Skip to main content
. 2017 Mar 17;12(3):e0168606. doi: 10.1371/journal.pone.0168606

Table 1. Quantitative evaluation for pediatric cataract classification and grading results with different CAD models.

Metrics WT LBP SIFT COTE CNN
Classification ACC (%) 88.26 (0.02) § 85.10 (0.02) 77.76 (0.01) 71.12 (0.13) 97.07 (0.01)
SPC (%) 95.38 (0.03) 87.82 (0.01) 88.03 (0.04) 74.58 (0.39) 97.28 (0.01)
SEN (%) 80.00 (0.06) 81.95 (0.05) 65.85 (0.03) 67.06 (0.19) 96.83 (0.02)
Area grading ACC (%) 78.29 (0.03) 70.72 (0.06) 76.09 (0.04) 74.17 (0.08) 89.02 (0.01)
SPC (%) 76.74 (0.12) 56.40 (0.11) 81.98 (0.04) 59.88 (0.36) 86.63 (0.06)
SEN (%) 79.41(0.06) 81.07 (0.04) 71.81(0.09) 84.34(0.15) 90.75(0.04)
Density grading ACC (%) 83.39 (0.03) 71.00 (0.04) 77.32 (0.02) 82.96 (0.05) 92.68 (0.01)
SPC (%) 82.69 (0.03) 62.64 (0.09) 83.83 (0.04) 79.99 (0.13) 91.05 (0.02)
SEN (%) 83.95 (0.07) 77.49 (0.01) 72.29 (0.05) 85.28 (0.07) 93.94 (0.02)
Location grading ACC (%) 78.77 (0.03) 76.09 (0.04) 80.73 (0.01) 67.83 (0.07) 89.28 (0.03)
SPC (%) 71.32 (0.08) 56.65 (0.06) 74.77 (0.09) 52.83 (0.37) 82.70 (0.06)
SEN (%) 83.08 (0.04) 87.31 (0.04) 84.23 (0.05) 76.54 (0.23) 93.08 (0.04)

Footnotes: ACC (accuracy); SPC (specificity); SEN (sensitivity); WT (wavelet transformation); LBP (local binary pattern); SIFT (scale-invariant feature transform); COTE (color and texture features); CNN (convolutional neural network);

§Mean (Standard Deviation).