Skip to main content
. 2017 Mar 17;11:129. doi: 10.3389/fnins.2017.00129

Table 4.

Classification confusion matrix (Participant A).

Model Predicted class Target class ACCclass FPR FNR
1 2 3 4 5
LSSVM1 1 168 1 0 0 0 0.9438
2 10 162 86 51 4 0.9153 0.0562 0.0028
3 0 14 8 30 6 0.0851 0.0394 0.7622
4 0 0 0 0 0 0 0 1
5 0 0 0 0 0 0 0 1
LSSVM2 1 177 1 0 0 0 0.9944
2 1 174 17 0 0 0.9831 0.0056 0.0028
3 0 2 75 50 0 0.7979 0.0056 0.0919
4 0 0 2 30 7 0.3704 0.0045 0.5495
5 0 0 0 1 3 0.3000 0.0019 0.7000

The number of correctly and wrongly classified data is shown on the main and off diagonal, respectively. The last three columns present the classification rate of each class and the FPR and FNR for binary classification, respectively. The higher classification accuracy and lower FPR and FNR are marked in bold.