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ABSTRACT

EFICAz (Enzyme Function Inference by Combined
Approach) is an automatic engine for large-scale
enzyme function inference that combines predictions
from four different methods developed and optimized
to achieve high prediction accuracy: (i) recognition
of functionally discriminating residues (FDRs)
in enzyme families obtained by a Conservation-
controlled HMM Iterative procedure for Enzyme
Family classification (CHIEFc), (ii) pairwise sequence
comparison using a family specific Sequence Identity
Threshold, (iii) recognition of FDRs in Multiple Pfam
enzyme families, and (iv) recognition of multiple
Prosite patterns of high specificity. For FDR (i.e. con-
served positions in an enzyme family that discrimin-
ate between true and false members of the family)
identification, we have developed an Evolutionary
Footprinting method that uses evolutionary informa-
tion from homofunctional and heterofunctional multi-
ple sequence alignments associated with an enzyme
family. The FDRs show a significant correlation with
annotated active site residues. In a jackknife test,
EFICAz shows high accuracy (92%) and sensitivity
(82%) for predicting four EC digits in testing
sequences that are ,40% identical to any member
of the corresponding training set. Applied to
Escherichia coli genome, EFICAz assigns more
detailed enzymatic function than KEGG, and
generates numerous novel predictions.

INTRODUCTION

A main goal in the post-genomic era is to identify the function
of each newly determined sequence (1). About 40% of the
sequences in genomic databases correspond to open reading
frames whose annotated functions are missing, incomplete or
incorrect (2). Unfortunately, the experimental study of these
uncharacterized sequences is costly and time-consuming.
Thus, computational methods for the inference of protein
function are of great importance to both assist in as well as
accelerate the annotation process (3).

Although protein function can be defined on many levels,
and predicted based on different properties, here we focus on
the inference of enzyme function from sequence. Enzymes
represent the most versatile group of all proteins, catalyzing
the chemical reactions associated with the metabolism of all
living organisms. They constitute a significant fraction of a
genome; in higher eukaryotes, the fraction of genes encoding
enzymes may be 25–30% (4). The three basic approaches to
the inference of enzyme function from sequence are based on
(i) homology transfer, (ii) presence of a pattern or motif, and
(iii) identification of functional residues.

Homology transfer is the most widely used approach for
functional annotation (3). It involves two steps: the detection
of homology and the inference of function from homology.
With the development of sensitive algorithms such as FASTA
(5), BLAST (6), PSI-BLAST (7) and Hidden Markov Models
(HMM) (8), the ability to recognize evolutionarily related
proteins (i.e. homologs) has been greatly improved. In con-
trast, the inference of function from homology remains error
prone (9) and is only reliable at high levels of sequence
identity (3). For example, we have previously shown that,
on average, 60% pairwise sequence identity is required to
transfer the four EC digits of an enzyme with at least 90%
accuracy (10).

A different approach for the inference of enzyme function
from sequence is based on the presence of patterns or motifs
associated with functional sites. Currently, there are a number
of pattern or motif databases developed for functional annota-
tion, such as Prosite (11), PRINTS (12) and BLOCKS (13).
However, these databases are not specifically developed to
infer enzymatic function. In fact, many Prosite patterns asso-
ciated with the active site of a specific enzyme are also found
in sequences of many unrelated enzymes. For example, we
find that the Prosite pattern Aldehyde dehydrogenases gluta-
mic acid active site (PS00687) is present in sequences of
24 different enzymes that correspond to all major reaction
types. Recently, a method has been developed aimed at
improving the specificity of poorly performing Prosite pat-
terns, but it is limited to those cases in which structural infor-
mation is available (14).

The biological activity of an enzyme is typically determined
by a small number of functional residues, which are usually
conserved. Thus, rather than only examining the sequence
similarity over the entire sequence, a more sensitive means
of inferring function is to also examine whether the residues
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responsible for the given function are conserved. Unfortu-
nately, the functional residues of most enzymes are unknown.
Therefore, it is necessary first to determine the residues more
likely to characterize an enzyme’s function, and then to ana-
lyze their degree of conservation. Most methods for the pre-
diction of functional residues involve the selection of
conserved residues in a family of proteins, where the families
are identified on the basis of sequence and/or structural infor-
mation (15–19). Thus, these methods implicitly assume that
proteins above a certain SIT have the same function. For
example, the ‘evolutionary trace’ method classifies proteins
in sub-families mainly based on sequence identity and iden-
tifies residues that are conserved in individual sub-families but
vary between different sub-families, which are likely to be
functionally important (17). However, considering that
some enzyme functions diverge even when their sequence
identity is high, the classification of proteins by only sequence
identity may not be accurate enough to infer functional simi-
larity, and human intervention might be required (16).

The Pfam-based functional subtype analysis developed by
Hannenhalli and Russell (20) avoids the problem of inconsist-
ency between sequence and functional similarity by using
annotation to define functional sub-families. Their method
starts with a Pfam domain (21) associated with enzyme
sequences and aims at identifying positions in the domain
that distinguish among subtypes of the enzyme with different
substrate specificities. However, there are potential problems
associated with this method. First, a Pfam family is a collec-
tion of evolutionarily related sequences that generally include
both enzymes and non-enzymes, the latter being difficult to
classify into subtypes. Second, in practice, a Pfam family
corresponds to a single domain; in contrast, an enzymatic
function may require participation of multiple domains.
Thus, using a single Pfam domain may not be sufficient to
identify the correct subfamily-specific residues.

Another limitation common to most methods used to iden-
tifying functional residues is related to the large number of
conserved residues found in protein families having a small
number of known members or whose members are mostly
close homologs. The greater the number of conserved residues
in a family, the more difficult it is to select those responsible
for the function of interest.

The goal of the present work is to address the limitations of
the current approaches and to develop new methods for highly
accurate genome-scale enzyme function inference. Rather
than using sequence similarity to infer functional similarity,
we directly use the functional annotation of proteins and define
each enzyme family as a group of proteins that are evolution-
arily related and share four or three digits of their EC numbers.
Thus, a given EC number can be related to more than one
enzyme family. We recognize of course that the EC classifica-
tion itself can have problems (22); nevertheless, it is conve-
nient. Employing an automatic Conservation-controlled
HMM Iterative procedure for Enzyme Family classification
(CHIEFc), we have classified all the sequences in the ENZYME
database (23), and have obtained multiple sequence alignments
(MSAs) and HMMs associated with different enzyme func-
tions. Next, we apply an ‘Evolutionary Footprinting’ (EF)
approach to identify residues in an enzyme family that can
discriminate between sequences having the specified EC
number and those sequences with other functions (different

EC numbers or non-enzymes). Structural information is not
required in any stage of the method.

Our EF method tackles the problem of selecting the func-
tionally discriminating residues (FDRs) even for enzyme
families with a high number of conserved residues, by
using two sets of MSAs. The first is the MSA of the classified
family (homofunctional MSA). The second and larger MSA is
obtained by running the associated HMM against the non-
redundant combination of the Swiss-Prot (24), TrEMBL
(24) and KEGG (25) sequence databases (heterofunctional
MSA). The sequences in this (possibly) heterofunctional
MSA have a close evolutionary relationship with those in
the homofunctional MSA, but they do not necessarily have
the same function. Then, for each position in the HMM, we
compute a combined conservation score based on both MSAs.
Finally, starting from the position with the highest conserva-
tion score in the HMM, we gradually select residues that
specifically recognize the true members of the enzyme family.

The EF method is based on two hypotheses. First, the diver-
gence of enzyme function is achieved by the modification of
an existing active site in the ancestral protein (26). In other
words, homologous proteins might share the same architecture
of the active site, although they employ different residues to
perform different functions. Thus, in a homofunctional or
heterofunctional MSA, the active site positions should have
lower entropy than the others. Second, it is also possible that
the divergence of enzyme function could be achieved by the
formation of a new active site at a different position in the
sequence that is unrelated to the active site of the ancestral
protein (27). If we were to exclusively consider the hetero-
functional MSA, we might find positions that are only con-
served in a set of sequences functionally unrelated to the
original enzyme family. To avoid this pitfall, we focus on
those positions that are also conserved in the original family.

By applying the EF method, we show that the number of
FDRs in a given enzyme family is significantly reduced, com-
pared with FDRs identified by only using homofunctional
MSAs. Moreover, we show that the FDRs identified by the
EF method have a strong correlation to known functionally
important residues, such as enzyme active site residues.
Besides the CHIEFc family based EF approach to identify
FDRs, we have developed and benchmarked in a jackknife
test, three other enzyme function inference methods based on
(i) pairwise sequence comparison using a family specific SIT,
(ii) identification of FDRs in Pfam families, and (iv) Multiple
Prosite pattern recognition. The results of the jackknife test
show that the CHIEFc family based EF approach to identify
FDRs can extend the limit of pairwise comparison to remote,
yet functionally similar sequences and outperforms the other
compared methods. We further improve the accuracy of the
Pfam-based and the Prosite-based methods by applying FDR
recognition on multiple rather than single Pfam domains and
by using only highly specific Prosite patterns, respectively. We
have combined these four methods to develop EFICAz, an
automatic engine for large-scale enzyme function inference
that significantly outperforms any individual method. In the
jackknife test, EFICAz shows an accuracy of 92% and a
sensitivity of 82% for predicting four EC digits in testing
sequences that are <40% identical to any member of the
corresponding training set. By way of application, we have
carried out the genome-wide enzyme function inference of
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the Escherichia coli proteome using EFICAz. In total, besides
881 enzyme sequences already included in our database, we
assign four (three) digit EC numbers to additional 132 (234)
sequences, in contrast to 45 (277) additional sequences
annotated in the KEGG database.

METHODS

Collection of enzyme sequences

All databases containing biological information derived from
computational analysis are error-prone (28), and even annota-
tions based on experimental evidence have been refuted in a
number of cases (29). However, it is reasonable to use as a
reference for functional annotation a database manually
curated by numerous experts, such as Swiss-Prot (24).
Thus, we adopt the EC number assignments for Swiss-Prot
entries provided by the Enzyme database (23), as the standard
of truth for our study. Release 33 of the Enzyme database
of October 2003 includes 4208 enzymatic reactions;
1861 of them are associated with sequences, corresponding
to 41 225 sequences in total. Among those sequences, 2375 are
annotated as ‘fragment’ by Swiss-Prot (Release 42); to avoid
ambiguity, they are not included in our analysis. Thus, we
obtain 38 850 sequences to construct the function-oriented
enzyme family database; they correspond to 1861 distinct full
four EC digits and 188 first three EC digits, respectively.

CHIEFc and MSA construction

We divide the 38 850 enzyme sequences into 1861 and 188 EC
groups according to their full four EC digits and the first three
EC digits, respectively. Enzyme sequences associated with
multiple EC numbers are included in every corresponding
EC group. For each EC group, we apply the procedure
depicted in Figure 1. First, after classification by EC number,
we further classify the sequences by evolutionary relationship,
employing complete linkage clustering (30) to divide them
into subgroups using a cut-off of 30% sequence identity.
With complete linkage clustering, all objects in a cluster
must be similar to one another above a certain threshold,
and no object can be in more than one cluster. Pairwise
sequence comparisons are carried out by the Myers/Miller
(MM) global alignment algorithm (31), under which the
amount of memory required to align two sequences becomes
a linear rather than a quadratic function of the lengths of the
sequences. Then, we construct an MSA using Clustal W (32)
based on the subgroup that maximizes the ‘number of
sequences/average sequence identity’ ratio (seed subgroup).
The rationale behind this criterion to select the seed subgroup
is that a larger and more diverse set of sequences will allow the
construction of more robust HMMs in the next step of the
procedure. To reduce redundancy in the MSA, only sequences
below 85% pairwise sequence identity are used. From this
MSA, we build an HMM using the ‘hmmbuild’ program
obtained from the HMMER software package (21) using the
global option, followed by application of the ‘hmmcalibrate’
program to tune the statistical E-value for improvement of
search sensitivity. We run the ‘hmmsearch’ program with
this HMM to search against all the sequences in the original
EC group (1315 and 2813 sequences for the most populated

four EC digit and three EC digit groups, respectively) and
select sequences with an E-value <0.01. Using the HMM as
a template, we obtain an HMM-based MSA by grouping the
alignments of the selected sequences, which is used to build
a new HMM. We iterate the HMM construction and search
process until either sequence convergence (i.e. no new
sequences with an E-value <0.01 are found) or loss of residue
conservation (i.e. no ‘potential active site’ residues are com-
pletely conserved in an MSA) is reached. Here, a ‘potential
active site’ residue is defined as any charged or polar amino
acid plus phenylalanine, i.e. any amino acid type except Gly,
Pro, Ala, Val, Leu, Met and Ile, because these residues are
not observed in any active site, as annotated by Swiss-Prot
(data not shown). The obtained HMM and MSA define a
family for the EC group under analysis. After removing sub-
groups whose sequences have all been added to the seed sub-
group, we select the next subgroup with the highest ‘number of
sequences/average sequence identity’ ratio and repeat the
above-described procedures to define families until all the
sequences in the EC group are classified. In the end, for each
EC group, we obtain a number of families whose sequences
all have the same EC number and are clearly evolutionarily
related. Moreover, for families with enough sequences, we
obtain an MSA that has at least one completely conserved
‘potential active site’ residue and also a corresponding

Figure 1. Overview of the procedure to build enzyme families by CHIEFc.
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HMM. We name the protocol CHIEFc, for Conservation-
controlled HMM Iterative procedure for Enzyme Family
classification.

EF method to select FDRs in enzyme families

We have developed an EF method to select FDRs in enzyme
families derived by CHIEFc. The EF method requires two
MSAs for each enzyme family: a homofunctional MSA and
a heterofunctional MSA. The homofunctional MSA is
the original MSA associated with the CHIEFc family. The
heterofunctional MSA is obtained by searching with the HMM
of the family (E-value <0.01) against a non-redundant combin-
ation of the Swiss-Prot (Release 42), TrEMBL (Release 25)
and KEGG (Release 28) databases (1 383 915 sequences), and
grouping the alignments of the selected homologous
sequences. Homologous sequences in the heterofunctional
MSA might have functions different from the one associated
to the homofunctional MSA. Since both types of MSAs are
based on the same HMM, we calculate a combined conserva-
tion score for each position x in the corresponding HMM:
C(x)combined = C(x)homofunctional + C(x)heterofunctional. Here,
C(x) = e�H(x), and H(x) is the Shannon entropy:
H xð Þ =

P
i�Pi xð ÞlogPi xð Þ. Pi(x) is the observed frequency

of amino acid type i in position x of the corresponding MSA.
Based on our hypothesis, mutations of functional residues might
be frequent in the heterofunctional MSA because of functional
divergence. In contrast, they must be rare in the homofunctional
MSA because of the maintenance of the same function. Thus,
we use 20 amino acid types to calculate the sequence entropies
in the homofunctional MSA. However, for the heterofunctional
MSA, we use 10 amino acid groups derived from the
BLOSUM62 mutation matrix (33); they are A, G, P, C, (I, L,
M, V), (D, E), (S, T), (N, H), (F, W, Y), and (R, Q, K), respec-
tively. Then, we rank the conservation degree of each position
by their Z-score: ZC = C � sd Cð Þ=C. Here, C and sd(C) are the
average and the SD of the conservation degree, respectively.

Sequences in the heterofunctional MSA whose biochemical
functions differ from the one of the original enzyme family
play a critical role in the EF method, although not all the
sequences in this MSA have available functional annotation.
We exploit the functional information provided by Swiss-Prot
to prepare three sets of sequences: ‘enzymes’, ‘incomplete
enzymes’ and ‘non-enzymes’. The ‘enzymes’ set includes
the 38 850 enzyme sequences selected as described above.
The ‘incomplete enzymes’ set comprises 8495 Swiss-Prot
sequences that have missing EC digits and do not contain
‘hypothetical’, ‘putative’, ‘probable’, ‘by similarity’ or ‘by
homology’ in the DE (definition) line, or that have complete
EC numbers but are annotated as ‘fragment’. The ‘non-
enzymes’ set contains 25 096 sequences that fulfill the follow-
ing conditions: (i) they lack EC number information, (ii) they
do not contain ‘hypothetical’, ‘putative’, ‘probable’, ‘by simi-
larity’ or ‘by homology’ in the DE line, (iii) they do not
contain any enzyme name in the KW (keyword) line, and
(iv) they can be detected with E-value <10 by running a
three-iteration PSI-BLAST search (7) of any sequence in
the ‘enzymes’ set against the complete Swiss-Prot database
(135 694 sequences). By imposing the fourth condition, we
mimic the real annotation situation, in which, typically, a
database search is first performed, and then a criterion is

applied to identify the true hits. The list of Swiss-Prot
sequences included in the ‘enzymes’, ‘incomplete enzymes’
and ‘non-enzymes’ sets can be found at http://www.
bioinformatics.buffalo.edu/eficaz/index.html.

We classify the sequences in the heterofunctional MSA as
‘true’ members, ‘false’ members or ‘unknown’ members of
the enzyme family. A sequence is considered a ‘true’ member
if it is included in the ‘enzymes’ set and its EC number
matches with one of the enzyme family, and it is considered
a ‘false’ member if (i) it is included in the ‘incomplete
enzymes’ or ‘enzymes’ sets and its (partial) EC number
does not match with one of the enzyme family of interest,
or (ii) it is included in the ‘non-enzymes’ set. The rest of
the sequences for which there is no functional annotation
available are considered ‘unknown’.

In the EF method, we evaluate the different positions of the
homo and hetero functional MSAs, following a descending
order of conservation Z-score (ZC), to seek the minimal set of
residues that can discriminate ‘false’ from ‘true’ members of
the enzyme family in the heterofunctional MSA. We restrict
the analysis to positions in which a residue of the ‘potential
active site’ type is conserved in at least 50% of the sequences
of the homofunctional MSA. This residue (and other amino
acid types in its BLOSUM62 group, if they appear in the
analyzed position of the homofunctional MSA) is considered
a tentative FDR. Thus, conservative substitutions (as defined
by the BLOSUM62 group) observed in the analyzed
position of the homofunctional MSA are considered valid
alternatives for this tentative FDR. Sequences containing or
lacking this/these amino acid type/s in the corresponding posi-
tion of the heterofunctional MSA are classified as ‘positives’
or ‘negatives’, respectively. Then, we evaluate the functional
discrimination ability of the residue/s in the given position by
calculating (i) prediction accuracy = (true positives)/(true
positives + false positives), (ii) prediction sensitivity = (true
positives)/(true positives + false negatives), and (iii) Matthews
correlation coefficient (34), MCC = ðTP · TN � FP · FN)=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ðTP + FNÞðTP + FPÞðTN + FPÞðTN + FNÞ�
p

. Here, TP is
true positives, TN is true negatives, FP is false positives and
FN is false negatives.

If the accuracy is 100%, i.e. the residues can discriminate all
‘false’ members, we promote them from tentative to validated
FDRs for the enzyme family, and stop evaluating other posi-
tions. If not, we keep these positions and continue to the next
one according to a descending order of ZC. The procedure
finishes when we find the minimal set of FDRs corresponding
to a prediction accuracy of 100%. We also account for a slight
fraction of functional residue misalignments that might hap-
pen in true sequences. Thus, sequences in the heterofunctional
MSA having a mismatch in a single discriminating position
that can be fixed by allowing one residue shift are still
considered ‘positives’, provided that the FDRs are exactly
matched in all the other positions.

In 7% of the enzyme families, it is not possible to achieve
100% accuracy even when all the positions of the MSAs are
analyzed. In those cases, we stop when the ZC of the position
under analysis drops below zero, and then we trace back to find
the minimal set of FDRs that maximizes the product of predic-
tion accuracy and the MCC (this product ranges from �1 to 1,
as the MCC does, but emphasizes the accuracy of the
predictions). For each of these families, we record all the
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mismatched EC numbers, i.e. the EC numbers of the false
positives identified by the FDRs. Thus, a list of mismatched
EC numbers is associated with each enzyme family that does
not achieve 100% accuracy.

Enzyme function inference by CHIEFc family
based FDR recognition

We denote the application of the CHIEFc family based FDRs
obtained using the EF method to infer the EC number of a
query sequence as ‘CHIEFc family based FDR recognition’.
The CHIEFc family based FDR recognition is a two-step
procedure. The first step is the scanning of the whole enzyme
family library to detect the families that predict the query
sequence as their putative member. The query sequence is
provisionally predicted as member of a given family if it
satisfies two conditions: (i) it is recognized by the correspond-
ing HMM with E-value <0.01 and (ii) it matches the set of
associated FDRs for the specified family. Let us call f an
enzyme family that predicts the query sequence as its member
in the first step of the procedure. After this first step, a given
query sequence can be provisionally assigned to have more
than one EC number. The second step is the simultaneous
analysis of the provisional predictions to decrease the number
of erroneous multiple assignments. Each predicted EC number
associated to an enzyme family f whose FDRs show 100%
accuracy in discriminating known functionally similar and
dissimilar sequences is included in the final prediction for
the given query sequence. For each enzyme family f that
does not achieve 100% accuracy, we retrieve its corresponding
list of mismatched EC numbers and check whether any of
them coincides with any of the EC numbers provisionally
assigned to the query sequence in the first step. If that is
the case, the EC number associated to f is not included in
the final prediction for the given query sequence. By this
procedure, EC numbers that we find difficult to be accurately
distinguished from each other are not assigned to the same
query sequence. Therefore, the accuracy is improved and the
ability to detect true multienzymes, i.e. sequences having
multiple enzymatic functions, is not affected.

Relationship between FDRs and annotated active site
residues

We use the functional annotation from Swiss-Prot to under-
stand the biological significance of the FDRs detected using
the EF method. We first select Swiss-Prot sequences whose FT
(feature) lines contain the ACT_SITE (active site residue) key
name, but lack the keywords ‘by similarity’, ‘potential’ or
‘probable’ in the description field. By checking the 38 850
sequences in the ‘enzymes’ set, we obtain 1859 sequences
with annotated active site residues, which correspond to
367 and 299 four EC digits and three EC digits CHIEFc
enzyme families, respectively. For each of these two sets of
enzyme families, we determine Fobs, the fraction of families
whose FDRs include at least one annotated active site residue.
Then, we perform a 1 000 000-repetition simulation to deter-
mine Fr, the expected value of Fobs when the FDRs are selected
at random instead of using the EF method. Each repetition
consists of two steps: (i) we randomly select ni out of mi

residues for each enzyme family i, where ni is the number of
FDRs for the family i and mi is the total number of residues of

the ‘potential active site’ type in the MSA of family i, and
(ii) we calculate Fr, the fraction of families whose ni randomly
selected residues match at least one annotated active site
residue of the family i. Finally, we average the 1 000 000 Fr

values to obtain Fr. The increase in Fobs over Fr is assessed as
a Z-score: ZF = Fobs � sd Frð Þ=Fr, where sd(Fr) is the SD of Fr.

Enzyme function inference by pairwise sequence
comparison

For enzyme function inference by pairwise sequence compar-
ison, we derive an enzyme family-specific SIT for each
CHIEFc family in our library, according to our previous
work (10). The SIT for a given enzyme family is a discrete
sequence identity value t that can vary from 20 to 90%, with a
10% increment. It is defined as the minimum value that satis-
fies the following two conditions: (i) on comparing with every
member of the family, there are no sequences in Swiss-Prot
having a different function (enzyme or non-enzyme) with
sequence identity above t, and (ii) there is at least one pair
of family members with sequence identity in the [t, t + 10]
interval. When there is only one sequence in a CHIEFc family,
we define the corresponding SIT as 60 and 40% for four EC
digits and three EC digits families, respectively. These values
allow an average of 90% accuracy for enzyme functional
inference purely based on pairwise sequence comparison
(10). We predict a query sequence as a member of a given
family when it has a sequence identity to any member of the
family greater than the corresponding SIT. We denote this
approach as ‘CHIEFc family specific SIT evaluation’.

Enzyme function inference by Prosite pattern
recognition

For ‘Multiple Prosite pattern recognition’, we first prepare a
list of Prosite (Release 18) (11) patterns/profiles associated
with enzyme functions. We run the ‘ps_scan.pl’ program
(obtained from the Prosite distributed package and used
with default settings) to search the enzyme-function related
patterns/profiles against the ‘enzymes’ set of sequences.
Then, we analyze all the matches and define a combination
of patterns/profiles to detect each enzyme function. We
exclude 67 patterns that do not have functional discrimination
ability because they are present in sequences belonging to
more than 20 different enzymes. The complete list of
excluded Prosite patterns can be found as Supplementary
Material.

We have modified the Multiple Prosite pattern recognition
approach to increase its accuracy. For each combination of
Prosite patterns associated with enzyme functions, we carry
out an extensive search against Swiss-Prot sequences. Only
those combinations of Prosite patterns that are specific for a
unique EC number are selected for functional inference. For
example, sequences related to EC.1.1.1.1 are associated with
four combinations of Prosite patterns: (i) PS00044 and
PS00059, (ii) PS00059, (iii) PS00060 and PS00913, and
(iv) PS00913. However, after extensive search, only a com-
bination of PS00044 and PS00059 is found to be specific to
EC.1.1.1.1. We denote this modification of the Multiple
Prosite pattern recognition approach as ‘High specificity
multiple Prosite pattern recognition’. A list of Prosite pattern
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combinations specific for four and three digit EC numbers is
available as Supplementary Material.

Enzyme function inference by Pfam family based
FDR recognition

The EF method is not restricted to only CHIEFc families to
identify FDRs. In fact, we also apply the EF method to Pfam
domains (21) that are associated with enzyme functions to
identify the FDRs corresponding to specific enzyme functions.
We denote this approach as ‘Single Pfam family based FDR
recognition’.

To construct the Pfam domain based enzyme family library,
we first carry out an extensive search with the sequences in the
‘enzymes’ set (38 850 sequences) against ‘Pfam_ls’, the Pfam
HMM library of global alignment models (Release 9). For the
search, we employ the ‘hmmpfam’ program from the
HMMER software package, using an E-value <0.01 to detect
a hit. Of 5724 HMMs in the ‘Pfam_ls’ library, 1623 are asso-
ciated with enzyme sequences. Thus, for each enzyme func-
tion, we have a set of single Pfam domain based MSAs (the
homofunctional MSAs) and the corresponding HMMs. Then,
we obtain the heterofunctional MSAs by searching the HMM
of the corresponding Pfam domain against the non-redundant
combination of the Swiss-Prot, TrEMBL and KEGG data-
bases. Next, we apply the EF method to obtain FDRs in
every Pfam domain for each of its corresponding enzyme
functions. The application of the ‘Single Pfam family based
FDR recognition’ approach for enzyme function inference of a
query sequence is performed the same as that in the ‘CHIEFc
family based FDR recognition’ approach.

We have modified the ‘Single Pfam family based FDR recog-
nition’ approach to increase its accuracy by using a combination
of domains rather than a single one. We denote this modification
as ‘Multiple Pfam family based FDR recognition’. Since a
significant fraction of the enzymes are multidomain proteins,
very often an enzyme sequence is classified as a member of
different Pfam families, even when only one domain might be
involved in catalysis. Even more, enzyme sequences sharing
the same EC number may be associated with different combi-
nations of Pfam domains. In this approach, we first collect all
different combinations of Pfam domains observed in enzyme
sequences with a given EC number. Then, we remove those
combinations that include at least one domain whose corres-
ponding Pfam family associated FDRs do not achieve 100%
accuracy. Thus, we obtain a list of the observed combinations of
accurate Pfam families that concurrently detect the enzyme
sequences of a given EC number. To assign an EC number
to a query sequence, we require the sequence to be detected
as ‘positive’ by all the Pfam families that are included in at least
one of the combinations of domains in the list.

EFICAz

In EFICAz, we combine the predictions of four independent
enzyme function inference methods: (i) CHIEFc family based
FDR recognition, (ii) CHIEFc family specific SIT evaluation,
(iii) High specificity multiple Prosite pattern recognition, and
(iv) Multiple Pfam family based FDR recognition. Since the
four methods are highly accurate and their predictions do
not overlap completely between each other, EFICAz infers
a particular enzyme function when one or more of the

four component methods predicts that enzyme function.
Furthermore, by requiring the consensus of two or more com-
ponents of EFICAz to predict a particular enzyme function, we
can increase the confidence of the predictions. We term this
set of predictions, the ‘higher confidence’ subset of EFICAz.
We have implemented EFICAz as a Web server at http://
www.bioinformatics.buffalo.edu/eficaz/.

Benchmark of enzyme function inference by
jackknife test

We carry out a jackknife test to benchmark different
approaches for enzyme function inference. We prepared train-
ing and testing supersets of sequences based on the ‘enzymes’,
‘incomplete enzymes’ and ‘non-enzymes’ sequence sets.
Because some enzyme functions have only a few sequences,
for benchmark purposes, we select those four digits EC num-
bers that have more than 10 sequences each (684 EC numbers),
which correspond to 34 823 sequences in total (90% of the
sequences in the ‘enzymes’ set). About 3% (1017 sequences)
of these 34 823 enzyme sequences are multienzymes, mostly
linked to two EC numbers (836 sequences). We randomly
select 80% of the 34 823 enzyme sequences to be included
in the training superset; the remaining 20% is included in the
testing superset. Similarly, we randomly select 80 and 20% of
the 25 096 sequences in the ‘non-enzymes’ to be included
in the training and testing supersets, respectively. All the
8495 sequences in the ‘incomplete enzymes’ set are included
in the training superset.

The training set for a given EC number is defined as the
collection of enzyme sequences from the training superset that
belongs to that EC number. The testing set for a given EC
number is composed of those sequences that can be detected
with E-value <10 by running a three-iteration PSI-BLAST (7)
search of each member of the corresponding training set
against the sequences in the testing superset. We train and
test the following enzyme function inference approaches:
(i) CHIEFc family based FDR recognition, (ii) CHIEFc family
specific SIT evaluation, (iii) Multiple Prosite pattern recogni-
tion, (iv) High specificity multiple Prosite pattern recognition,
(v) Single Pfam family based FDR recognition, (vi) Multiple
Pfam family based FDR recognition, and (vii) EFICAz.

We reduce the bias resulting from enzyme families with
a large number of sequences by calculating the average
performance per EC number (accuracy, sensitivity and
MCC). Furthermore, to reduce the bias resulting from the abun-
dance of closely related homologous sequences, for each EC
number, we first select the testing sequences whose sequence
identities to any member of their corresponding training sets
are not higher than a given limit. Then, based on the selected
testing sequences, we calculate the performance of each
method for each of those EC numbers. Finally, we report the
accuracy, sensitivity and MCC values for each method, at dif-
ferent levels of maximal testing to training sequence identity,
averaged per EC number. The reported values are the averages
of three repetitions of the jackknife analysis.

Genome-wide enzyme function inference on
E.coli genome

The sequences of the protein coding genes for the genome-
wide enzyme function inference on the E.coli K-12 proteome
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by EFICAz are retrieved from the KEGG database (Release
28). We compare our prediction results with the annotation of
KEGG (Release 28) and Swiss-Prot (Release 42) databases.
We select KEGG database for comparison instead of other
E.coli annotation databases, because KEGG collects and
combines information from several public sources (including
organism-specific databases) that is subjected to internal
reannotation for linking to metabolic pathways and EC num-
ber assignment (25). Thus, KEGG provides EC number infor-
mation for many genes that are annotated with enzyme
descriptions in other databases, but lack explicit EC numbers.

RESULTS

Enzyme family classification

By applying CHIEFc to the sequences in the Enzyme database,
we have obtained 2944 four EC digits and 2054 three EC digits
enzyme families. Most four EC digits enzyme types corres-
pond to unique four EC digits families (1479 out of 1861
different four EC digits), while only 36 out 188 three EC digits
enzyme types correspond to unique three EC digits families.
The detailed enzyme classification results can be found at
http://www.bioinformatics.buffalo.edu/eficaz/.

In 20% of the cases, a four EC digit enzyme is related to
multiple families. This is due to three different reasons, the
first being convergent evolution. For example, we classify
EC 1.1.1.1 (Alcohol dehydrogenase) into three families,
which is consistent with the Pfam classification of this
enzyme: ‘ADH_zinc_N’, ‘adh_short’ and ‘Fe-ADH’. These
three families do not share any sequence or structural simi-
larity and do not interact with each other. The second reason is
related to our family construction procedure. We require at
least one ‘potential active site’ residue to be completely con-
served in the MSA associated with an enzyme family. Accord-
ingly, if merging two families would result in the loss of
conservation, then we separate them into different families.
For example, EC 2.7.4.3 (Adenylate kinase) is classified into
two families, which are evolutionarily related and have similar
structure, but combining them would result in loss of conser-
vation. Third, enzyme complexes contribute to the family
multiplicity because different subunits annotated with the
same EC number can have unrelated sequences. For example,
EC 3.6.3.14 (H+-transporting ATPase) is a large multi-subunit
complex, classified into 70 families in our database, probably
because a combination of the above-mentioned factors.

Among the classified families, 1890 four EC digits families
and 1392 three EC digits families have an associated MSA and
HMM. These families correspond to 1371 four EC digits and
179 three EC digits, respectively. The remaining families lack
MSAs because there is only one sequence in the family, or the
sequences in the family are too closely related. The following
analyses are based on those families with associated MSAs.

Divergence of enzyme functions

The EF method for the selection of FDRs in enzyme families
requires two MSAs: a homofunctional MSA (the original
MSA associated to the family) and a heterofunctional MSA,
obtained by searching with the HMM of the family against a
non-redundant sequence database (see Methods). As its name

indicates, a heterofunctional MSA usually includes sequences
with different functions. To investigate the extent of functional
divergence in heterofunctional MSAs, we check the annota-
tion of Swiss-Prot sequences in the heterofunctional MSA of
each enzyme family and plot the cumulative relative distribu-
tion of the number of different functions in heterofunctional
MSAs (Figure 2A and B). Here, we mainly focus on diver-
gence of enzyme functions; therefore, the functions of all
non-enzymes are described with a single functional category
‘non-enzyme’. The heterofunctional MSAs corresponding to
64% of the four EC digits families include two or more types
of functions, with some alignments associated with more than
50 different functions (Figure 2A). This indicates that
functional divergence occurs frequently among homologous
enzyme sequences. The heterofunctional MSAs of three EC
digits families show less divergence, with 43% having two or
more types of function (Figure 2B).

Figure 2C and D show the number of different functions in
heterofunctional MSAs versus the average pairwise sequence
identity (sequence diversity) of the homofunctional MSAs, for
four EC digits and three EC digits families, respectively. The
more diverse an HMM profile is, the more distantly related
sequences it will find. Since functional divergence occurs
more frequently among distantly related sequences, a positive
correlation might be expected between the diversity of the
HMM profile (i.e. diversity of the homofunctional MSA) and
the number of different functions in the corresponding hetero-
functional MSA. However, we find that the median number of
different functions in heterofunctional MSAs is independent of
the sequence diversity of homofunctional MSAs (Figure 2C
and D). For example, the heterofunctional MSA of the trans-
cinnamate 4-monooxygenase family (EC 1.14.13.11) includes
sequences from more than 20 types of EC numbers, although
the corresponding homofunctional MSAs has an average pair-
wise sequence identity of above 80%. These findings further
stress the difficulty of inferring functions from sequence simi-
larity and stimulated us to develop a functional inference
approach based on the identification of FDRs.

FDRs identified by the EF method

We have applied the EF method to select FDRs for all CHIEFc
families with MSAs. The average accuracy and sensitivity of the
method applied to four EC digits enzymefamilies is99 and95%,
respectively, and for three EC digits enzyme families, it is 99
and 96%, respectively (data not shown). This suggests that the
selected residues not only can discriminate ‘false’ function from
‘true’ function but also can identify almost all ‘true’ members of
the family, allowing the application of our approach to enzyme
function inference. The median number of FDRs for four and
three EC digits enzyme families is 9 and 5, respectively.

In Figure 3, we plot the average number of FDRs per family
against intervals of average sequence identity of homofunc-
tional MSAs. If we rely only on homofunctional MSAs to select
FDRs, we can observe a strong positive correlation between the
number of selected residues and the sequence identity of the
homofunctional MSA. In contrast, using heterofunctional
MSAs together with homofunctional MSAs significantly
reduces the number of needed residues, and such correlation
is now greatly diminished. For example, even for families
whose homofunctional MSAs have an average sequence
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identity of above 80%, the average number of selected residues
by the EF method is below 20, in contrast to more than 70 when
homofunctional information alone is used. Using both types
of alignments, the number of residues needed to discriminate
three EC digits is less than that needed to discriminate four EC
digits. In contrast, using only homofunctional MSA to select
FDRs, we do not observe such a difference.

Correlation between functionally important and
functionally discriminating residues

We stress that the EF method does not attempt to predict all
functional residues needed for a specific function, but aims at
selecting the minimal set of residues that can discriminate
sequences with a ‘false’ function from those with a ‘true’
function. In certain cases, the selected residues may be fold
determinant rather than functionally important. However, it is
reasonable to expect an enrichment of functionally relevant
residues in the set of FDRs. We investigate the correlation
between functional importance and discrimination ability of
the residues selected by the EF method, by analyzing Fobs, the
observed fraction of CHIEFc families whose FDRs include at
least one residue annotated as an active site in Swiss-Prot.

Figure 2. Divergence of enzyme functions. Cumulative relative distributions of the number of different enzyme functions in the heterofunctional MSAs associated
with four EC digits (A) and three EC digits CHIEFc enzyme families (B). Box-and-whisker plots showing the distributions of the number of different enzyme
functions in heterofunctional MSAs versus the average pairwise sequence identity (sequence diversity) of the corresponding homofunctional MSAs associated with
four EC digits (C) and three EC digits CHIEFc enzyme families (D). From top to bottom, the statistics represented in the box-and-whisker plots are 95th percentile
(black circle), 90th percentile (whisker, top), 75th percentile (box, top), median (thick line), 25th percentile (box, bottom), 10th percentile (whisker, bottom) and 5th
percentile (closed circle).

Figure 3. Average number of FDRs in CHIEFc enzyme families versus the
average pairwise sequence identity of their corresponding homofunctional
MSAs. The FDRs are selected based on the conservation score of either
homofunctional MSAs alone (closed circles and open circles, to
discriminate four EC digits and the first three EC digits, respectively), or
both homofunctional MSAs and heterofunctional MSAs (closed triangles
and open triangles, to discriminate four EC digits and the first three EC
digits, respectively).
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For 65% (47%) of the four (three) EC digits families, the EF
method selects FDRs that include at least one active site residue,
while the random procedure does so for only 12% (6%) of the
families (Figure 4A). Thus, the FDRs for four (three) EC digits
families are more than five (seven) times richer in active site
residues than randomly selected residues, with a significance Zf

of 34 (32). Still, the FDRs for 35% (53%) of the four (three) EC
digits families do not include active residues. This can be par-
tially due to incomplete annotation. In fact, the majority of the
families in this study have only one annotated active site residue
in Swiss-Prot, which means some FDRs may be active site
residues that are not yet annotated. The FDRs tend to be clus-
tered in space and often include other functionally important
residues. This tendency is exemplified in Figure 4B, where
we show the functional annotation and the spatial location of
the FDRs for the phosphoprotein phosphatase family
(EC 3.1.3.16), mapped on the 3D structure of one of the repre-
sentatives of this enzyme family, obtained from the entry 1FJM
in the PDB (35). Five out of eight FDRs are annotated as
functionally important, while two functionally relevant resi-
dues are not included in the set of FDRs (His248 and His173).

Jackknife test to benchmark enzyme function inference
by different approaches

To benchmark the performance of the different enzyme func-
tion inference approaches listed in Table 1, we carry out a

jackknife test (see Methods for a description of each
approach). In Figure 5A–C, we compare the average accuracy,
sensitivity and average MCC of the CHIEFc family based
FDR recognition method (the application of the CHIEFc
family based FDRs obtained using the EF method to predict
the EC number of a query sequence) to the following
approaches: (i) CHIEFc family specific SIT evaluation, (ii)
Multiple Prosite pattern recognition, and (iii) Single Pfam
family based FDR recognition. In Figure 5D–F, we similarly
compare EFICAz to the following approaches: (i) CHIEFc
family specific SIT evaluation, (ii) High Specificity multiple
Prosite pattern recognition, (iii) Multiple Pfam family based
FDR recognition, and (iv) CHIEFc family based FDR recog-
nition. In Figure 5G–I, we compare the entire set of EFICAz
predictions with a subset of higher confidence EFICAz pre-
dictions. All the shown results correspond to four EC digits
predictions; the three EC digits predictions follow the same
trends (data not shown).

In this benchmark, we evaluate the prediction performance
according to the maximal testing to training sequence identity.
The rationale is based on the observation that Swiss-Prot is
not an evenly distributed database; most enzyme sequences in
Swiss-Prot have at least one closely related enzyme sequence
also included in the database, and their functions could be
easily predicted by a simple pairwise comparison. On the
other hand, as we have pointed out in our previous work (10),
Swiss-Prot enzyme sequences are dominated by entries belong-
ing to only a few enzyme functions. Therefore, we also reduce
this bias by calculating the average performance per EC
number. The global statistics obtained without adopting
these normalization procedures to avoid both sources of bias
would be optimistically misleading.

In Figure 5A, it can be observed that by using a family
specific SIT, the accuracy of a pairwise sequence comparison
can be close to 100%. However, the sensitivity of this method
is only 21% for sequences whose maximal sequence identity to
their training sequences is <30% (Figure 5B). In fact, this low
sensitivity motivated us to develop the EF method in an effort
to extend the limit of functional inference to distantly related
sequences. The Multiple Prosite pattern recognition is not a
good approach for enzyme functional inference; it has both the
worst prediction accuracy (Figure 5A) and the worst prediction
sensitivity (Figure 5B). In contrast, those methods based on
FDR recognition by EF (Single Pfam family based FDR recog-
nition and CHIEFc family based FDR recognition) show
similar and improved accuracy-sensitivity tradeoffs, which is
reflected in their MCCs (Figure 5C). Both methods can extend

Figure 4. Correlation between functionally important residues and FDRs. (A)
Fraction of CHIEFc families whose FDRs include at least one residue annotated
as active site in Swiss-Prot. Two strategies for obtaining the FDRs are
compared. The EF method (gray bars) and random selection (open bars,
with error bars representing SD of the mean). (B) Functional annotation and
spatial location of the FDRs for the phosphoprotein phosphatase CHIEFc
family, mapped on the 3D structure of PDB entry 1FJM.

Table 1. Enzyme function inference methods

(i) CHIEFc family specific SIT evaluation
(ii) Multiple Prosite pattern recognition
(iii) High specificity multiple Prosite pattern recognitionasdfasdfasdfasdasd
(iv) Single Pfam family based FDR recognition
(v) Multiple Pfam family based FDR recognition

(vi) CHIEFc family based FDR recognition
(vii) EFICAz

aCHIEFc: Conservantion-controlled HMM Iterative procedure for Enzyme
Family classification.
bSIT: Sequence Identity Threshold.
cFDR: Functionally Discriminating Residue.
dEFICAz: Enzyme Function Inference by Combined Approach.
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the limit of enzyme function inference to distantly related
sequences, with sensitivities (for 30% of maximal testing to
training sequence identity) of 52% for the CHIEFc family
based approach and 57% for the Single Pfam family based
approach (Figure 5B). However, the CHIEFc family based
approach achieves an accuracy of 90% compared with 76%
of the Single Pfam family based approach (Figure 5A). Con-
sidering that our main goal is to maintain a high level of
accuracy, the CHIEFc family based FDR recognition is the
best performer of the four compared methods.

We have modified the Single Pfam family based FDR
recognition and the Multiple Prosite pattern recognition
approaches with the purpose of increasing their levels of
accuracy (see Methods). Figure 5D shows significantly higher

accuracies at 30% of maximal testing to training sequence
identity, for the Multiple Pfam family based FDR recognition
(93%) and the High Specificity multiple Prosite pattern recog-
nition approaches (95%) when compared with their respective
parent methods in Figure 5A (76 and 45%, respectively).
We can observe in Figure 5D that the following four methods
(i) CHIEFc family specific SIT evaluation, (ii) High Specifi-
city multiple Prosite pattern recognition, (iii) Multiple Pfam
family based FDR recognition, and (iv) CHIEFc family based
FDR recognition have accuracies of at least 90%, independent
of the level of maximal testing to training sequence identity.
Although these methods show high accuracy, their sensitiv-
ities are more diverse, with the CHIEFc family based FDR
recognition approach displaying the highest sensitivity of the

Figure 5. Benchmark of different enzyme function inference approaches by jackknife test. Accuracy (A, D, G), sensitivity (B, E, H) and Matthews Correlation
Coefficient (C, F, I) values for different enzyme function inference methods, at different levels of maximal testing to training sequence identity, averaged per EC
number. See Methods for a full description of the jackknife procedure. The plotted values are the averages of three repetitions of the jackknife analysis; the
corresponding SDs are omitted for clarity, they range from 0.01 to 0.09, with a median value of 0.01.
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four, up to 60% maximal testing to training sequence identity.
We unite the predictions of these four highly accurate
approaches to create EFICAz. EFICAz has a significantly
higher sensitivity than its constituents (Figure 5E), and yet
retains an accuracy not worse than the least accurate method
(Figure 5D). Consequently, EFICAz achieves the highest
MCC of all the analyzed methods (Figure 5C and F).

The percentage of sequences predicted by only one of the
four constituents of EFICAz at 40% maximal testing to train-
ing sequence identity is 20% for CHIEFc family based FDR
recognition, 8% for CHIEFc family specific SIT evaluation,
5% for Multiple Pfam family based FDR recognition and 2%
for High Specificity multiple Prosite pattern recognition. Thus,
although CHIEFc family based FDR recognition is the main
component of EFICAz, the four methods contribute to the high
sensitivity of the combined approach. Furthermore, by requir-
ing the consensus of two or more components of EFICAz to
predict a particular enzyme function, we can achieve an accu-
racy of almost 100% independent of the level of sequence
diversity (Figure 5G), with sensitivity (Figure 5H and E)
and MCC (Figure 5I and F) comparable to those of the best
component of EFICAz.

Consistent with the 3% of multienzymes included in the
jackknife enzyme sequences (see Methods), about 2% of the
sequences predicted by EFICAz are multienzymes, among
which 70% have all the EC numbers correctly assigned,
and 98% have at least one EC number correctly assigned.
This result indicates that EFICAz is able to annotate multi-
EC enzymes, which are often excluded from enzyme inference
analysis.

Genome-wide enzyme function inference by EFICAz

We have employed EFICAz for the genome-wide enzyme
functional inference on the E.coli K12 proteome. The total
number of protein-coding genes in E.coli is 4289. Among
them, 881 are included in the ENZYME database (Release 33)
and annotated with four EC digits in the Swiss-Prot
database (Release 42). Besides these genes, we predict
132 (234) additional genes with four (three) EC digits,
with 49 (94) of those predictions resulting from the consensus
of at least two components of EFICAz. In contrast, the
KEGG database provides annotation for an additional
45 and 277 genes with four EC and first three EC digits,
respectively. A comparison of our four EC digit predictions
with the annotations in KEGG shows that (i) 18 genes are
annotated by both approaches, with two genes showing dis-
agreement between EFICAz and KEGG, (ii) 27 genes are
annotated only by KEGG, and (iii) 114 genes are annotated
only by EFICAz. Similarly, the analysis of the three EC
digit predictions shows that (i) 104 genes are annotated by
both approaches, with 21 genes showing mismatched annota-
tions, (ii) 191 genes are annotated only by KEGG, and
(iii) 130 genes are annotated only by EFICAz. A spreadsheet
including all the EFICAz predictions for the E.coli genes that
lack complete EC number annotation in the Swiss-Prot
database is provided as Supplementary Material and is avail-
able at http://www.bioinformatics.buffalo.edu/eficaz/ecoli/
index.html.

To analyze the differences between our results and KEGG
annotations, we focus on the four EC digit assignments.

Among the 18 genes predicted by both approaches, the two
genes whose annotations disagree are b2979 (glcD) and b3583
(sgbE). KEGG annotation for b2979 is ‘glycolate oxidase
subunit glcD [EC 1.1.3.15]’, although only GlcF, the iron–
sulfur subunit of the E.coli glycolate oxidase complex is
catalytic (36). In contrast, the EFICAz prediction for b2979
is EC 1.1.2.4 (D-lactate dehydrogenase). Indeed, the glycolate
oxidase complex of E.coli can act as a D-lactate dehydrogenase
(37), and it has been suggested that GlcD could be responsible
for this activity (36). The KEGG annotation for b3583 is
‘probable sugar isomerase sgbE [EC 5.1.3.4]’, while EFICAz
predicts it as both EC 5.1.3.4 (L-ribulose-phosphate
4-epimerase) and EC 4.1.2.17 (L-fuculose-phosphate aldo-
lase). Although the Swiss-Prot annotation for b3583 is ‘prob-
able sugar isomerase [EC 5.1.-.-]’, it has been shown that SgbE
catalyzes the L-ribulose-phosphate 4-epimerase reaction (38).
Thus, in this case, the EC 4.1.2.17 assignment by EFICAz
appears to be a false positive.

We have investigated the reasons as to why EFICAz cannot
predict the 27 gene products that are only annotated with four
EC digits by KEGG. We distinguish three general cases. First,
the gene product is not recognized by any of the CHIEFc or
Pfam family HMMs associated with the EC number assigned
by KEGG. In most of these cases, KEGG incorrectly assigns
EC numbers to non-catalytic subunits of enzyme complexes
(e.g. b4348, a non-catalytic subunit of the type I site-specific
deoxyribonuclease complex, is annotated as EC 3.1.21.3 by
KEGG). Second, the gene product is recognized by an HMM
associated with the EC number assigned by KEGG, but not all
the corresponding FDRs are matched. In some of these cases,
KEGG assigns a four digit EC number that we find is difficult
to distinguish from other/s (at least the conservation of a large
number of FDRs is satisfied), while EFICAz assigns the
corresponding partial three digit EC number (e.g. KEGG
annotates b0600 as EC 2.6.1.1, which we find difficult to
distinguish from EC 2.6.1.57). Third, the EC number assigned
by KEGG is only related to the CHIEFc or Pfam families with
only one sequence (therefore, without an associated HMM),
and the default SIT of 60% happens to be too conservative to
identify the gene by the ‘CHIEFc family specific SIT evalua-
tion’ component of EFICAz. For example, b0969 is annotated
in KEGG as a ‘putative, sulfite reductase [EC 1.8.99.3]’. Its
closet homolog in our enzyme database is DSVC_DESVH,
which belongs to a CHIEFc family for EC 1.8.99.3 with only
one sequence. Since the sequence identity between b0969 and
DSVC_DESVH is only 36% (below the 60% SIT), EFICAz
cannot infer the function of b0969.

Among the 114 genes with four EC digits predicted only by
EFICAz, we find the following KEGG annotations: (i) partial
EC numbers (or descriptions of enzymatic activities that can
be converted to partial EC numbers) for 69 genes, with 54 of
them matching the corresponding partial EC numbers of our
annotations, (ii) descriptions not related to enzymes for four
genes, and (iii) ‘hypothetical protein’ without a functional
description for 38 genes. Both Swiss-Prot and KEGG suffer
from the problem of annotation lag; therefore, it is possible
that some gene products annotated in these databases as
hypothetical proteins are true enzymes in light of recent evid-
ence. In fact, by performing a literature search, we could
validate the EFICAz predictions for two gene products
annotated as hypothetical proteins by both KEGG and
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Swiss-Prot: b0581 and b1119. The EFICAz predictions for
b0581 (ybdK) and b1119 (ycfX) are EC 6.3.2.2 (Glutamate-
cisteine ligase) and EC 2.7.1.2 (Glucokinase), respectively.
These assignments are in agreement with very recently pub-
lished articles that find YbdK to have g-glutamyl:cysteine
ligase activity (39), and YcfX to be a rudimentary glucokinase
of ambiguous substrate specificity (40).

DISCUSSION

Enzyme family classification using CHIEFc is one
of the reasons for the high accuracy of EFICAz

In our method of enzyme functional inference, EFICAz, we
combine four methods among which two are based on FDR
recognition. These two FDR recognition approaches differ
from that one is based on enzyme families classified by CHIEFc,
while another is based on multiple Pfam families. As shown in
Figure 5D–F, when we consider the whole range of sequence
diversity, the CHIEFc family based FDR recognition method is
the most important component of EFICAz. Thus, one of the
major reasons for the success of EFICAz in enzyme functional
inference is attributed to CHIEFc, our enzyme family classifi-
cation protocol. CHIEFc is deliberately designed for the pur-
pose of enzyme functional inference and has the following
advantages. First, by defining enzyme families based on both
functional annotation and evolutionary relationship, we avoid
the inclusion of ‘false’ members. This increases the specificity
of the FDRs for their corresponding enzyme function. Second,
by introducing a conservation-controlled selection of new
sequences to be included in a CHIEFc family, we ensure the
final alignment to have high quality. This enhances the relia-
bility of the FDRs. Third, unlike Pfam families that are based on
single domains, we start from whole enzyme sequences to clas-
sify them in CHIEFc families and generate sequence align-
ments. Considering that in general it is not known in advance
which regions of a multi-domain enzyme are actually function-
ally important, this procedure avoids the chance of missing
discriminating residues that might be located in linker regions
between individual domains. Fourth, the MSA and HMM of
CHIEFc families are constructed only from sequences with the
same EC number. In contrast, the sequences used to construct
the MSA and HMM of Pfam domains may be from a variety of
different functions. Thus, in cases where only a small number of
sequences are related to the enzyme function under study, the
Pfam domain alignments might be dominated by sequences
with different functions.

The EF method is the major reason for the high
sensitivity of EFICAz

Since functionally important residues are usually highly con-
served in an MSA of proteins sharing a given function, a
standard way of inferring their function is to identify con-
served residues in the MSA and then verify their conservation
in a query sequence, as a measure of functional similarity.
However, a common problem of this approach is that there
may not be a sufficient number of sequences in the MSA, or the
sequences in the MSA may not be divergent enough, making
the identification of the functionally important residues diffi-
cult. To overcome this problem, we have developed an EF

method that is mainly based on the assumption that homo-
logous proteins with divergent enzyme functions frequently
share the same architecture of the active site, although differ-
ent functional residues are used to perform different functions
(26). Thus, the EF method exploits information about
conservation in heterofunctional MSAs to facilitate the iden-
tification of FDRs in homofunctional MSAs. On the other
hand, the inclusion of non-enzymes in the heterofunctional
MSAs, which is not a common practice in the derivation of
methods for enzyme function inference, imposes more restric-
tions on the selection of FDRs, but reflects better the real
genome annotation scenario. As shown in Figure 3, the com-
bined information of heterofunctional and homofunctional
MSA conservation significantly reduces the number of
FDRs corresponding to a given enzyme family compared
with using homofunctional MSAs alone. This reduction in
the number of discriminating residues is reflected in an
increased sensitivity of the methods for enzyme function
inference based on FDR recognition compared with other
approaches (see Figure 5B and E). Consequently, the
two components based on FDR recognition contribute the
most to the high sensitivity of EFICAz.

By combining four accurate methods, EFICAz achieves
high sensitivity while keeping high accuracy

EFICAz is a combination of four accurate methods: CHIEFc
family specific SIT evaluation, CHIEFc family based FDR
recognition, Multiple Pfam family based FDR recognition
and High specificity multiple Prosite pattern recognition.
Each of the four methods has been specifically developed for
high accuracy. For example, compared with Single Pfam family
based FDR recognition, the Multiple Pfam family based FDR
recognition significantly improves the prediction accuracy in
the benchmark test (Figure 5A and D). Therefore, EFICAz is
accurate because each of its four constituent methods is highly
accurate. On the other hand, each component of EFICAz alone
generates a number of successful predictions that cannot be
obtained by the rest of the components. Thus, the high sensit-
ivity of EFICAz (Figure 5E) is due to the fact that predictions
generated by any pair of its component methods do not overlap
completely. By requiring the consensus of two or more compo-
nents instead of inferring a particular enzyme function when
anyone or more of the four component methods predicts it,
EFICAz can achieve an accuracy of almost 100% (Figure 5G)
and reasonable levels of sensitivity (Figure 5H). We have
explored more elaborate ways of combining the predictions
of the four components of EFICAz (data not shown), but
those evaluated in Figure 5G–I are the combinations that
offer the most useful tradeoff between accuracy and sensitivity.

EFICAz provides a platform for automatic and
accurate enzyme function annotation

To illustrate the application of our method to a real case, we
have employed EFICAz for the genome-wide enzyme func-
tional inference of the E.coli K12 proteome. It should be
stressed that E.coli is one of the most intensively studied
organisms (41); therefore, it is more difficult to generate
novel predictions in E.coli than in other less well-characterized
organisms. The comparison of our predictions with KEGG
annotations suggests that while putting the emphasis in the
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accuracy of functional inference, EFICAz can assign more
detailed enzymatic function than KEGG and is capable of
generating novel predictions.

In the development of EFICAz, we have tried to overcome
the problems and weaknesses observed in other methods for
systematic genome-scale inference of enzyme function. The
annotation scheme of KEGG is mainly based on orthologous
relationships and the examination of functional linkage
between genes (25). However, the assessment of orthologous
relationships still depends on sequence comparisons, which we
have previously shown are problematic when used to infer
functional similarity even at high levels of sequence identity
(10). In contrast, instead of relying only on sequence similar-
ity, EFICAz is based on four accurate methods that have all
been developed and optimized to achieve high prediction
accuracy. Moreover, three out of the four components of
EFICAz are based on the recognition of patterns or residues
that at least in the case of the CHIEFc family based FDR
recognition approach are correlated with important functional
features of enzymes (Figure 4).

Another recently developed approach, PRIAM, is an enzyme
function-specific profile-based method based on homology
transfer using a single E-value cut-off common for all families
(42). However, we previously found that E-value is not a reli-
able measure for functional inference; in addition, using a
common cut-off is not accurate because of the inconsistency
between sequence and function divergence for different
families (10). In contrast, the sequence comparison component
of EFICAz uses enzyme family specific SITs, which we have
shown to be very accurate (Figure 5A and D). The functional
subtype analysis, another method that could be extended for
automatic genome annotation, identifies positions in a Pfam
domain that discriminate between enzyme subtypes with
different specificities (20). However, although certain enzyme
subtypes might require discriminating residues located in
different domains to be distinguished from other subtypes,
this method is limited to the analysis of single Pfam domains.
In contrast, the component of EFICAz based on the analysis
of Pfam families uses a specific combination of these families
rather than a single family to generate a prediction, with a
significant increase in accuracy (Figure 5A and D).

Genome annotation requires the utilization of highly reli-
able approaches to minimize the problematic propagation
of annotation errors (43). By stressing the importance of
accuracy, EFICAz can contribute to the complex task of high
quality annotation of enzyme function on a genome-scale. In
the near future, we plan to apply EFICAz to all available
complete genomes and compile the predictions in a public
database. Although complete genomes always have a certain
level of annotation when they are released into the public
domain, it is advantageous to periodically re-annotate them
using automatic, reproducible protocols (44) such as EFICAz.
These predictions might serve as a first step for metabolic
pathway reconstruction protocols, or to identify sequences
that can be investigated by researchers interested in particular
enzyme functions.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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