice, we identified IECs
as the dominant IFN-�-responsive cells in control of enteric virus infection in vivo.
Upon murine norovirus or reovirus infection, Ifnlr1 depletion in IECs largely recapitu-
lated the phenotype seen in Ifnlr1�/� mice of higher intestinal tissue viral titers and
increased viral shedding in the stool. Moreover, IFN-�-mediated sterilizing immunity
against murine norovirus requires the capacity of IECs to respond to IFN-�. These
findings clarify the mechanism of action of this cytokine and emphasize the thera-
peutic potential of IFN-� for treating mucosal viral infections.
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Norovirus and rotavirus are viral pathogens that infect at mucosal surfaces and
induce gastroenteritis, characterized by vomiting, diarrhea, and malaise (1, 2). Viral

gastroenteritis causes significant morbidity and mortality in children, the elderly, and
immunocompromised persons, thus representing a substantial health care burden (3,
4). Treatments for these illnesses have been limited thus far to symptomatic care,
including rehydration, because currently there is no specific antiviral therapy for these
viral pathogens. Lambda interferon (IFN-�; also called type III IFN) is an antiviral
cytokine that regulates viral infection at mucosal surfaces and in the liver and brain
(5–8). Administration of recombinant IFN-� can prevent and resolve viral infections in
the gastrointestinal tract (8, 9) and at other sites in mice (10). These effects are observed
for murine norovirus (MNoV) in mice lacking adaptive immunity, thus representing
sterilizing innate immunity in the intestine (8). These studies indicate the potential for
IFN-� as a therapeutic for viral infections, including those causing gastroenteritis, in
humans, including immunocompromised hosts (11). Better understanding of the mech-
anisms by which this antiviral cytokine functions is essential to understanding basic
mechanisms of intestinal control of viral infection and for potential therapeutic appli-
cation in humans.

Binding of IFN-� to its receptor, a heterodimer of interleukin-10R2 (IL-10R2) and
IFNLR1 (12, 13), induces an antiviral gene expression program similar to that induced
by type I IFN, with substantial overlap in gene sets in vitro (10, 14, 15). However, type
I and III IFNs exhibit unique antiviral properties in vivo. Ifnlr1�/� mice exhibit elevated
intestinal tissue replication and enhanced fecal shedding of a persistent strain of MNoV
(8, 16), a model virus which allows for more tractable in vitro and in vivo analyses than
human norovirus (reviewed in references 17 and 18). Recombinant IFN-� treatment is
sufficient to prevent and cure MNoV infection (8). In contrast, mice deficient for Ifnar1
(the receptor for type I IFNs) show enhanced extraintestinal spread of virus, but levels
of MNoV fecal shedding are comparable to those of wild-type mice (8, 16). Similarly,
IFNLR1 restricts growth in the epithelium and fecal shedding of reovirus, while IFNAR1
instead regulates reovirus growth in the lamina propria (19). IFN-� exhibits an antiviral
role exclusive of type I IFNs against a murine rotavirus strain (9) but cooperates with
type I IFNs to limit intestinal replication of a heterologous simian strain in neonatal
but not adult mice (20). These findings indicate the likely importance of tissue
compartment-, development-, and cell type-specific effects of type I and III IFNs in vivo.
These effects may be secondary to unique virulence factors that counter specific IFNs
or to differential expression of the IFN receptors (21, 22).

IFNAR1 is thought to be expressed ubiquitously and at especially high levels on cells
of hematopoietic origin (reviewed in references 23 and 24), whereas expression of
detectable IFNLR1 appears to be limited to mucosal epithelial cells (25), human
hepatocytes (6), and neutrophils (26). Although IFNLR1 expression on peripheral leu-
kocytes has also been reported, it does not appear to be functional (27). Upon IFN-�
treatment, IFN-stimulated genes accumulate in intestinal epithelial cells (IECs), indicat-
ing functional IFNLR1 expression (9, 19, 20). In contrast, in IECs of adult mice, IFNAR1
may be expressed at lower levels or alternately trafficked, such as only to the apical
portion of the cell (9, 20). Differential receptor expression thus could account for
complementary roles for different IFNs in protection against systemic infection (type I)
and infection of mucosal (type III) sites. Importantly, however, it has been reported that
cells that do not express detectably high levels of IFNLR1, such as the endothelial cells
of the blood-brain barrier, may still respond to endogenous and exogenous IFN-� with
protective antiviral effects (10). Thus, to successfully identify the cell types required for
the antiviral response to IFN-�, analysis of receptor expression levels may be insuffi-
cient, and definitive resolution requires a genetic approach to selectively delete recep-
tor expression in specific cell types.

To identify the cell types that respond to IFN-� in vivo in the intestine, we generated
mice with a conditional mutant allele for Ifnlr1 and crossed them to mice expressing Cre
recombinase via the action of different cell type-specific promoters (Table 1). Ifnlr1 was
targeted in cell types expected to express high receptor levels (intestinal epithelial cells
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[25] and neutrophils [26]) and cells that are known to be permissive for MNoV
replication in tissue culture (macrophages and dendritic cells [35]). Of all the cell types
tested, only intestinal epithelial cells (IECs) required expression of Ifnlr1 for the antiviral
effects of IFN-� against MNoV. To show the generality of our findings, we demonstrated
the importance of IEC expression of this receptor for control of reovirus infection. This
is the first study to genetically define IFN-�-responsive cells in vivo in the context of two
independent mucosal viral infections. This study also confirms that the cells required for
responding to endogenous IFN-� to attenuate MNoV infection are the same as those
that respond to exogenous IFN-� administration, including in the elicitation of steril-
izing innate immunity.

RESULTS
Ifnlr1 is expressed in the epithelial fraction along the length of the gastroin-

testinal tract. Tissue from adult mice homozygous for a null mutation in Ifnlr1 (28) or
wild-type controls was collected from sites along the intestine, lung, mesenteric lymph
node (MLN), or spleen (Fig. 1A). The small intestine was also dissociated into epithelial
and lamina propria fractions as previously described (36), and RNA was isolated from

TABLE 1 Mouse lines, nomenclature, and cell types targeted by specific Cre lines

Ifnlr1 and Cre mouse line(s) Line namea

Cell type(s) targeted
(reference)

Ifnlr1tm1Palu; no Cre line Ifnlr1�/� All cells (28)
Ifnlr1tm1a(EUCOMM)Wtsi; Villin-Cre Ifnlr1f/f-Villincre Intestinal epithelial cells (29)
Ifnlr1tm1a(EUCOMM)Wtsi; MRP8-Cre Ifnlr1f/f-MRP8cre Neutrophils (30)
Ifnlr1tm1a(EUCOMM)Wtsi; CD11c-Cre Ifnlr1f/f-CD11ccre Dendritic cells and alveolar

macrophages (31)
Ifnlr1tm1a(EUCOMM)Wtsi; LysM-Cre Ifnlr1f/f-LysMcre Macrophages, neutrophils, some

dendritic cells (32, 33)
Ifnlr1tm1a(EUCOMM)Wtsi; Deleter-Cre Ifnlr1f�/� All cells (34)
aA conditional allele of Ifnlr1 (Ifnlr1f/f) was crossed to multiple different Cre lines for lineage-specific deletion
of Ifnlr1 in the specific cell types.
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FIG 1 Ifnlr1 is expressed in the epithelial fraction along the length of the intestine. (A) RNA was isolated from sites along the
intestine and the lung, indicated by red boxes, whole mesenteric lymph node (MLN) and spleen, and epithelial and lamina
propria (LP) fractions of the small intestine from Ifnlr1-sufficient and -deficient mice. (B) Ifnlr1 expression was quantified by
quantitative real-time PCR of RNA from sites depicted in panel A. n � 4 to 6 samples per group, from two independent
experiments, analyzed by Mann-Whitney test. **, P � 0.01; ns, not significant. Prox, proximal; dist, distal.
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these fractions and tissues. Expression of Ifnlr1 was detected by quantitative real-time
PCR of cDNA generated from these RNA samples. We found that Ifnlr1 was expressed
along the length of the intestine and in the lung, as well as in systemic tissues,
including MLN and spleen (Fig. 1B). Intestinal Ifnlr1 expression was substantially en-
riched (at least 30-fold; P � 0.0381) in the epithelial fraction compared to the lamina
propria fraction (Fig. 1B), consistent with previous reports (9, 25). As expected, no
transcript was detected in any tissue in Ifnlr1�/� mice (Fig. 1B).

Ifnlr1 expression in the small and large intestine is significantly diminished in
Ifnlr1f/f-Villincre mice. Embryonic stem (ES) cells targeted with a construct containing
sequences homologous to Ifnlr1, an FLP recombinant target (FRT)-flanked lacZ and
neomycin cassette, and loxP sites flanking exon 2 were provided by the Wellcome Trust
Sanger Institute (Fig. 2A). Mice derived from these ES cells were crossed with mice
expressing Flp recombinase for deletion of the FRT-flanked cassette (38), leaving a
conditional allele of Ifnlr1, referred to as Ifnlr1f (Fig. 2A). Following removal of the floxed
region in cells expressing Cre, the resulting transcript is predicted to produce a
truncated protein product (Fig. 2B). For disruption in specific cell lineages, Ifnlr1f/f mice
were crossed with various Cre mouse lines (Table 1). For each line, Cre(�) Ifnlr1f/f mice
were compared to Cre(�) Ifnlr1f/f littermates to assess the effects of cell type-specific
deletion upon Ifnlr1 expression along the intestine and in extraintestinal tissues (Fig.
1A). Ifnlr1f/f-Villincre mice showed significantly diminished Ifnlr1 expression in the small
and large intestine (Fig. 2C). Fractionation of the small intestine into epithelial and
lamina propria fractions revealed efficient deletion of Ifnlr1 in the epithelium of these
mice (Fig. 2C). In contrast, Ifnlr1f/f-MRP8cre, Ifnlr1f/f-LysMcre, and Ifnlr1f/f-CD11ccre mice
showed no alterations in intestinal Ifnlr1 expression at the level of the whole tissues
tested (Fig. 2D, E, and F). Ifnlr1f/f-MRP8cre, Ifnlr1f/f-LysMcre, and Ifnlr1f/f-CD11ccre mice
did exhibit substantial depletion of Ifnlr1 in their respectively targeted cell types of
neutrophils (�85%), macrophages (�91%), and dendritic cells (�85%), consistent with
a previous report (39) (Fig. 2D, E, and F). Expression of Ifnlr1 remained unchanged in
lung, MLN, spleen, stomach, and duodenum in Ifnlr1f/f-Villincre mice, indicating expres-
sion of Cre specific to distal small intestine and colon (Fig. 2C), consistent with previous
reports (29, 40).

Expression of Ifnlr1 in intestinal epithelium regulates MNoV shedding and
response to recombinant IFN-�. Ifnlr1�/� mice and wild-type controls were inocu-
lated with CR6, a persistent strain of MNoV that replicates well in the intestine, is shed
into the feces at readily detectable levels, and is sensitive to treatment with IFN-� (8,
41). As described previously (8), Ifnlr1�/� mice allow higher levels of fecal MNoV
shedding than do wild-type mice at early time points (Fig. 3A and G) and are insensitive
to IFN-� treatment, although this treatment terminates MNoV replication in wild-type
mice (Fig. 3A). These results were also observed in a novel Ifnlr1-deficient mouse model
(Ifnlr1f�/�) (Table 1 and Fig. 3B). This assay was next applied to the four mouse strains
with lineage-specific deletion of Ifnlr1 (Table 1). Ifnlr1f/f-Villincre mice phenocopied
Ifnlr1�/� and Ifnlr1f�/� mice, exhibiting both elevated fecal shedding of MNoV and
resistance to IFN-� treatment (Fig. 3C). In contrast, Ifnlr1f/f-MRP8cre, Ifnlr1f/f-LysMcre, and
Ifnlr1f/f-CD11ccre mice exhibited viral loads and response to IFN-� equivalent to those
of Ifnlr1f/f controls (Fig. 3D, E, and F). At day 7 postinoculation, IFNLR1 regulated fecal
shedding of MNoV, as seen by comparing wild-type and Ifnlr1�/� levels (Fig. 3G).
Ifnlr1f/f-Villincre mice allowed fecal shedding equivalent to Ifnlr1�/� and Ifnlr1f�/� mice,
suggesting that control of MNoV fecal shedding can be fully accounted for by IFNLR1
in Villin-expressing cells (Fig. 3G). Similarly, Ifnlr1f/f-Villincre mice exhibited no difference
in comparison to Ifnlr1�/� and Ifnlr1f�/� mice along the full time course of infection
(Fig. 3H).

Expression of Ifnlr1 in intestinal epithelium is essential for induction of IFN-�-
mediated sterilizing innate immunity to MNoV infection. We previously reported
that recombinant IFN-� can cure persistently infected mice in the absence of adaptive
immunity (8). To determine whether expression of Ifnlr1 in IECs is required for IFN-�-
mediated sterilizing innate immunity to persistent MNoV infection, we established
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PBS or recombinant IFN-� was injected intraperitoneally on day 21 into wild-type and Ifnlr1�/� (A), wild-type and Ifnlr1f�/� (B), Ifnlr1f/f-
Villincre (C), Ifnlr1f/f-MRP8cre (D), Ifnlr1f/f-LysMcre (E), or Ifnlr1f/f-CD11ccre (F) mice and their Ifnlr1f/f littermates. n � 6 to 12 mice per group, from
two to three independent experiments, analyzed by two-way ANOVA followed by Tukey’s multiple-comparison test; a P value of �0.001 by
ANOVA column factor was found for panels A to F. (G) Individual data points depicting MNoV genome copies shed into fecal pellets on day
7 from panels A to F. n � 9 to 21 mice per group, from two to three independent experiments, analyzed by one-way ANOVA followed by
Tukey’s multiple-comparison test; a P value of �0.001 was determined by ANOVA. (H) Fecal shedding data from PBS-treated mice in panels
A to C is shown superimposed to facilitate comparison between strains. n � 8 to 11 mice per group, from two to three independent
experiments, analyzed by two-way ANOVA followed by Tukey’s multiple-comparison test; a P value of �0.001 was determined by ANOVA
column factor. *, P � 0.05; **, P � 0.01; ***, P � 0.001; ns, not significant.
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Rag1�/� Ifnlr1f/f-Villincre conditional double knockout mice. Rag1�/� Ifnlr1f/f-Villincre
mice were orally inoculated with CR6, and viral shedding in the stool was quantified by
quantitative PCR (qPCR). Rag1�/� Ifnlr1f/f-Villincre mice showed increased viral shed-
ding throughout the infection time course (Fig. 4A). Injection of recombinant IFN-�
terminated MNoV replication in Rag1�/� Ifnlr1f/f mice but did not affect MNoV loads in
Rag1�/� Ifnlr1f/f-Villincre mice (Fig. 4A). At 7 days postinoculation, Rag1�/� Ifnlr1f/f-
Villincre mice had significantly higher viral shedding than Rag1�/� Ifnlr1f/f mice, and the
level of viral shedding in Rag1�/� Ifnlr1f/f-Villincre mice was comparable to the level of
viral shedding in Rag1�/� Ifnlr1�/� mice (Fig. 4B). Therefore, IFN-� responses in IECs
limited persistent MNoV infection in the absence of adaptive immunity, and IFN-�
signaling in IECs was essential for clearance of persistently infected MNoV by IFN-�-
mediated sterilizing innate immunity.

Control of reovirus in intestinal tissue by IFN-� depends upon the expression
of Ifnlr1 in epithelial cells. To assess whether Ifnlr1 expression on IECs was required
for control of other enteric pathogens, Ifnlr1�/� and Ifnlr1f/f-Villincre mice were orally
inoculated with 108 PFU of reovirus strain type 1 Lang (T1L). At 4 days postinfection,
viral titers in small intestinal tissues, including duodenum, jejunum, and ileum, as well
as viral shedding in stools, were significantly higher in Ifnlr1�/� mice (Fig. 5A and B),
consistent with a previous report using another strain of reovirus, type 3 Dearing (19).
Control of reovirus was predominantly through the expression of IFNLR1 on IECs, as
Ifnlr1f/f-Villincre mice displayed increased titers of reovirus in small intestinal tissues as
well as enhanced fecal shedding (Fig. 5A and B). These results demonstrate that
expression of IFNLR1 in epithelial cells is essential for the control of reovirus infection
by IFN-� in the gut and indicate that IFN-� signaling in IECs is an antiviral mechanism
common to multiple enteric viral pathogens.

Interferon-stimulated gene expression in the intestine depends upon the
expression of Ifnlr1 in epithelial cells. Ileum and proximal colon tissues were isolated
from wild-type (WT), Ifnlr1�/�, Ifnlr1f/f, and Ifnlr1f/f-Villincre mice 1 day posttreatment
with either PBS or IFN-�. These tissues were then assessed for expression of canonical
antiviral interferon-stimulated genes (ISGs) Oas1a (42), Ifit1 (43), and Ifi44 (44) (Fig. 6A
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FIG 4 Expression of Ifnlr1 on intestinal epithelial cells is required for the antiviral effects of IFN-� against
MNoV in the absence of adaptive immunity. (A) Time course of MNoV genome copies shed into fecal
pellets with time points at 7, 14, 21, 24, 28, and 35 days after CR6 infection. PBS or recombinant IFN-�
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ANOVA followed by Tukey’s multiple-comparison test; a P value of �0.001 was found by ANOVA column
factor. (B) Individual data points depicting MNoV genome copies shed into fecal pellets on day 7 from
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to C). While intestinal tissues from WT and Ifnlr1f/f mice exhibited robust ISG induction
in response to IFN-� treatment, tissues from Ifnlr1�/� and Ifnlr1f/f-Villincre mice failed to
significantly upregulate these ISGs in response to IFN-�. These data correlate with the
impaired antiviral response against MNoV in Ifnlr1�/� and Ifnlr1f/f-Villincre mice after
IFN-� treatment (Fig. 3A and C), consistent with a potentially critical role for IFNLR1
expression on epithelial cells for induction of antiviral ISGs in response to IFN-�
treatment.

DISCUSSION

In this study, we found that IECs are the predominant cell type expressing Ifnlr1 in
the small intestine and colon and that this cell type plays a major role in IFN-�-
mediated antiviral immunity in the intestine. Antiviral immunity elicited by IFN-� to
enteric reovirus and norovirus infection depends upon IFNLR1 signaling in Villin-
positive IECs. Using four mouse strains with lineage-specific deletion of Ifnlr1 to study
persistent infection and IFN-�-mediated clearance, we found that only Ifnlr1f/f-Villincre
mice exhibited a complete phenocopy of Ifnlr1�/� mice. Targeting Ifnlr1 in other cells,
including dendritic cells, macrophages, and neutrophils, had no detectable effect on
basal levels of viral shedding or IFN-�-mediated clearance of MNoV. The dominant
IFN-�-dependent antiviral contribution by IECs also was confirmed with reovirus infec-
tion. In studies using reovirus T1L, we observed viral titers in the small intestine of
Ifnlr1f/f-Villincre mice increased comparably to those detected in Ifnlr1�/� mice, al-
though we cannot rule out a minor role for other IFN-�-responding cells in the ileum.
Therefore, IECs are the functionally dominant IFN-�-responding cells for endogenous
and exogenous IFN-� control of viruses in the intestine. There is a clear correlation
between IFN-�-mediated induction of antiviral ISGs and IEC expression of IFNLR1,
suggesting that induction of ISGs in IECs is the mechanism by which IFN-� exerts its
antiviral effects.

Expression of Ifnlr1 mRNA throughout the gut and in other extraintestinal tissues
(MLN, lung, and spleen) was quantified by qPCR analysis. In lamina propria cells, there
were fewer than 500 copies of Ifnlr1 mRNA per 1 �g total RNA. In contrast, IECs express
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more than 10,000 copies of Ifnlr1 mRNA per 1 �g total RNA throughout the small
intestine. Thus, IECs are the dominant Ifnlr1-expressing cells and function as the major
IFN-�-responding cells for antiviral immunity in the intestine. In MLN, spleen, and lung,
we detected comparable expression of Ifnlr1 mRNA. Villin-positive cells were not the
major cell type responsible for Ifnlr1 expression in these tissues, and neither were
neutrophils, dendritic cells, or macrophages. Therefore, there may exist some other cell
types that are important for IFN-� responses in these tissues. Lung epithelial cells,
which do not express Villin, likely reflect a major source of Ifnlr1 in that tissue (29). B or
T cells, which have been reported to express Ifnlr1 even though they lack a robust
response to IFN-�, may account for Ifnlr1 expression in the MLN and spleen (27).
Another possible cellular source for this expression is endothelial cells, based on the
report that blood-brain barrier endothelial cells respond to IFN-� to restrict West Nile
virus neuroinvasion (10). Thus, it would be interesting to study the role of IFN-� in
extraintestinal tissues in control of other pathogens and define the IFN-�-responsive
cell types in these contexts.

In some tissues, such as lung and vagina, there is redundancy between type I and
III IFN-mediated antiviral responses. IFN-� controls influenza virus, severe acute respi-
ratory syndrome (SARS) coronavirus, respiratory syncytial virus infection in the lung
(45–47), and herpes simplex virus 2 (HSV-2) infection in the genital tract (48), redun-
dantly with type I IFNs. In the intestine, however, IFN-�-mediated antiviral immunity
does not redundantly overlap type I IFNs (8, 9, 19). Adult IECs have polarized apical
IFNAR1 expression only at low levels (9), and although IECs in neonates exhibit robust
STAT1 activation after type I IFN treatment, in adult mice they are largely unresponsive
to type I IFN treatment in vivo (9, 19, 20). Moreover, the expression level of Ifnlr1 mRNA
is highly enriched in IECs but minimally detectable in other compartments of intestinal
tissue (Fig. 1 and 2). This study, bolstering previous findings of alternate cellular
expression patterns for type I and III IFN receptors, helps explain why IFN-�-mediated
immunity in the intestine is nonredundant with IFN-�/� in adult mice, even though
they may stimulate transcription of highly overlapping sets of antiviral genes (7, 20).
Our data support a role for IECs as sentinels for enteric virus infection via their response
to compartment-specific IFN-� signaling (19, 20).

One of the important features of IFN-�-mediated immunity is its sterilizing activity
against persistent MNoV infection in the absence of adaptive immunity (8). We ob-
served that persistent MNoV infection of Rag1�/� Ifnlr1f/f-Villincre mice was not re-
solved by IFN-� treatment and showed increased viral titers in the stool, similar to our
observations with Rag1�/� Ifnlr1�/� mice. Thus, IFN-�-mediated sterilizing innate
immunity requires IEC expression of the receptor. Since only macrophages, dendritic
cells, and B cells are known to be susceptible to MNoV infection in vitro (35, 49), it is not
clear how the IFN-� response in IECs ablates persistent MNoV infection in the absence
of adaptive immunity. One possible explanation is that there is a secondary trans-acting
molecule induced by IFN-� in IECs that clears MNoV in other cell types. A related study
has demonstrated that rotavirus can be terminated by injecting IL-22 and IL-18 into
Rag1�/� mice, but this IL-22- and IL-18-mediated viral clearance does not induce IFN-�
or Stat1 activation (50). Thus, there may be multiple innate immunological mechanisms
to resolve persistent viral infection in the absence of adaptive immunity. Identifying the
effectors of IFN-�-mediated sterilizing immunity is an important area to pursue in IFN-�
immunology.

This study reveals that Ifnlr1 expression in IECs is required for control of enteric
MNoV and reovirus infections. Using a genetic approach with conditional knockout
mice, we identified IECs as the dominant cell type that responds to endogenous and
exogenous IFN-� to control enteric viruses. Understanding the identity of IFN-�-
responsive cell types provides further insight into mechanisms that control enteric
viruses and will enhance future development of IFN-�-mediated antiviral therapeu-
tics.
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MATERIALS AND METHODS
Generation of MNoV stocks and determination of titers. Stocks of MNoV strain CR6 were

generated from a molecular clone as previously described (51). Briefly, a plasmid encoding the CR6
genome was transfected into 293T cells to generate infectious virus, which was subsequently passaged
on BV2 cells. After two passages, BV2 cultures were frozen and thawed to liberate virions. Cultures then
were cleared of cellular debris and virus was concentrated by ultracentrifugation through a 30% sucrose
cushion. Titers of virus stocks were determined by plaque assay on BV2 cells (51).

Generation of reovirus stocks and determination of titers. Spinner-adapted murine L929 (L) cells
were grown in either suspension or monolayer cultures in Joklik’s modified Eagle’s minimal essential
medium (SMEM; Lonza) supplemented to contain 5% fetal bovine serum (Gibco), 2 mM L-glutamine, 100
U/ml penicillin, 100 �g/ml streptomycin (Gibco), and 25 ng/ml amphotericin B (Sigma). BHK-T7 cells were
grown in Dulbecco’s modified Eagle’s minimal essential medium (DMEM; Gibco) supplemented to
contain 5% fetal bovine serum, 2 mM L-glutamine, 1 mg/ml Geneticin (Gibco), and nonessential amino
acids (Sigma).

Recombinant reoviruses were generated using plasmid-based reverse genetics (52). Recombinant
strain type 1 Lang (T1L) is a stock generated by plasmid-based rescue from cloned T1L cDNAs (53). After
3 to 5 days of incubation, cells were frozen and thawed three times, and virus was isolated by plaque
purification using monolayers of L cells (54). Purified reovirus virions were generated from second- or
third-passage L-cell lysate stocks (55). Viral particles were extracted from infected cell lysates using
Vertrel XF (Dupont), layered onto 1.2- to 1.4-g/cm3 CsCl gradients, and centrifuged at 62,000 � g for 16
h. Bands corresponding to virions (1.36 g/cm3) were collected and dialyzed in virion storage buffer (150
mM NaCl, 15 mM MgCl2, and 10 mM Tris-HCl [pH 7.4]) (56). The concentration of reovirus virions in
purified preparations was determined from the following equivalence: one optical density (OD) unit at
260 nm equals 2.1 � 1012 virions (56). Viral titer was determined by plaque assay using L cells (54).

For analysis of reoviral titers in organs, mice were euthanized at various intervals postinoculation, and
organs were harvested into 1 ml of PBS and homogenized by freeze-thaw and bead beating. For analysis
of viral titer in stool, samples were harvested at various intervals, weighed, stored in 1 ml of PBS, and
homogenized by freeze-thaw and bead beating. Viral titers in organs and stool homogenates were
determined by plaque assay using L cells (54). Titers are expressed as PFU per milliliter of tissue
homogenate or per gram of stool.

Mice, infections, and IFN-� treatment. Wild-type (WT) C57BL/6J mice (stock number 000664) were
purchased from Jackson Laboratories (Bar Harbor, ME) and housed at the Washington University School
of Medicine under specific-pathogen-free conditions (57) according to university guidelines. Ifnlr1�/�

(B6.Cg-Ifnlr1tm1Palu) mice were obtained from Bristol-Myers Squibb (Seattle, WA) and backcrossed using
speed congenics onto a C57BL/6J background (28).

To generate mice conditionally deficient for Ifnlr1, Ifnlr1tm1a(EUCOMM)Wtsi ES cells on a C57BL/6N
background were provided by the Wellcome Trust Sanger Institute. A conditional-ready (floxed) allele in
which exon 2 is flanked by loxP sites, designated Ifnlr1f/f, was created (Fig. 2A) (38). Ifnlr1f/f mice were
crossed to Villin-Cre (intestinal epithelial cells [29]), LysM-Cre (macrophages and neutrophils, as well as
some dendritic cells [32, 33]), CD11c-Cre (dendritic cells and alveolar macrophages [31]), and MRP8-Cre
(neutrophils [30]) lines for selective disruption of Ifnlr1 in different cell types in vivo. Ifnlr1f/f mice were also
crossed to a Deleter-Cre line (34) to generate an alternate Ifnlr1�/� line, here designated Ifnlr1f�/�.
Ifnlr1f�/� mice were backcrossed using speed congenics onto a C57BL/6J background. Mouse lines and
naming conventions are summarized in Table 1.

For MNoV infections, mice were inoculated with a dose of 106 PFU of strain CR6 at 6 to 8 weeks of
age by the oral route in a volume of 25 �l. For reovirus infections, mice were orally gavaged with a dose
of 108 PFU of strain T1L virus at 6 to 8 weeks in a volume of 100 �l.

Recombinant IFN-� was provided by Bristol-Myers Squibb (Seattle, WA) as a monomeric conjugate
comprised of 20-kDa linear polyethylene glycol (PEG) attached to the amino terminus of murine IFN-�,
as previously reported (8). For treatment of mice, 25 �g of IFN-� diluted in PBS was injected intraperi-
toneally.

Stool and tissues were harvested into 2-ml tubes (Sarstedt, Germany) with 1-mm-diameter zirconia/
silica beads (Biospec, Bartlesville, OK). Tissues were flash frozen in a bath of ethanol and dry ice and either
processed on the same day or stored at �80°C.

Isolation of epithelial and lamina propria fractions of small intestine. Epithelial and lamina
propria fractions were prepared as previously described (36). In brief, after mice were euthanized, small
intestines were collected. Intestinal tissues were washed with cold PBS twice and then chopped and
transferred to new tubes. The tissues were incubated with stripping buffer (10% bovine calf serum, 15
mM HEPES, 5 mM EDTA, 5 mM dithiothreitol [DTT] in 1� Hanks’ balanced salt solution [HBSS]) for 20 min
at 37°C. The dissociated cells were collected as the epithelial fraction, consisting predominantly of IECs.
The remaining tissue was used as the lamina propria fraction.

Isolation of neutrophils, macrophages, and dendritic cells. Neutrophils were isolated from
Ifnlr1f/f-MRP8cre mice and Ifnlr1f/f littermates by collecting bone marrow from femurs and tibias. Red
blood cells were lysed using red blood cell lysis buffer (Sigma, St. Louis, MO), and neutrophils were
isolated using the mouse neutrophil isolation kit (Miltenyi Biotec, Germany). Isolated neutrophils were
confirmed to be 95 to 98% double positive for CD11b-allophycocyanin (APC) and Ly6G-fluorescein
isothiocyanate (FITC) (BioLegend, San Diego, CA) (data not shown). Macrophages were isolated from
Ifnlr1f/f-LysMcre mice and Ifnlr1f/f littermates by collecting and homogenizing spleens, lysing red
blood cells (RBCs), and enriching for macrophages using mouse anti-F4/80 UltraPure MicroBeads
(Miltenyi Biotec). Isolated macrophages were confirmed to be 70 to 85% positive for F4/80-AF488
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(Thermo Fisher Scientific) as well as CD11b-APC and CD45.2-phycoerythrin (PE) (BioLegend) (data
not shown). Dendritic cells were isolated from Ifnlr1f/f-CD11ccre mice and Ifnlr1f/f littermates by
collecting and homogenizing spleens, lysing RBCs, and enriching for dendritic cells using the mouse
pan-dendritic cell isolation kit (Miltenyi Biotec). Isolated dendritic cells were confirmed to be 70 to
85% CD11c-AF488 (BioLegend) single positive or CD11c-AF488 and B220-PE (BD Bioscience) double
positive (data not shown).

Quantitative reverse transcription-PCR. RNA from stool was isolated using a ZR-96 viral RNA kit
(Zymo Research, Irvine, CA). RNA from tissues or cells was isolated using TRI Reagent (Invitrogen) and a
direct-zol-96 RNA kit (Zymo Research, Irvine, CA) according to the manufacturer’s protocol. Five micro-
liters of RNA from stool or 1 �g of RNA from tissue was used as a template for cDNA synthesis with the
ImPromII reverse transcriptase system (Promega, Madison, WI). DNA contamination was removed using
the DNAfree kit (Life Technologies).

MNoV TaqMan assays were performed, using a standard curve for determination of absolute viral
genome copies, as described previously (58). Quantitative PCR for housekeeping gene Rps29 was
performed with forward primer 5=-GCAAATACGGGCTGAACATG-3=, reverse primer 5=-GTCCAACTTAATG
AAGCCTATGTC-3=, and probe 5=-/5HEX/CCTTCGCGT/ZEN/ACTGCCGGAAGC/3IABkFQ/-3= (where 3IABkFQ
is 3= Iowa Black fluorescence quencher; Integrated DNA Technologies), each at a concentration of 0.2 �M,
using AmpliTaq gold DNA polymerase (Applied Biosystems). Quantitative PCRs for Ifnlr1 (Mm.PT.58.
10781457), Oas1a (Mm.PT.58.30459792), Ifi44 (Mm.PT.58.12162024), and Ifit1 (Mm.PT.58.32674307)
were similarly performed using PrimeTime qPCR assays (Integrated DNA Technologies). Standard curves
for quantitative PCR assays were generated to facilitate absolute quantification of transcript copy
numbers. For Rps29, the PCR product using the above-described primers was cloned into the p-ENTR/
D-TOPO vector (Thermo Fisher Scientific), and for Ifnlr1 a full-length Ifnlr1 cDNA clone (5036481; Open
Biosystems) was used. Plasmids were Sanger sequenced to confirm the identity of the inserts. For Oas1a,
Ifit1, and Ifi44, absolute transcripts were quantitated based on target sequence-containing gBlocks
(Integrated DNA Technologies). Cycling parameters for Rps29, Ifnlr1, Oas1a, Ifit1, and Ifi44 were identical
to those for MNoV TaqMan. Absolute values of Ifnlr1, Oas1a, Ifit1, and Ifi44 per microgram of RNA were
normalized to the within-tissue average of housekeeping gene Rps29. No significant changes in absolute
copy number of Rps29 were detected between comparison groups (data not shown).

Statistical analysis. Data were analyzed with Prism 7 software (GraphPad Software, San Diego, CA).
In all graphs, three asterisks indicate a P value of �0.001, two asterisks indicate a P value of �0.01, one
asterisk indicates a P value of �0.05, and ns indicates not significant (P � 0.05) as determined by
Mann-Whitney test, one-way analysis of variance (ANOVA), or two-way ANOVA with Tukey’s multiple-
comparison test, as specified in the relevant figure legends.
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