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ABSTRACT

As we are moving into the post genome-sequencing
era, various high-throughput experimental techni-
ques have been developed to characterize biological
systems on the genomic scale. Discovering new bio-
logical knowledge from the high-throughput biologi-
cal data is a major challenge to bioinformatics today.
To address this challenge, we developed a Bayesian
statistical method together with Boltzmann machine
and simulated annealing for protein functional anno-
tation in the yeast Saccharomyces cerevisiae through
integrating various high-throughput biological data,
including yeast two-hybrid data, protein complexes
and microarray gene expression profiles. In our
approach, we quantified the relationship between
functional similarity and high-throughput data, and
coded the relationship into ‘functional linkage
graph’, where each node represents one protein
and the weight of each edge is characterized by the
Bayesian probability of function similarity between
two proteins. We also integrated the evolution infor-
mation and protein subcellular localization informa-
tion into the prediction. Based on our method, 1802
out of 2280 unannotated proteins in yeast were
assigned functions systematically.

INTRODUCTION

An immediate challenge of the post-genomic era is to assign
biological functions to all the proteins encoded by the genome.
Despite all the efforts, only 50–60% of genes have been anno-
tated in most organisms (1). This leaves bioinformatics with
the opportunity and challenge of predicting functions for unan-
notated proteins, by developing effective and automated meth-
ods. Several approaches have been developed for predicting
protein function based on sequence similarity, such as FASTA
(2) and PSI-BLAST (3). Another method to predict function is
based on sequence fusion information, e.g. the Rosetta Stone
approach (4). Function can also be inferred through the
phylogenetic profiling of proteins in multiple genomes (5).

With ever-increasing flow of biological data generated by
the high-throughput methods, such as yeast two-hybrid
systems (6), protein complexes identification by mass spectro-
metry (7,8) and microarray gene expression profiles (9,10),
some computational approaches have been developed to use
these data for gene function prediction. Cluster analysis of the
gene-expression profiles is a common approach for predicting
functions based on the assumption that genes with similar
functions are likely to be co-expressed (9,10). Using
protein–protein interaction data to assign functions to novel
proteins is another approach. Proteins often interact with one
another in an interaction network to achieve a common objec-
tive. It is therefore possible to infer the functions of proteins
based on the functions of their interaction partners, also known
as ‘guilt by association’ (11). Schwikowski et al. (11) applied a
neighbor-counting method for predicting the function. They
assigned function to an unknown protein based on the frequen-
cies of its neighbors having certain functions. The method was
improved by Hishigaki et al. (12), who used c2-statistics. Both
these approaches give equal significance to all the functions
contributed by the protein neighbors in the interaction
network. Other function prediction methods using high-
throughput data include machine-learning and data-mining
approaches (13) and Markov random fields (14,15).
MAGIC (Multisource Association of Genes by Integration
of Clusters) also combined heterogeneous data for function
assignment (16).

One major challenge for protein function prediction is that,
the errors in the high-throughput data have not been handled
well and the rich information contained in various high-
throughput data has not been fully utilized, given the complex-
ity and the quality of high-throughput data (17). A possible
solution for this problem is Bayesian probabilistic model (18),
which could lead to a coherent function prediction and reduce
the effect of noise by combining information from diverse data
sources within a common probabilistic framework, and natu-
rally weighs each information source according to the con-
ditional probability relationship among information sources.
Another major limitation of current function prediction
methods based on ‘majority rule’ assignment (11) is that
the global properties of interaction network are underutilized,
since current methods often do not take into account the links
among proteins of unknown functions. Recently, to address
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this challenge, Vazquez et al. (19) proposed a global method to
assign protein functions based on protein interaction network,
by minimizing the number of protein interactions among
different functional categories. Karaoz et al. (20) mapped
gene expression and protein interaction data into Hopfield
network to make function predictions for >200 proteins
with unknown functions.

To further overcome these limitations, we developed a
computational framework for systematic protein function
annotation on the genomic scale. Our current study focuses
on the yeast Saccharomyces cerevisiae (Baker’s yeast), where
rich high-throughput data are available. Comparing with cur-
rent methods, our method is distinctive in the following
aspects: (i) unannotated proteins can be assigned to various
function categories of Gene Ontology (GO) biological pro-
cesses (21) with Reliability scores. This is in contrast to most
other prediction methods, where proteins were predicted as yes
or no without confidence assessment to a limited number of
function categories [e.g. MIPS (22), which are less detailed
than GO]. (ii) We quantitatively measured functional relation-
ship between genes underlying each type of high-throughput
data (protein binary interactions, protein complexes and micro-
array gene expression profiles) and coded the relationship into
‘functional linkage graph’ (interaction network), where each
node represents one protein and the weight of each edge is
characterized by the Bayesian probability of function similarity
between two proteins. (iii) We also integrated evolutionary
information and protein subcellular localization information
into function annotation. (iv) We developed a novel global
function prediction method based on Boltzmann machine,
for protein function annotation with integration of functional
linkage evidences from different types of high-throughput data.
We may predict the function of an unannotated gene, even if
none of its neighbors in the network has known function. Our
method is robust for combining and propagating information
systematically across the entire network based on the global
optimization of the network configuration.

DATA SOURCES

The high-throughput data including microarray data, protein
binary interaction data and protein complex data were coded
into an interaction network, which can be viewed as a
weighted non-directed graph Gp (D) = (Vp, Ep) with the vertex
set Vp = fdi j di 2 D}; and the edge set Ep = f(di, dj) j for di,
dj 2 D and i „ j}. Each vertex represents one protein and each
edge represents one measured connection between the two
linked proteins from different types of high-throughput
data, which are denoted as correlation in gene expression
profiles with Pearson correlation coefficient r, the protein
binary interaction or protein complex interaction.

Protein–protein binary interaction data

The protein–protein interaction data from high-throughput
yeast two-hybrid interaction experiments were from Uetz
et al. (23) and Ito et al. (24), together with 5075 unique
interactions among 3567 proteins. We combined the yeast
two-hybrid data with the known protein–protein interaction
data in the MIPS database (http://mips.gsf.de/proj/
yeast/CYGD/db/). In total, 6516 unique binary interactions
among 3989 proteins were used in this study.

Protein complexes

The protein complex data were obtained from Gavin et al. (7)
and Ho et al. (8). In the protein complexes, although it is
unclear which proteins are in physical contact, the protein
complex data contain rich information about functional rela-
tionship among involved proteins. For simplicity, we assigned
binary interactions between any two proteins participating in a
complex. Thus in general, if there are n proteins in a protein
complex, we add n � (n�1)/2 binary interactions. This yields
49 313 edges to the interaction network.

Microarray gene expression data

The gene-express profiles of microarray data were from Gasch
et al. (25), which included 174 experimental conditions for all
the genes in yeast. For each experiment, if there was a missing
point, we substituted its gene expression ratio to the reference
state with the average ratio of all the genes under that specific
experimental condition. A Pearson correlation coefficient was
calculated for each possible gene pairs to quantify the correla-
tion between the gene pairs.

Subcellular localization data

We used the genome-scale protein subcellular localization
data obtained from green fluorescent protein (GFP)-tagged
yeast strain (26). The 4156 proteins were assigned into 22
distinct subcellular localization categories. The data are avail-
able at http://yeastgfp.ucsf.edu/.

Genomic sequence data

We downloaded the genomic sequence and the protein anno-
tation data of five species at public databases, including bud-
ding yeast S.cerevisiae (http://genome-www.stanford.edu/
Saccharomyces/), Arabidopsis thaliana (http://www.
arabidopsis.org/), Drosophila melanogaster (http://flybase.
bio.indiana.edu/) and Caenorhabditis elegans (http://
www.wormbase.org/).

METHODS

Measurement of protein function similarity

A particular gene product can be characterized with different
types of functions, including molecular function at the bio-
chemical level (e.g. cyclase or kinase, whose annotation is
often more related to sequence similarity and protein structure)
and the biological process at the cellular level (e.g. pyrimidine
metabolism or signal transduction, which is often revealed in
the high-throughput data of protein interaction and gene
expression profiles). In our study, function annotation of
protein is defined by the GO biological process (21). The
GO biological process ontology is available at http://www.
geneontology.org. It has a hierarchical structure with multiple
inheritances. We used GO biological process classification, as
of November 2003, to assign function to unannotated proteins
in our study. After acquiring the biological process functional
annotation for the known proteins along with their GO Iden-
tification (ID), we generated a numerical GO INDEX, which
represents the hierarchical structure of the classification. The
more detailed level of the GO INDEX, the more specific is
the function assigned to a protein. The maximum level of
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GO INDEX is 12. The following shows an example of GO
INDEX hierarchy, with the numbers on the left giving the GO
INDICES and the numbers in the brackets indicating the GO
IDs:

2 cellular process (GO:0009987)
2-1 cell communication (GO:0007154)
2-1-8 signal transduction (GO:0007165)
2-1-8-1 cell surface receptor linked signal transduction

(GO:0007166)
2-1-8-1- 4 G-protein coupled receptor protein signaling

pathway (GO:0030454)
2-1-8-4-4-12 signal transduction during conjugation with

cellular fusion (GO:0000750)

In SGD (http://www.yeastgenome.org/), 4044 yeast proteins
have been annotated with one or more GO biological process
IDs.We calculated protein function similarity by comparing
the level of similarity that the two proteins share in terms of
their GO INDICES. For example, if both gene-1 and gene-2
have annotated functions, assume gene-1 has a function repre-
sented by GO INDEX 2-1-8-1 and gene-2 has a function
represented by GO INDEX 2-1-8. When compared with
each other for the level of matching GO INDEX, they
match with each other through 2-1-8, i.e. INDEX level 1 (2),
INDEX level 2 (2-1) and INDEX level 3 (2-1-8). In general,
the function similarity between proteins x and y is defined by
the maximum number of index levels from the top shared by x
and y. The smaller the value of function similarity, the broader
is the functional category shared by the two proteins.

Calculation of Bayesian probabilities

We calculated probabilities for two genes to share the same
function based on different types of high-throughput data, i.e.
microarray data, protein binary interaction data and protein
complex data. Given two genes are correlated in gene expres-
sion with Pearson correlation coefficient r in microarray data
(Mr), the posterior probability that two genes have the same
function, p(S jMr), is computed using the Bayes’ formula:

p S jMrð Þ = p Mr j Sð Þp Sð Þ
p Mrð Þ , 1

where S represents the event that two genes have the same
function at a given level of GO INDEX, p(Mr j S) is the con-
ditional (a priori) probability that two genes are correlated in
their expression profiles with correlation coefficient r, given
that two genes have the same level of GO INDEX. The prob-
ability p(S) is the probability of proteins whose functions are
similar at the given level of GO INDEX by chance. The prob-
abilities p(Mr j S) and p(S) are computed based on a set of
proteins whose functions have been annotated in the GO bio-
logical process. The probability p(Mr) is the frequency of gene
expression correlated with coefficient r over all gene pairs in
yeast, which is calculated from the genome-wide gene expres-
sion profiles.

To quantify the gene function relationship among the
correlated gene expression pairs, we calculated the probabil-
ities of such gene expression correlated pairs sharing the same
function at each GO INDEX level. It shows a higher prob-
ability of sharing the same function for broad functional cate-
gories (the high-order GO INDEX levels), or highly correlated

genes in expression profiles (Figure 1A). Figure 1B shows the
presence of information in highly correlated gene-expression
pairs for their gene functional relationship in comparison to
random pairs. Based on Figure 1, we decided to consider pairs
with gene expression profile correlation coefficient >0.7 for
function predictions, as other pairs have little information for
function prediction. The estimated probabilities of sharing the
same function corresponding to gene pairs with r > 0.7 were
smoothed by using a monotone regression function [the pool-
adjacent-violators algorithm (27)] for protein function predic-
tion. We also integrated protein subcellular information into
probability calculations of microarray data. As shown in
Figure 2, two genes with correlated gene expression profiles
are more likely to have the same function if they share the
same cellular compartment.

For protein binary interaction (B), the probability that two
proteins have the same function, p(S jB), is computed as:

p S jBð Þ = p B j Sð Þp Sð Þ
p Bð Þ , 2

where S represents the event that two proteins have the same
function at a given GO INDEX level. p(B j S) is the probability
for two proteins to have a protein binary interaction given the

Figure 1. (A) Probabilities of pairs sharing the same levels of GO indices versus
Pearson correlation coefficient of microarray gene expression profiles.
(B) Normalized ratios for the probabilities of gene pairs sharing the same
levels of GO indices (p(S jMr)) against the probabilities of random gene
pairs sharing the same levels function similarity (p(S)) versus Pearson
correlation coefficient of microarray gene expression profiles.
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knowledge that they share the same function. The prior prob-
ability p(S) is the relative frequency of proteins whose func-
tions are the same. The probabilities of p(B j S) and p(S) are
computed based on the set of proteins whose functions have
been annotated in the GO biological process. The probability
p(B) is the relative frequency of two proteins having a known
binary interaction over all possible pairs in yeast, which is
estimated from the known protein interaction data set.

Similarly, given two proteins are in the same complex, i.e.
have a complex interaction (C), we can estimate the probabil-
ity of two proteins having the same function p(S jC) as:

p S jCð Þ = p C j Sð Þp Sð Þ
p Cð Þ , 3

where S represents the event that two proteins have the same
function at a given GO INDEX level. p(C j S) is the probability
for two proteins to be in the same complex given that they
share the same function. The probability p(C) is the relative
frequency of proteins having complex interaction over all
protein pairs in yeast. The prior probability p(S) is the relative
frequency of proteins whose functions are similar. The calcu-
lation of p(C j S) and p(S) is based on the set of proteins whose
functions have been annotated in the GO biological process.

The analysis result of the protein–protein interaction data is
shown in Figure 3 that shows the normalized ratios of protein–
protein interaction pairs against the random pairs for sharing
the same GO INDEX level. Since the value is highly above 1,
particularly for more specific function categories, there clearly
exists a relationship between the protein–protein interaction
data and similarity in function. Such relationships can be uti-
lized to make function predictions. It is assumed that if the
protein interaction pairs are evolutionally conserved, they are
more likely to share the same function since protein interaction
might put constraints on sequence divergence (28). We added
the evolution information into the probability calculations for
interacting proteins to share the same function based on
sequence comparison. For each protein in S.cerevisiae,
its putative orthologs in other three distantly related species

(A.thaliana, D.melanogaster and C.elegans) were identi-
fied using the reciprocal search method (29). Thus, protein
interaction data can be classified into two subsets: (i) for each
interacting pair fPi, Pj}, both proteins i and j have orthologs in
at least one organism out of the three species; and (ii) the
remaining data. For each subset we calculated its Bayesian
probability (Figure 4). The interaction pairs in subset (i) can be
considered as co-evolved and they indeed have higher prob-
abilities of sharing the same function as shown in Figure 4.

Protein function prediction

Local prediction. In the local prediction of an unannotated
protein using its immediate neighbors in the network graph,
we follow the idea of ‘guilt by association’, i.e. if an inter-
action partner of the studied unannotated protein x has a

Figure 2. Probabilities of sharing the same function calculated from the gene
pairs with the same localization (red lines) and from all the gene pairs without
localization information considered (green lines) versus Pearson correlation
coefficient of microarray gene expression profiles.

Function Similarity Value

Figure 3. Functional relationship in yeast protein–protein interaction data. The
horizontal axis shows the GO INDEX levels that two proteins share. The
normalized ratios between the probabilities of interacting proteins sharing
the same levels of GO INDICES compared with the probabilities of random
pairs are shown in vertical axis.

Function Similarity Value

Figure 4. The probabilities of sharing the same function for interaction pairs
that are co-evolved (line with square), interaction pairs that are not co-evolved
(line with up triangle) and overall interaction pairs (line with cross). The solid
lines are for protein binary interaction data and dot lines are for protein complex
interaction data.
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known function, x may share the same function with a prob-
ability underlying the high-throughput data between x and its
partner. We identify the possible interactors for protein x in
each high-throughput data type (protein binary interaction,
protein complex interaction and microarray gene expression
with correlation coefficient r > 0.7). We assign functions to
the unannotated proteins on the basis of common functions
identified among the annotated interaction partners, using the
probabilities described in the previous section on Calculation
of Bayesian probabilities. Furthermore, we assume that the
information contents for protein function prediction from
different sources of high-throughput data or different inter-
action partners are independent, based on the early suggestion
that the information from different high-throughput data are
conditionally uncorrelated (30,31). A protein can belong to
one or more GO INDICES, depending upon its interaction
partners and their functions. For example, in Figure 5, protein
x is an unannotated protein. Proteins a, b and c that interact
with x have known functions. With the assumption that
Fl, l = 1, 2, . . . , n, represents a collection of all the functions
that proteins a, b and c have, a likelihood score function for
protein x to have function Fl, G(Fl, x), is defined as:

G Fl, xð Þ = 1 � 1 � P0 Sl jMð Þð Þ � 1 � P0 Sl jBð Þð Þ
� 1 � P0 Sl jCð Þð Þ, 4

where Sl represents the event that two proteins have the same
function in terms of their GO INDEX level as Fl. P0(Sl jM),
P0(Sl jB) and P0(Sl jC) are calculated based on probabilities of
interaction pairs to have the same function at the given GO
INDEX level for gene expression correlation coefficient
>0.7 (M), protein binary interaction (B) and protein complex
interaction (C), respectively. In each type of high-throughput
data, one unannotated protein might have multiple interaction
partners with function Fl. Suppose that there are nM, nB and nC

interaction partners with function Fl in the three types of high-
throughput data, respectively. P0(Sl jM), P0(Sl jB) and
P0(Sl jC) in Equation 4 are calculated as:

P0 Sl jMð Þ = 1 �
YnM

j¼1

1 � Pj Sl jMð Þ
� �

, 5

P0 Sl jBð Þ = 1 �
YnM

j¼1

1 � Pj Sl jBð Þ
� �

, 6

P0 Sl jCð Þ = 1 �
YnM

j¼1

1 � Pj Sl jCð Þ
� �

: 7

Pj(Sl jM), Pj(Sl jB) and Pj(Sl jC) were estimated probabil-
ities retrieved from the probability curves calculated in the

previous section. We defined the likelihood score G(Fl, x) as
Reliability score for each function Fl. The final predictions are
sorted based on the Reliability score for each predicted GO
INDEX. The Reliability score represents the probability for
the unannotated protein to have a function Fl, assuming all the
evidences from the high-throughput data are independent and
only applicable to immediate neighbors in the network.

Global prediction. The major limitation of the local prediction
method is that it only uses the information of immediate neigh-
bors in a graph to predict a protein’s function. In some cases,
the uncharacterized proteins may not have any interacting
partners with known function annotation, and its function
cannot be predicted using the local prediction method. In
addition, the global properties of the graph are underutilized
since this analysis does not include the links among proteins of
unknown functions. In Figure 6 proteins 1, 2, 3 and 4 are
unannotated proteins and proteins 5, 6, 7 and 8 are annotated
proteins with known functions. If we only use the local pre-
diction method, the function of proteins 3 and 4 can be pre-
dicted but the function of proteins 1 and 2 cannot be predicted,
since all the neighbors of proteins 1 and 2 are unannotated
proteins. Moreover, the contributions of function assignment
for protein 4 are not only from the neighbor proteins 7 and 8
whose functions are already known, but also from protein 1
when its functions are predicted through the following informa-
tion propagation: proteins 5 and 6 ! protein 3 ! protein 2 !
protein 1. Hence, the functional annotation of uncharacterized
proteins should not only be decided by their direct neighbors,
but also controlled by the global configuration of the inter-
action network. Based on such global optimization strategy,
we developed a new approach for predicting protein function.
We used the Boltzmann machine to characterize the global
stochastic behavior of the network. A protein can be assigned
to multiple functional classes, each with a certain probability.

In the Boltzmann machine, we consider a physical system
with a set of states, a, each of which has energy Ha. In thermal
equilibrium, given a temperature T, each of the possible states
a occurs with probability:

Pa =
1

R
e�Ha=KBT , 8

where the normalizing factor R =
P

a e�Ha=KBT and KB is the
Boltzmann’s constant. This is called the Boltzmann–Gibbs dis-
tribution (32). It is usually derived from the general assumptions
about microscopic dynamics. It is also applied to a stochastic

Figure 5. Illustration of prediction method. Protein x is an unannotated protein.
Proteins a, b and c are all the proteins with known functions that have interaction
with protein x. The interaction events could be correlation in gene expression
(M), protein binary interaction (B) or protein complex interaction (C).

Figure 6. Illustration of protein function global prediction from interaction
network. Proteins 1, 2, 3 and 4 are unannotated proteins. Proteins 5, 6, 7 and 8 are
annotated proteins with known functions.
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network. In an undirected graphical model with binary-valued
nodes, each node (protein) i in the network has only one state
value Z (1 or 0). In our case, Z = 1 means that the corresponding
node (protein/gene) has either known functions or predicted
functions assigned to the node. Now, we consider the system
going through a dynamic process from non-equilibrium to equi-
librium, which corresponds to the optimization process for the
function prediction. For the state at time t (optimization inte-
gration step t), node i has the probability for Zt,i to be 1,
P(Zt,I = 1 jZt�1, j„I) and the probability is given as a sigmoid-
function of the inputs from all the other nodes at time t � 1:

P Zt, i = 1 j Zt�1, j„i

� �
=

1

1 + e�b�j„iWijZt�1, j„i
, 9

where b is a parameter reversely proportional to the annealing
temperature and Wij is the weight of the edge connecting
proteins i and j in the interaction graph. Wij is calculated by
combining the evidence from gene expression correlation
coefficient > 0.7 (M), protein binary interaction (B) and
protein complex interaction (C):

Wij = dj

X12

k¼1

½1 � ð1 � PðSk jMÞÞð1 � PðSk jBÞÞ

·ð1 � PðSk jCÞÞ�, 10

where Sk represents the event that two proteins i and j have the
same function at the GO INDEX level k, k = 1,2, . . . ,12.
P(Sk jM), P(Sk jB) and P(Sk jC) are the estimated probabilities
retrieved from the probability curves calculated in the previous
section. dj is the modifying weight:

dj =
1 if j 2 annotated proteins

P Zt�1, j = 1
� �

otherwise.

�
11

To achieve the global optimization, we applied simulated
annealing technique as the following process (Figure 7): first,
we set the initial state of all unannotated proteins (nodes) to be
0 or 1 randomly. The state of any annotated protein is always 1.
If an unannotated protein is assigned with the state 1, its
function will be predicted based on its immediate neighbors
with known functions, using the local prediction method.
Next, starting with a high temperature, pick a node i and
compute Pi according to Equation 9, then update its state to
1 if the probability Pi is above a certain threshold. Each update
of function prediction is based on its immediate neighbors with
state 1 (i.e. known functions or predicted functions in the
previous steps), using the local prediction method. The itera-
tions are done till all the nodes in the network reach the
equilibrium. Figure 8 shows the flow chart of this process.
With gradually cooling down, the system is likely to settle in a
global optimal state of the network configuration (Figure 7D).

A B

C D

Figure 7. Illustration of the global method for function prediction using simulated annealing technique. (A) A given interaction network where proteins (1–5) have
known function and proteins (6–11) are unannotated proteins. (B) In the initial state, the states of all unannotated proteins (nodes) are randomly selected to be 0 or 1
and the state of any annotated protein is always 1. For the unannotated protein with assigned state as 1, its functions are predicted using the local prediction method.
(C) Starting with a high temperature, for each node i we compute its value mi, then update its state. Thus proteins 6, 7, 8, 11 can be assigned function. This process is
shown in Figure 8. (D) With temperature going down, all unannotated proteins might be assigned function finally. The system might resettle in a global optimization
of network configuration.
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RESULTS

We have implemented three methods for predicting the protein
functions as described above, i.e. (i) local prediction without
integrating evolution and localization information; (ii) local
prediction with integrating evolution and localization informa-
tion; and (iii) global prediction with integrating evolution and
localization information. We evaluated the performance of the
three methods using all annotated proteins in yeast. The per-
formance of our prediction methods was evaluated using two
different methods: function prediction accuracy at the level of
protein, and sensitivity and specificity of prediction at the level
of function.

We first measured the performance of our methods at the
level of proteins, i.e. a correct prediction for a protein means
that at least one predicted function is the same as a known
function for the protein. For validation, we divided the 4044
annotated proteins with known GO INDICES into two sets
randomly, i.e. 75% for the training set and 25% for the test
set. All a priori probabilities were calculated from the training
set and used for function prediction in the test set. Figure 9
shows the percentage of proteins whose functions can be pre-
dicted accurately. We found that the localization and evolution
information improved the prediction. The global method has
the best performance since it utilizes the maximal available
information. Moreover, 84% proteins of the test set can be
predicted using the local prediction method while 87% pro-
teins of the test set can be predicted using the global method
since the global method can assign functions to proteins
that only have unannotated interaction partners. The function

of the remaining 13% proteins cannot be predicted, since
they do not connect to any other protein with known function,
either directly or indirectly, in the current available high-
throughput data.

We further used sensitivity (SN) and specificity (SP) to
measure the performance of our methods at the level of func-
tions (one protein can have multiple functions) using 10-fold
cross-validation. We labeled all 4044 annotated proteins with
known GO INDICES into fold 1–10. Each time, we pick one
fold as the test data set and the other nine folds were used as
training data to calculate prior probabilities. We estimate the
SN to determine the success rate of the method and SP to
assess the confidence in the predictions (14). For a given
set of proteins K, let ni be the number of the known functions
for protein Pi. Let mi be the number of functions predicted for
the protein Pi by the method. Let ki be the number of predicted

Figure 9. Percentage of proteins in testing data whose functions can be
successfully predicted versus the Reliability score, with an interval of 0.1.
The percentage is calculated as P = n/N where n is the number of proteins
whose functions are correctly predicted, and N is the number of predictable
proteins for their functions by the method. For local prediction method
N = 0.84 · (number of testing proteins) and for the global prediction
method N = 0.87 · (number of testing proteins).

Figure 8. The flow chart of dynamical process of protein functional prediction
and state updating in an interaction network.

Figure 10. Sensitivity–specificity plot on the test set for the three prediction
methods.
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functions that are correct (the same as the known function).
Thus, SN and SP are defined as:

SN =
PK

1 kiPK
1 ni

: 12

SP =
PK

1 kiPK
1 mi

: 13

Figure 10 shows the SN versus SP of the method with Relia-
bility score cutoff from 0.1 to 0.9. It shows that the localization
and evolution information can improve the sensitivity.
The global prediction shows significantly better sensitivity–
specificity plot than local predictions. It is worthwhile
mentioning that while the global method can predict many
more functions, it is not at the cost of specificity. This is
because the probability for a particular function decays fast
as the information of the function propagates through the

network. Typically for a given protein, one or very few func-
tions have probability >10%, and the remaining predictions
can be ignored. On the other hand, the highest specificity can
only reach 70%. Some false positives generated in our method

Table 1. Number of unannotated genes with function predictions with respect

to prediction Reliability score and index level

Index Reliability score
>0.9 >0.8 >0.7 >0.6 >0.5 >0.4 >0.3 >0.2 >0.1

1 897 964 1045 1116 1185 1264 1331 1530 1707
2 847 922 978 1052 1130 1217 1315 1519 1707
3 710 801 883 955 1018 1102 1236 1491 1693
4 627 714 789 870 949 1052 1151 1433 1673
5 593 691 761 836 918 1016 1120 1405 1659
6 271 378 472 447 622 707 849 1128 1495
7 104 173 248 316 395 483 595 722 1159
8 14 31 48 68 103 147 194 299 680
9 0 1 2 3 4 4 11 20 105

10 0 0 0 0 0 0 0 0 6

Table 2. Function predictions for 14 genes whose Reliability score >0.9 and GO index level >8

ORF ID Predicted GO biological process index with Reliability score

YDR091C 2-4-5-3-4-2-4-2 (0.9) 5-20-26-12-2-10-3-2 (0.9)
Ribosome biogenesis: processing

of 20S pre-rRNA
rRNA processing: processing of

20S pre-rRNA
YDR365C 2-4-5-3-4-2-4-2 (0.97) 5-20-26-12-2-10-3-1 (0.92)

Ribosome biogenesis: processing
of 20S pre-rRNA

rRNA processing: 35S primary
transcript processing

YDR496C 2-4-5-3-4-2-4-1 (0.97) 5-4-5-3-4-2-4-1 (0.93)
Ribosome biogenesis: 35S primary

transcript processing
Ribosome biogenesis: 35S primary

transcript processing
YGR145W 2-4-5-3-4-2-4-2 (0.99) 5-20-26-12-2-10-3-1 (0.99) 5-4-5-3-4-1-2-1 (0.94)

Ribosome biogenesis: processing
of 20S pre-rRNA

Ribosome biogenesis: 35S primary
transcript processing

Ribosome biogenesis:
35S primary transcript processing

YHR033W 5-20-9-21-2-4-9-3 (0.94)
Ubiquitin-dependent protein

catabolism
YJL069C 2-4-5-3-4-2-4-2 (0.97) 5-20-26-12-2-10-3-2 (0.93)

Ribosome biogenesis: processing
of 20S pre-rRNA

rRNA processing: processing
of 20S pre-rRNA

YKR060W 5-20-26-12-2-10-3-2 (0.96)
rRNA processing: processing of

20S pre-rRNA
YLR196W 2-4-5-3-4-2-4-2 (0.97)

Ribosome biogenesis: processing
of 20S pre-rRNA

YLR409C 5-20-26-12-2-10-3-2 (0.99) 5-20-26-12-2-10-3-1 (0.96)
rRNA processing: processing

of 20S pre-rRNA
Ribosome biogenesis: 35S primary transcript

processing
YMR116C 5-20-26-12-2-10-3-2 (0.96)

rRNA processing: processing
of 20S pre-rRNA

YMR290C 5-4-5-3-4-2-4-1 (0.98) 5-20-26-12-2-10-3-2 (0.97) 2-4-5-3-4-1-2-1 (0.96)
Ribosome biogenesis: 35S

primary transcript processing
rRNA processing: processing

of 20S pre-rRNA
Ribosome biogenesis: 35S

primary transcript processing
YNL132W 2-4-5-3-4-2-4-2 (0.99) 5-4-5-3-4-2-4-1 (0.99) 5-20-9-21-2-4-9-3 (0.92)

Ribosome biogenesis: processing
of 20S pre-rRNA

Ribosome biogenesis: 35S
primary transcript
processing

Ubiquitin-dependent
protein catabolism

YNL175C 2-4-5-3-4-2-4-2 (0.92) 5-20-26-12-2-10-3-2 (0.92)
Ribosome biogenesis: processing

of 20S pre-rRNA
Ribosome biogenesis: 35S primary transcript

processing
YNR054C 2-4-5-3-4-2-4-2 (0.92) 5-20-26-12-2-10-3-2 (0.92)

Ribosome biogenesis: 35S primary
transcript processing

Ribosome biogenesis: 35S primary
transcript processing

Numbers in parentheses denote the Reliability score.
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might be caused by the independence assumption of different
sources of high-throughput data. Such assumption could be
oversimplified due to biases inherent in the data. For example,
protein binary interactions are related to correlations between
gene expression profiles (17). Nevertheless, some predicted
functions from our methods could be true but they have not yet
been determined by experiments, and thus they are not
included in the GO annotation.

Using all the 4044 annotated proteins with known GO
INDICES as the training set, we are able to assign functions
to 1802 out of the 2280 unannotated proteins in yeast at dif-
ferent levels of functions (GO INDICES). The detail predic-
tion results are available at http://digbio.missouri.edu/~ychen/
ProFunPred. The number of unannotated genes with function
predictions with respect to the specificity and GO INDEX
levels can be found in Table 1. Using our method, we assign
not only general functional categories to unannotated protein,
but also the specific functions to unannotated proteins. For
example, Table 2 shows 14 genes whose predicted functions
are with Reliability score >0.9 and GO index level >8. A total
of 104 unannotated proteins were assigned functions with
Reliability score >0.9 and GO index level >7. The MS
Excel file of 104 proteins can be downloaded at http://digbio.
missouri.edu/~ychen/ProFunPred.

DISCUSSION

Systematic and automated prediction of gene function using
high-throughput data represents a major challenge in the

Table 3. The prediction methods and the number of proteins with predicted

functions

Prediction methods Number of unannotated proteins
with predicted function

Our global method 1802
Schwikowski et al. (11) 364
Deng et al. (14) 422
Letovsky and Kasif (15) 320
Troyanskaya et al. (16) No information
Vazquez et al. (19) 441
Karaoz et al. (20) >200

Table 4. The comparison of prediction results from five methods

Prediction methods YMR322C YDR100W YLR449W YLR128W YER079W

Schwikowski
et al. (11)a

Cell stress (3/3) Vesicular transport (2/2) Protein synthesis (2/3) Cell polarity (2/4) Signal transduction(2/2)
Membrane fusion (2/2)

Deng et al. (14)b Other
metabolism (0.78)
Cell stress (0.63)

Small molecule
transport (0.99)
Membrane fusion (0.17)

No prediction No prediction Cell polarity (0.49)
Signal tranduction (0.48)
Small molecule

transport (0.25)

Letovsky and
Kasif (15)c

Pyridoxine
metabolism (0.1)

Intracellular protein
transport (0.8)

No prediction No prediction No prediction

Thiamine
biosynthesis (0.2)

Vesicle-mediated
transport (0.9)

Vazquez et al. (19)d Biosynthesis of
vitamins, cofactors,
and prosthetic
groups (100)

Vacuolar and lysosomal
organization (43)

Vacuolar transport (35)
Vesicular transport

(Golgi network, etc.) (22)

No prediction Cell cycle check
point proteins (94)

Organization of
cytoskeleton (5)

Proteasome (1)

Cell growth (20)
Budding, cell polarity

and filament
formation (20)

Cytokinesis (20)

Karaoz et al. (20)e Not available ER to Golgi
transport (GO:0006888)

Not available Not available Not available

Retrograde (Golgi to ER)
transport (GO:0006890)

Our methodf 5-20-42-5-9-4 (0.93) 5-20-36 (0.68) 5-20-26-11-4-5-3 (0.95) 2-4-6-3 (0.65) 5-20-36-13-54-5 (0.98)
Pyridoxine metabolism Protein metabolism Processing of 27S

pre-rRNA
Cytokinesis Protein-lipolyation

5-20-42-5-10-5 (0.92)
Vitamin biosynthesis:

thiamine biosynthesis

2-4-11-15-4 (0.56)
Intracellular transport:

nucleocytoplasmic
transport

2-4-11-15-14-2-4 (0.93)
Ribosome-nucleus

export

2-4-2-2 (0.65)
Cell growth:

bud growth

2-4-11-15-9-4-10 (0.89)
Protein-vacuolar targeting

5-20-36-13-58-2 (0.91) 5-4-11-34-8 (0.54) 3-17-1-1-2 (0.6) 5-20-12-1-5-3-1 (0.86)
Protein ubiquitination Retrograde (Golgi to ER)

transport
Cellular process:

bud growth
Negative regulation

of gluconeogenesis

aNumbers in parentheses denote the number of neighbors with the predicted function/number of interaction partners with any known functions. Predictions are
classified according to the YPD annotation categories of ‘cellular role’.
bData are from cellular role prediction results available at http://www.cmb.usc.edu/msms/FunctionPrediction/. Number in the parenthesis denotes the probability of a
protein belonging to the functional category. There were 44 categories of cellular roles used in prediction.
cPredictions are from http://genomics10.bu.edu/netmark using the GO categories as function labels. Numbers in parentheses denote the probability of function
assignment.
dFunctional classifications were based on the MIPS. The numbers in parentheses show the percentage of occurrence of the corresponding function in 100 runs of
prediction algorithm.
eThe results come from the Supplementary Data. Function predictions are made with GO IDs and the authors listed a predicted function if the F-measure for this
function as obtained by the cross-validation evaluation is at least 75%.
fFunction annotations were from our method with the GO biological process INDEX and its Reliability score shown in the parentheses.
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post genomic era. To address this challenge, we developed
a systematic method to assign function in an automated
fashion, using integrated computational analysis of yeast
high-throughput data, including binary interaction, protein
complexes and gene expression microarray data, together
with the GO biological process functional annotation. The
main contribution of our work is to provide a framework of
integrating heterogeneous biological information for genome-
scale protein function prediction. In addition, we combine
protein subcellular localization and evolution information
into function prediction. It is worthwhile mentioning that
some predictions can be used as input data for our framework,
although predicted results are not as reliable as experimental
data. We used predicted protein–protein interactions, together
with microarray data for gene function prediction in A.thaliana
(33). In addition, subcellular localization can be predicted with
good confidence (34,35) and the information may help gene
function prediction as well. Our method is robust to obtain
global optimization using simulated annealing. With starting
from six different sets of randomly selected starting points,
we obtained exactly the same result as shown in Table 1.

Our methods assign functions for unannotated proteins on
the genomic scale. To our knowledge, our method covers more
unannotated proteins for functional predictions than any other
methods published previously (see Table 3). From 29 proteins
listed in Table 1 in the paper of Schwikowski et al. (11) that
have two or more interacting proteins, we randomly choose
five unannotated proteins that are not annotated till now to
compare the prediction results between our method and other
methods by Schwikowski et al. (11), Deng et al. (14),
Letovsky and Kasif (15), Vazquez et al. (19) and Karaoz
et al. (20) (see Table 4). One improvement from our method
is that we can assign unannotated proteins into deeper levels of
biological processes, while most other methods make protein
function prediction using less detailed functional categories
defined in YPD (http://proteome.incyte.com) or MIPS (http://
mips.gfs.de) databases. Some of the increased performance of
our method might be due to the different size of data set used in

different studies, but we believe it does not account for the
major improvement of our method. The major contribution is
that our method integrated multiple sources of data, by com-
bining and propagating information systematically across the
entire network, based on the global optimization. Moreover,
using our global prediction method, we can assign functions
for the proteins whose interacting partners do not have any
known function as shown in Figure 11 and Table 5. Our pre-
dictions can provide biologists with hypotheses to study and
design specific experiments, to validate the predicted functions
using tools such as mutagenesis. Such combination of com-
putational methods and experiments may discover biological
functions much more efficiently than traditional approaches.

Future work includes exploring better optimization methods
and statistical models. To solve the optimization problem in
Boltzmann machine, in contrast to the simulated annealing
technique, a Bayesian learning of posterior distributions

Figure 11. Global function prediction for yeast YBR100W. All interacting
partners of YBR100W are unknown in functions. Through the global
prediction method, it was assigned to several functions GO Indices. The
functions of related proteins are shown in Table 5.

Table 5. GO indices of proteins in Figure 11

ORF ID Name A/P GO index GO biological process
annotation

YER133W GLC7 A 5-20-26-11-4-5-1 35S primary transcript
processing

5-35-7 Response to heat
YJR063W RPA12 A 5-20-7-16-8-6 Glycogen metabolism

5-20-26-12-2-10-3-1 35S primary transcript
processing

YER045C ACA1 A 5-20-26-12-2-13-2 Transcription initiation
from Pol II promoter

5-20-26-12-2-11-6 Transcription initiation
from Pol II promoter

YHR055C CUP1 A 5-34-3-2-3-6-4 Response to copper ion
YJR091C JSN1 A 5-20-9-21-3-1-1 Deadenylation-dependent

decapping
5-20-26-11-2-2-1 mRNA catabolism,

deadenylation-dependent
YDR148C KGD2 A 5-20-7-11-7 Tricarboxylic acid cycle

5-20-13-1-4-6-1 2-Oxoglutarate
metabolism

YDR259C YAP6 A 5-20-26-12-1-3-2-5 Positive regulation of
transcription from
Pol II promoter

5-20-26-12-1-3-6-6 Positive regulation of
transcription from
Pol II promoter

YDR123C INO2 A 5-20-26-12-2-3-6-6 Positive regulation of
transcription from
Pol II promoter

YDR082W STN1 A 5-35-4-5-3 Telomere capping
YDL200C MGT1 A 5-35-4-4-3 DNA dealkylation
YBR099C P 5-35-4-4 (0.96) DNA ligation

5-20-26-12 (0.96) Transcription
YNL092W P 5-20-26-12-2 (0.96) Transcription,

DNA-dependent
5-20-26-11-4-5

(0.88)
rRNA processing

5-35-4-4-6-1 (0.85) Double-strand break
repair via homologous
recombination

YIL024C P 5-20-26 (0.93) Nucleic acid metabolism
5-35-4-4-6 (0.82) Double-strand break

repair
YOR391C P 5-35-4-4-3 (0.98) DNA dealkylation

5-20-26-12-2-11
(0.89)

Transcription from
Pol II promoter

A, annotated proteins; and P, predicted functions for unannotated proteins. The
numbers in the parentheses denote the Reliability score.
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over parameters (36) provides a more elaborate and systematic
estimation of maximum likelihood. In addition, supervised
learning methods such as Conditional Random Fields (37)
can also be alternative schemes to model this stochastic learn-
ing process. Furthermore, we will develop more elaborate
model-based integrations to address the dependences among
different high-throughput data for protein function prediction.
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