Skip to main content
. 2016 Jul 11;8(2):2758–2770. doi: 10.18632/oncotarget.13174

Table 3. USC training results.

MOLECULAR CLASSIFIERS
MODEL 1 MODEL 2
#Mistakes 0 0
Delta 1 0.5
Rho 0.7 0.7
Average Genes 18 34
Predictive Genes ASS1, BAP1, CAV1, CCNB1, CD44, CDH1, EGR3, FN1, ITGA3, KRT5, LAMA3, LGALS3, MICAL2, MMP9, MYH11, NME2, NMU, PAPPA, PECAM1, PKM, RAD21, TGFBR2 ASS1, BAP1, CAV1, CCNB1, CD44, CDH1, CDH11, COL4A2, CTNNA1, CXADR, EEF2, EGR3, EIF4G1, FANCI, FN1, GALNT7, GLI2, HEG1, IFITM1, ITGA3, KRT5, LAMA3, LGALS3, MAGED1, MICAL2, MMP9, MYH11, NME2, NMU, PAK4, PAPPA, PECAM1, PKM, PTGS2, RAD21, SDC1, SMARCA4, TGFBR2, TOP2A, VEGFA

USC classifiers and parameters: #Mistakes: number of classification mistakes in the training phase; Delta: shrunken threshold; Rho: correlation threshold; Average genes: average number of genes, which are selected among the predictive ones, used for classification; Predictive genes: genes included in each classifier, selected among the 117 gave as input