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Abstract

Solid and hematologic cancers colonized bone produce a number of pathologies. One of the most 

common complications associated with bone-colonized cancer is bone pain. Cancer-associated 

bone pain (CABP) is a major cause of increased morbidity and mortality and diminishes the 

quality of life and affects survival in cancer patients. Current treatments do not satisfactorily 

control CABP and can elicit serious side effects. Thus, new therapeutic interventions are needed to 

manage CABP. However, the mechanisms responsible for CABP are poorly understood. The 

observation that specific osteoclast inhibitors can reduce CABP in patients indicates a critical role 

of osteoclasts in the pathophysiology of CABP. Osteoclasts create an acidic extracellular 

microenvironment by secretion of protons via plasma membrane vacuolar proton pumps during 

bone resorption. In addition, bone-colonized cancer cells also release protons and lactate via 

plasma membrane pH regulators to avoid intracellular acidification resulting from increased 

aerobic glycolysis known as Warburg effect, thus exacerbating the acidic microenvironment. Since 

acidosis is algogenic for primary afferent sensory neurons and bone is densely innervated by 

sensory neurons that express acid-sensing nociceptors, the acidic bone microenvironments can 

evoke CABP. Understanding of the cellular and molecular mechanism by which the acidic 

extracellular microenvironment is created in cancer-colonized bone and the expression and 

function of these acid-sensing nociceptors are regulated may facilitate the development of novel 

therapeutic approaches for management of CABP. In this review, the contribution of the acidic 

extracellular microenvironment created by bone-colonized cancer cells and bone-resorbing 

osteoclasts to excitation and sensitization of sensory nerves innervating bone and elicitation of 

CABP and potential therapeutic implications of blocking the development and recognition of 

acidic extracellular microenvironment will be described.
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1. Introduction

Common solid cancers such as breast cancer, prostate cancer and lung cancer preferentially 

spread to bone [1]. Rare primary bone malignancies such as osteosarcoma, Ewing's sarcoma, 

chondrosarcoma also aggressively expand in bone [2]. Multiple myeloma, which is a 

malignant plasma cell disorder accounting for approximately 10% of all hematologic 

cancers, exclusively colonizes bone [3]. These bone-colonizing cancers induce the 

development of either osteolytic, osteosclerotic or mixed bone disease by disrupting the 

homeostasis of bone environment. In addition, they are associated with skeletal-related 

events including bone pain, pathologic fractures, hypercalcemia, spinal cord compressions, 

palliative radiotherapy to bone and surgery to bone to treat or prevent a fracture during the 

clinical course of the disease [4]. Of these, bone pain is one of the most common and 

detrimental complications associated with cancer colonization in bone [5]. Cancer-

associated bone pain (CABP) profoundly diminishes quality of life, impairs host immune 

surveillance and delays recovery from the illness, leading to increased secondary death. 

Accordingly, control of bone pain is a major goal for medical oncologists to achieve in the 

management of cancer patients. However, current treatments for CABP are not satisfactory 

and adequate and have serious side effects. Thus, new effective therapeutic interventions for 

CABP with reduced adverse effects need to be developed. Despite these circumstances, little 

is known about the mechanism of CABP.

Although the mechanism of CABP is poorly understood, accumulating clinical studies have 

shown that the specific inhibitors of osteoclasts, bisphosphonate and denosumab, 

significantly reduce CABP [6, 7]. Osteoclasts are the principal bone resorbing cells in 

physiological and pathological conditions associated with increased bone resorption [8]. 

They play a central role in the pathophysiology of cancer colonization in bone [1]. These 

results collectively suggest that factors released at the tumor-bone interface during 

osteoclastic bone resorption may be an important mechanism of CABP. However, it should 

be noted that suppression of osteoclastic bone resorption fails to prevent the progression of 
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CABP as the disease advances [7], confirming that not only osteoclasts but also cancer cells 

contribute to the pathophysiology of CABP.

In cancer-colonized bone microenvironment, osteoclasts, cancer cells, and cancer-associated 

stromal cells and inflammatory immune cells produce varieties of algogenic mediators that 

can excite and sensitize peripheral nociceptive sensory neurons and evoke pain through 

binding to their cognitive receptors present on the sensory neurons [9–11]. Protons are one 

of these algogenic mediators [9–11]. Of note, osteoclasts release protons via the plasma 

membrane (a3 isoform) vacuolar-H+-ATPase coupled with chloride channels to secrete 

hydrochloric acid to degrade bone minerals during bone resorption [8, 12]. In addition, it has 

been well-recognized that aggressive cancer cells secrete substantial levels of protons/lactate 

into the extracellular environments to avoid intracellular acidification due to elevated aerobic 

glycolysis known as Warburg effect [13]. Thus, protons released from osteoclasts and cancer 

cells co-operatively create an acidic extracellular microenvironment in cancer-colonized 

bone.

Here we will overview the role of the acidic microenvironment created by protons/lactate 

released from bone-resorbing osteoclasts and bone-colonizing cancer cells in the 

pathophysiology of CABP with our recent experimental observations.

2. Acidic extracellular microenvironment in cancer-colonized bone

2.1. Osteoclastogenesis

Osteoclasts are multinucleated giant cells formed by the fusion of mononuclear progenitors 

of the monocyte/macrophage lineage [8]. They are the principal bone resorbing cells and 

play a central role in the formation of the skeleton and regulation of its mass. For osteoclast 

formation from the osteoclast precursors, macrophage colony-stimulating factor (M-CSF) 

and receptor for activation of nuclear factor kappa B (NF-κB) (RANK) ligand (RANKL) 

[14] produced in neighboring osteoblasts or stromal cells are essential [8] (Figure 1). 

RANKL is a member of tumor necrosis factor family and primarily a membrane-bound 

cytokine. Therefore, osteoclast precursors that express receptors for RANKL, RANK, need 

to contact with osteoblasts or stromal cells to differentiate into mature osteoclasts. 

Osteoprotegerin (OPG) is a natural soluble decoy receptor that competes with RANK for 

RANKL and thus inhibits RANKL-induced osteoclast formation and bone resorption [8]. 

The balance between the expression of RANKL and OPG (RANKL/OPG ratio) controls 

osteoclastogenesis and the degree of resulting bone resorption. Mice lacking M-CSF, 

RANKL or RANK showed osteopetrosis due to decreased osteoclastogenesis and 

dysfunction of mature osteoclasts [14]. On the other hand, mice deficient of OPG exhibited 

severe osteopenia due to increased osteoclastogenesis and bone resorption [14]. The 

mutations in the signal peptide region of the RANK protein cause familial expansile 

osteolysis, a rare autosomal dominant disorder characterized by focal areas of enhanced 

bone resorption, and familial Paget s disease [15]. OPG deficiency due to homozygous loss-

of-function mutations within the TNFRSF11B gene is a cause of Juvenile Paget's disease 

[16]. Thus, osteoclasts are evidently the principal causative player in diverse bone disorders.
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2.2. Role of osteoclasts in cancer colonization in bone

In cancer-colonized bone and bone metastasis, osteoclasts are increased and activated to 

destroy bone by factors produced by cancers [1, 17, 18]. Bone destruction, in turn, further 

stimulates the colonization of cancer cells in bone via the release of bone-stored growth 

factors including transforming growth factor-β (TGF-β) and insulin-like growth factors 

(IGFs). This interactive process between bone-colonizing cancer cells and bone-resorbing 

osteoclasts is called “the vicious cycle” (Figure 2). Thus, osteoclasts are a central regulatory 

player in the pathophysiology of cancer colonization in bone and bone metastasis. However, 

their role in CABP remains poorly understood.

2.3. Bone resorption and proton release by mature osteoclasts

Significant reduction of bone pain by the specific inhibitors of osteoclastic bone resorption, 

bisphosphonates and denosumab, in patients with multiple myeloma and solid cancers [6, 7, 

19, 20] indicates a critical role of osteoclasts in the pathophysiology of CABP. Consistent 

with these clinical observations, Honore et al [21] reported that OPG, which inhibits 

osteoclast formation and bone resorption through interfering RANKL binding to RANK [8], 

suppressed CABP using an experimental animal model. We also showed that the most potent 

bisphosphonate zoledronic acid significantly reduced CABP [22]. It is therefore important to 

understand how osteoclasts resorb bone to gain better insights into the mechanism 

underlying CABP.

Bone resorption by mature osteoclasts is a dynamic multi-step process [8]. First, osteoclasts 

migrate and attach tightly to the bone surface targeted for degradation and removal via the 

αvβ3 integrin, thereby forming a tight “sealing zone”. Plasma membrane then polarizes to 

form the resorption organelle, called “ruffled border”. The ruffled border is a unique folded 

highly permeable membrane facing to the resorbing bone surface. To dissolve bone 

minerals, protons (H+) and chloride ions (Cl−) is released via the plasma membrane (a3 

isoform) vacuolar H+-ATPase proton pump [23] and chloride ion-proton anti-porter ClC-7 

[24] clustered in the ruffled border into the resorption lacunae, acidifying the resorptive 

lacunae to a pH of 4.5 [8]. Concomitantly, the cysteine peptidase cathepsin K [25] degrades 

bone matrix. The degraded bone matrix is trans-endocytosed from the resorption lacunae to 

the “functional secretory domain” and released into the extracellular environment [26]. 

Finally, osteoclasts gone through bone resorption detach from the bone surface and undergo 

apoptosis [8].

Our RT-PCR and immuno-fluorescent analysis confirmed that bone-resorbing osteoclasts 

strongly express a3 vacuolar-H+-ATPase on their plasma membrane, while another acid-

secreting tissue, the gastric epithelium exhibited marginal expression of a3 vacuolar-H+-

ATPase (unpublished data). On the other hand, the gastric epithelium displayed high 

expression of p-type-H+-ATPase [27], while the expression of p-type-H+-ATPase in 

osteoclasts was undetectable. These data suggest that algogenic protons released from bone-

resorbing osteoclasts via a3 vacuolar-H+-ATPase into the extracellular microenvironment 

likely impact pH-sensitive peripheral nerve fibers and directly contribute to bone pain. In 

support of this notion, we reported that the non-selective vacuolar-H+-ATPase inhibitor, 

bafilomycin A1 reduces inflammatory bone pain [28]. Moreover, we recently found that 
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bafilomycin A1 blocked the development of acidic environment in cancer-colonized bone 

determined by acridine orange staining [29] and significantly reduced CABP (unpublished 

data). Of interest, the p-type-H+-ATPase inhibitor, rabeprazole [30] that is widely used for 

the treatment of gastric pain failed to suppress CABP. The pathophysiology of CABP may 

be thus unique compared with that of other types of pain because of the contribution of 

osteoclast a3 vacuolar-H+-ATPase. Many classes of inhibitors of osteoclast proton pump for 

the treatment of osteoporosis are currently developed and tested in pre-clinical and clinical 

settings. It is expected that these agents not only inhibit bone resorption but also alleviate 

CABP.

2.4. Proton and lactate release by cancer cells

The failure of inhibitors of osteoclastic bone resorption to block the progression of CABP in 

patients [7, 20] and tumor-bearing animals [21, 22] indicates that osteoclasts are not the only 

cells contributing to CABP. Undoubtedly, cancer cells, inflammatory cells and immune cells 

contribute to the pathophysiology of CABP as well. Cancer cells produce varieties of 

nociceptive substances including protons, proteases, glutamate, lysophosphatidic acid, 

prostaglandins, nerve growth factors, endothelin, bradykinin, extracellular adenosine 

triphosphate and pro-inflammatory cytokines and chemokines such as interleukins, tumor 

necrosis factors and macrophage inflammatory protein-1 [9–11]. Among these, the 

contribution of protons released from cancer cells, in addition to osteoclasts, to the 

pathophysiology of CABP will be discussed here.

Some regions of cancer environment are hypoxic due to inadequate oxygen delivery, which 

limits oxidative phosphorylation that efficiently produces ATP via glucose metabolism in the 

mitochondria in normal cells [13]. To meet increased requirements for ATP and metabolic 

intermediates and precursors to maintain their aggressiveness, hypoxic cancer cells shift 

their energy metabolism to glycolysis that is much less energy-efficient but independent of 

oxygen. The elevated aerobic glycolysis, known as Warburg effect, consumes high glucose 

and produce substantial amounts of lactate that lowers intracellular pH [13]. To avoid 

intracellular acidification, cancers actively extrude lactate and protons via plasma membrane 

pH regulators such as monocarboxylate transporter 1 and 4 (MCT1 and MCT4), Na+/H+ 

exchangers, anion exchangers, carbonic anhydrases, V-H+-ATPase, Na+/HCO3− co-

transporters and HCO3−transporter, creating acidic extracellular cancer microenvironment 

[31]. We showed high-metastatic B16 mouse melanoma cells expressed increased levels of 

the a3 isoform V-H+-ATPase compared to the low-metastatic B16 parental cells. Knockdown 

of a3 V-H+-ATPase suppressed invasiveness and migration and significantly decreased lung 

and bone metastases [32], suggesting that a3 V-H+-ATPase promotes distant metastasis of 

B16 melanoma cells by creating acidic environments via proton secretion. From these 

results, we propose that inhibition of the development of cancer-associated acidic 

environments by suppressing a3 V-H+-ATPase could be a novel therapeutic approach for the 

treatment of cancer metastasis. The potential of the inhibitors of aerobic glycolysis (Warburg 

effect) [33] and these proton pumps [31] as anti-cancer drugs has been extensively explored. 

However, the effects of these inhibitors on CABP are unknown. Determination of the effects 

of these inhibitors on CABP may facilitate to the development of drugs with both anti-

cancer and analgesic actions.
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MCT1 and MCT4 are two of the major proton-coupled lactate symporters mediating 

bidirectional lactate transport across the plasma membrane [34]. Many cancer cells express 

MCT1 and MCT4 through which substantial amounts of lactate resulting from Warburg 

effect are released [35]. Of note, MCT expression in cancer is correlated with outcome of 

breast cancer patients [36]. Thus extracellular lactate levels are likely elevated in cancer 

environment. Recent studies reported that lactate released via MCTs from astrocytes is not a 

waste of glycolysis but rather an energy source shuttling between astrocytes and neurons 

[37, 38], suggesting that lactate is a critical regulator of neuronal function. Therefore, 

nociceptive sensory neurons can be also activated by lactate released via MCTs from 

aggressive cancer cells to evoke CABP. We have recently found that MCT1 and MCT4 are 

expressed in multiple myeloma cells isolated from patients and several lines of breast cancer 

cells and multiple myeloma cells (unpublished data). These cancer cells secreted lactate via 

MCTs and lower extracellular pH. Furthermore, dorsal root ganglion (DRG) sensory 

neurons also expressed MCT1 and MCT4. Acidic environment (pH 6.5) created by lactate 

stimulated an excitation of DRG sensory neuronal cells determined by intracellular Ca2+ 

mobilization using Fura-2 calcium imaging assay. More importantly, we found that the non-

specific MCT antagonist, α-cyano-4-hydroxycinnamate (CHC) [39] reduced CABP in an 

animal model. MCT inhibitors such as CHC are also shown to have anti-cancer effects and 

some of them are in Phase I clinical trials for advanced solid tumors and for diffuse large B-

cell lymphoma [35]. Our results together with these earlier results suggest that MCT 

inhibitors could be developed as drugs that inhibit tumor growth and CABP.

3. Acid-sensing machinery in bone

3.1. Innervation of nociceptive sensory neurons in bone

It has been proposed that the densely innervated periosteum is the primary site from which 

bone pain arises. However, patients often complain of bone pain even if cancer localizes to 

bone marrow or mineralized bone and in the absence of evident periosteal involvement [40], 

indicating the presence of sensory nerve fibers in non-periosteal sites in bone. An early 

study using a transmission electron microscopy described by Cooper demonstrated that 

nerve fibers are present in cortical bone [41]. Furthermore, data are accumulating that bone 

is densely innervated [40, 42–44]. Of note, Mach et al reported that the bone marrow had the 

greatest total number of sensory fibers, followed by mineralized bone and then periosteum 

[40]. Consistent with these earlier studies, we also showed that calcitonin gene-related 

peptide (CGRP)-positive sensory neurons innervate the mineralized bone and bone marrow. 

CGRP has been widely used as a marker for sensory neurons and implicated in migraine 

[45]. Mice lacking CGRP showed attenuated responses to nociceptive chemicals and 

inflammation [46].

The sensory neurons innervating bone are distal nerve fibers from a number of 

subpopulations of primary afferent sensory neurons associated with lumbar DRG (L3–L5) 

[40, 47]. These cell populations are largely subdivided by the presence of neurofilament 

(NF) 200-positive (A-δ) and CGRP-positive (A-δ or peptidergic C fibers). Bone can be 

further distinguished by the general lack of innervation by the non-peptidergic 

subpopulation of neurons that bind isolectin B4 (IB4) [47]. Though functional distinction of 
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these neurons is not fully understood, CGRP-positive peptidergic C-fibers detect noxious 

stimuli and are classified as nociceptors [48]. Recent studies demonstrated that CGRP-

positive sensory neurons exhibited the pathological sprouting in the presence of bone cancer 

[49]. Nerve growth factor (NGF) derived from cancer cells and stromal cells is likely 

responsible for the sprouting of sensory neurons, since anti-NGF neutralizing antibody 

blocked the sprouting and reduced CABP [49]. This pathological remodeling of the 

peripheral sensory fibers may exacerbate CABP, making control of CABP difficult. We 

observed similar sprouting of CGRP-positive sensory neurons in bone colonized by breast 

cancer cells and multiple myeloma cells (unpublished data). These results suggest that the 

products in cancer-colonized bone environment promote the sensory neurons innervating 

bone to remodel and progress CABP.

3.2. Acid-sensing receptor

Based on previous and our results, it is likely that the pathological acidic microenvironments 

created by protons/lactate secreted from bone-resorbing osteoclasts and bone-colonizing 

cancer cells up-regulate and activate acid-sensing nociceptors expressed on sensory neurons 

to evoke CABP. Two of the specific and representative pH-sensitive acid-sensing nociceptors 

that are related to acid-induced bone pain are the transient receptor potential channel-

vanilloid subfamily member 1 (TRPV1) and the acid-sensing ion channel 3 (ASIC3) [48].

3.2.1. Transient receptor potential channel-vanilloid subfamily member 1—The 

TRPV1/vanilloid receptor 1 (VR1)/capsaicin receptor, which was cloned from vertebrates by 

Caterina et al [50], is a family member of transient receptor potential (TRP) ion channels 

expressed on a subset of nociceptive sensory neurons. It is activated by heat (>42C) and acid 

(<pH 6.0) and is the only channel that is excited by the vanilloid capsaicin [50, 51]. In bone 

TRPV1 is found to express in osteoblasts and osteoclasts and regulate their differentiation 

and function [52].

Using a mouse model of inflammatory pain [53], we showed that TRPV1 was co-expressed 

on CGRP-positive sensory neurons in DRG. Mice with inflammation in their hind-paw 

exhibited a nociceptive behavior (thermal hyperalgesia) with elevated CGRP mRNA 

expression in the DRG. Treatment by acid (pH 5.5) excited primary DRG sensory neuron 

cells and increased CGRP mRNA expression and protein production in these cells. The 

specific antagonist of TRPV1, 5 -iodoresiniferatoxin (I-RTX), blocked the excitation and the 

acid-increased CGRP expression and production. Further, primary DRG cells isolated from 

TRPV1 −/− mice failed to show an increase in CGRP expression upon treatment with acid. 

Of importance, inflammatory pain was markedly diminished in TRPV1 −/− mice. These 

results collectively suggest that activation of TRPV1 in inflammatory acidic environment 

leads to an up-regulation of CGRP expression, which in turn further increases inflammation 

and pain. Thus, blockade of TRPV1, CGRP or both could be an effective pharmacological 

intervention for acid-associated inflammatory pain.

TRPV1 has been implicated in the pathophysiology of CABP [9, 11, 54]. In preclinical 

models of cancer pain, TRPV1 expression was increased in the ipsi-lateral DRG in the 

presence of cancer in bone [55, 56]. In support of the important role of TRPV1 in CABP, 
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TRPV1 gene disruption or TRPV1 antagonist reduces CABP [57]. Similarly, the specific 

TRPV1 antagonist I-RTX also suppressed CABP [56]. Of interest, the TRPV1 antagonist 

SB366791 was shown to potentiate analgesic effects of morphine on bone cancer pain [58]. 

These data suggest that suppression of TRPV1 activation under the acidic cancer 

environment is a promising therapeutic approach to attenuate CABP. However, preclinical 

and clinical studies revealed that TRPV1 antagonists induce hyperthermia as an adverse 

effect [59]. Attempts to develop or identify antagonists devoid of temperature effects have 

not been successful. In this context, it is noted that recent studies have shown that the 

expression and activity of TRPV1 on the DRG sensory neurons are up-regulated by 

transforming growth factor-β1 (TGF-β1) [60] and insulin-like growth factor-1 (IGF-1) [61]. 

Since TGF-β and IGF-1 are abundantly stored in bone and released as a consequence of 

bone resorption by cancer-activated osteoclasts, expression and activation of TRPV1 on the 

sensory neurons innervating bone may be modulated by these bone-derived growth factors. 

In fact, these studies showed that inhibition of TGF-β [60] or IGF receptor signaling [61] 

reduced CABP due to suppression of TRPV1 activation. Suppression of TRPV1 activity and 

expression by blocking the activity of growth factors released from bone may be an 

alternative approach to attenuate CABP.

3.2.2. Acid-sensing ion channel 3—ASIC3 is a pH sensor predominantly expressed in 

primary afferent sensory neurons [62, 63]. In DRG, ASIC3 expression was increased in 

inflammatory acidic conditions and co-expressed with CGRP in the sensory neurons 

innervating the knee joint, indicating ASIC3 contribution to acute arthritis pain [64]. ASIC3 

was also detected on the CGRP-positive sensory neurons innervating periosteal surface of 

bone [65]. In bone ASIC3 is present in monocytes, osteoclasts and osteoblasts [66]. 

However, its functional role in bone homeostasis is unclear.

A recent study that showed that an injection of the synthetic ASIC3 agonist, 2-guanidine-4-

methylquinazoline into mouse paw induced noxious behaviors in wild-type mice but not 

ASIC3−/− mice [67] provided the evidence that ASIC3 activation is sufficient to evoke pain 

[68]. However, the role of ASIC3 in CABP still remains elusive. We reported that ASCI3 

mRNA expression was up-regulated in DRG associated with CABP in a model of rat 

mammary tumor [55]. In support of our results, Qiu et al [69] recently showed ASIC3 

expression was elevated in DRG using a different model of rat mammary tumor. Although 

these results suggest that ASIC3 is involved in the pathophysiology of CABP, it needs to be 

shown that suppression of increased ASIC3 expression in DRG leads to reduced CABP and 

that CABP is alleviated in ASIC3 knockout mice. We have recently found that, upon acid 

treatment (pH 6.5), primary sensory neuron cells isolated from DRG displayed Ca2+ influx 

(unpublished data), which is a widely-used early indicator for sensory neuron excitation 

[70]. Of note, the specific ASIC3 antagonist APETx2 [71] inhibited Ca2+ influx, indicating a 

critical role of ASIC3 in sensory neuron excitation. Of interest, APETx2 was shown to 

reduce acid-induced and inflammatory pain due to complete Freund's adjuvant in rat [72] 

and slower the progression of the disease in a rat model of osteoarthritis [73]. It is intriguing 

to examine the effects of APETx2 on CABP.

ASIC3 senses mild extracellular acidification (pH 6.8–7.0) [63], while TRPV1 is activated at 

the pH lower than 6.0 [50, 51]. We reported TRPV1 was activated at pH 5.5 [53]. The pH of 
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the acidic environment created by cancer cells is shown to be 6.5–7.0 [31] and that by bone-

resorbing osteoclasts is assumed to be 4.0–4.5 [23]. Sensory neurons innervating bone may 

be excited and sensitized by discriminating mild and strong acidic extracellular 

microenvironment through ASIC3 and TRPV1 in the pathophysiology of CABP, 

respectively (Figure 3).

3.3 Other acid-sensing machineries potentially contributing to CABP

Transient receptor potential (TRP) ion channels are the large families of cellular sensors 

mediating taste perception, thermo-sensation, mechano-sensing and osmolality sensing by 

transducing various physical stimuli into neuronal signals in predominantly C and Aδ 
nociceptors in primary sensory neurons [74]. Further, TRP ion channels also mediate 

transduction of peripheral nociceptive stimuli into pain. Of interest, recent studies described 

that the members of TRP channels are involved in the regulation of skeletal homeostasis 

through affecting intestinal calcium absorption (TRPV6), renal calcium reabsorption 

(TRPV5), and differentiation of osteoclasts (TRPV1, TRPV2, TRPV4, TRPV5), 

chondrocytes (TRPV4) and osteoblasts (TRPV1) [52]. It is thus tempting to propose that 

these family members of TRP channels play a role in acid-induced CABP. However, current 

available evidence suggests that acid unlikely activates these TRPVs except for TRPV1.

TRP Ankyrin 1 (TRPA1) is a non-selective Ca2+ permeable cation channel that uniquely 

possesses 17 ankyrin repeat domains [74]. TRPA1 is predominantly expressed C and Aδ 
nerve fibers. Although still controversial, TRPA1 is proposed to be activated by noxious cold 

temperatures (< 18° C) and mechanical force and some studies reported that TRPA1 

deficient mice showed impaired behavioral responses to cold plate and mechanical stimuli. 

Expression of TRPA1 in bone cells has been unknown but a recent study demonstrated the 

expression of TRPA1 in human odontoblasts [75]. It is unclear whether TRPA1 is activated 

by acid and plays a role in CABP. Notably, however, most neurons that express TRPA1 also 

express TRPV1, raising the possibility that TRPA1 may modulate or partially share the acid-

sensing functions of TRPV1. In case this is proved to be the case, hyperthermia, which is a 

major obstacle in the development of TRPV1 antagonists, may not be a serious problem 

with TRPA1 antagonists.

TRP Melastatin 8 (TRPM8) is expressed in a subset of C and Aδ nerve fibers in DRG, 

trigeminal ganglion and nodose ganglion [74]. In bone, TRPM8 expression was shown in 

osteoblasts, however, its functional role is unknown [76]. TRPM8 is activated by cold 

temperatures (< 15 °C) and cooling compounds such as menthol and icilin and peppermint 

oil. In contrast, it is unclear whether TRPM8 is activated by acid. TRPM8 was initially 

cloned as a molecule that has high homology to a TRP-like channel that was identified in 

prostate cancers [74]. Later, it was found that increased expression of TRPM8 is correlated 

with the aggressiveness of a variety of cancers including prostate, lung, breast, gastric, 

ovarian and liver cancer and melanoma [77]. Since prostate, breast and lung cancers 

preferentially spread to bone and are frequently associated with CABP, it is plausible to 

speculate that TRPM8 contributes to the pathophysiology of CABP. The role of TRPM in 

CABP needs to be elucidated.
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4. Conclusion

Bone is a unique organ in which multinucleated giant osteoclasts continuously secrete 

protons to maintain bone homeostasis in physiological conditions [8]. The secretion of 

protons by osteoclasts is increased in response to the bone-modifying factors produced by 

bone-colonizing cancer cells [1, 17, 18]. Protons and lactate are also secreted by bone-

colonizing cancer cells as a consequence of elevated oxygen-independent glycolysis 

(Warburg effect) [13, 31]. In addition to autonomous secretion of protons, osteoclasts and 

cancer cells may further increase proton and lactate secretion in bone microenvironment that 

is relatively hypoxic [78]. Hypoxia is shown to up-regulate the expression and function of 

the plasma membrane proton/lactate transporters [31]. Therefore, it is likely that cancer-

colonized bone microenvironment readily falls into pathological acidosis and that the 

contribution of acid is more specific and critical in the pathophysiology of CABP than that 

of other types of pain. In addition, accumulating evidence indicates that the acidic 

extracellular microenvironments critically influence malignant behaviors of cancer including 

invasiveness, metastasis, and chemo- and radio-resistance and thus are associated with poor 

prognosis [79, 80]. Accordingly, suppression of the creation of acidic extracellular cancer-

colonized bone microenvironment through inhibition of the function of the proton/lactate 

transporters in osteoclasts and cancer cells seems likely to simultaneously inhibit cancer 

aggressiveness and CABP. Furthermore, pharmacological agents that interfere with the 

activation of acid-sensing nociceptors in sensory neurons associated with bone will be an 

effective and selective therapeutic means for CABP. Finally, development of new analgesic 

drugs for CABP is expected to reduce dosing of opioids that are currently the primary agent 

in the management of cancer pain but cause unwanted adverse effects. Control of CABP will 

be a challenging goal in the management of patients with cancers in bone.
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Highlights

• Osteoclasts secrete protons via membrane a3 V-H+-ATPase.

• Cancer releases proton/lactate via proton pumps and transporters.

• Extracellular environment of cancer-colonized bone is acidic.

• Sensory neurons expressing acid-sensing nociceptors innervate bone.

• Acidic environment evokes CABP by activating the nociceptors TRPV1 and 

ASIC3.
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Figure 1. Proton secretion by bone-resorbing osteoclasts
To dissolve bone minerals, mature osteoclasts release protons (H+) and chloride ions (Cl−) 

into the resorption lacunae via the plasma membrane (a3 isoform) vacuolar H+-ATPase 

proton pump [23] and chloride ion-proton anti-porter ClC-7 [24], acidifying the resorption 

lacunae to a pH of 4.5 [7]. Concomitantly, the lysosomal cysteine peptidase cathepsin K [25] 

degrades bone matrix including type I collagen.

RANKL stimulates osteoclastogenesis and bone resorption and prolongs survival by 

inhibiting apoptosis. CAII: Carbonic anhydrase II, ClC7: Plasma membrane chloride ion-

proton anti-porter, RANK: receptor activation of NF-κB, RANKL: receptor activation of 

NF-κB ligand, V-H+-ATPase: Plasma membrane (a3 isoform) vacuolar H+-ATPase proton 

pump,
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Figure 2. Vicious cycle between osteoclasts and cancer cells in bone
Bone-derived growth factors (GFs) such as insulin-like growth factors (IGF) and 

transforming growth factor-β (TGF-β), promote proliferation and inhibit apoptosis and 

stimulate epithelial-mesenchymal transition (EMT) and production of bone-modifying 

cytokines such as parathyroid hormone-related protein (PTH-rP), prostaglandin E2 (PGE2) 

and interleukin-11 (IL-11) in bone-colonizing cancer cells, representing the concept of 

“Seed and Soil” theory proposed by Paget [81]. These bone-modifying factors further 

stimulate osteoclastic bone resorption via activation of receptor activator of nuclear factor-

κB (RANKL)/RANK pathway in osteoblasts and osteoclasts, thereby further increasing 

release of bone-stored growth factors, thus establishing “vicious cycle” between bone-

resorbing osteoclasts and bone-colonizing cancer cells [1, 17, 18]. Bone-colonizing cancer 

cells reside in stromal cell niche via cell-cell contact that is mediated by cell adhesion 

molecules (CAMs) and stay dormant or undergo EMT and acquire further aggressiveness. 

Role of osteocytes in bone metastasis and CABP needs to be elucidated. CAM: cell adhesion 

molecule, EMT: Epithelial-mesenchymal transition, RANK: receptor activation of NF-κB, 

RANKL: receptor activation of NF-κB ligand,
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Figure 3. Acid-evoked cancer-associated bone pain (CABP)
Bone-resorbing osteoclasts secrete protons via plasma membrane a3 V-H+-ATPase to 

degrade bone minerals. Bone-colonizing cancer cells also release protons/lactate via MCT, 

a3 V-H+-ATPase and other proton pumps including Na+/H+ exchangers, anion exchangers, 

carbonic anhydrases, Na+/HCO3- co-transporters and HCO3-transporter to avoid 

intracellular acidification due to Warburg effect. The pH of the acidic environment created 

by cancer cells and bone-resorbing osteoclasts is assumed to be 6.5–7.0 [31] and 4.0–4.5 

[23], respectively. The acidic microenvironment directly excites and sensitizes sensory 

neurons innervating bone via activation of the acid-sensing nociceptors, TRPV1 and ASIC3, 

transducing noxious signals to via DRG (primary afferent neuron) and spinal cord 

(secondary afferent neuron) and evoke bone pain in brain.

TRPV1 activation promotes eCa2+ influx into cytoplasm and induces propagation of 

intracellular signaling molecules including calmodulin kinase II (CaMKII) and the 

transcription factor cAMP responsive element-binding protein (CREB), leading to 

transcriptional activation of target molecules [52]. TRPV1 activation also propagates Erk 

and Akt presumably to prevent apoptosis of neuron cells. Blockade of TRPV1 activation 

under the acidic cancer environments may be a promising therapeutic approach to alleviate 

CABP.

ASIC3: Acid-sensing ion channel 3, CAMKII: Calmodulin kinase II, CGRP: calcitonin 

gene-related peptide, CREB: cAMP responsive element-binding protein, DRG: Dorsal root 

ganglion, MCT: Monocarboxylate transporter, TRPV1: Transient receptor potential channel-

vanilloid subfamily member 1
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