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Organic-inorganic hybrid perovskites (OIHPs) have been demonstrated to be highly successful photovoltaic materials
yielding very-high-efficiency solar cells. We report the room temperature observation of an anomalous photovoltaic
(APV) effect in lateral structure OIHP devices manifested by the device’s open-circuit voltage (VOC) that is much larger
than thebandgapofOIHPs. The persistentVOC is proportional to the electrode spacing, resembling that of ferroelectric
photovoltaic devices. However, the APV effect in OIHP devices is not caused by ferroelectricity. The APV effect can be
explained by the formation of tunneling junctions randomly dispersed in the polycrystalline films, which allows the
accumulation of photovoltage at a macroscopic level. The formation of internal tunneling junctions as a result of ion
migration is visualizedwith Kelvin probe forcemicroscopy scanning. This observation points out a new avenue for the
formation of large and continuously tunable VOC without being limited by the materials’ bandgap.
INTRODUCTION
Organic-inorganic hybrid perovskite (OIHP)materials have been revo-
lutionizing the photovoltaics field in recent years with their use in high-
efficiency solar cells (with power conversion efficiency exceeding 22%)
and low-cost potential (1–10). Meanwhile, the development of other
OIHP-based devices, such as lasers (11, 12), high-gain photodetectors
(13, 14), light-emitting diodes (15), and transistors (16), is also in full
swing. It is widely wondered whether OIHP materials will continue
to generate breakthroughs in the optoelectronics field with their
intriguing electronic and optoelectronic properties. Currently, there is
a consensus that OIHPmaterials are a group of soft materials with high
electronic and ionic conduction due to their relatively loosely bonded
crystal structure (17–21). Investigations focused on making full use of
this unusual property have been recently performed (22). In addition, a
more insightful understanding of the photovoltaic process in OIHP
materials is crucial to further improving the photocurrent and photo-
voltage output of OIHP solar cells (23, 24).

Here, we report the observation of an anomalous photovoltaic
(APV) effect in lateral structureOIHP solar cells. Investigations focused
on the APV effect in some inorganic materials, especially ferroelectrics,
have attracted an upsurge in interest over the past decade because of its
completely different working mechanisms and output characteristics
compared to those of traditional p-n junction solar cells (25–29). To
date, several semiquantitative or phenomenological models have been
established to explain the APV effect, which can be classified into two
major types: (i) the intrinsic noncentrosymmetry in bulk materials and
(ii) the granularity of the polycrystalline materials (26, 30, 31). The
former type of APV mechanism principally demands a very low con-
ductivity in photovoltaic materials (25), whereas the latter mechanism
does not suffer from a similar limitation.However, to date,mostmodels
for the granularity mechanism (for example, the Dember effect model,
the structure transition model, and the p-n junction array model) are
speculative because the corresponding formationmechanisms have not
been proven. Hence, determining the origins of the open-circuit voltage
(VOC) that is larger than the materials’ bandgap with experimental ev-
idence is of great academic interest (25).
RESULTS
TheOIHP solar cells used in this study had a symmetric lateral structure
of Au/MAPbBr3 (or MAPbI3 and CsPbBr3)/Au, where the photoactive
layer andmetallic electrodes were deposited directly on a glass substrate
(Fig. 1A). The as-made OIHP solar cells did not show any photovoltaic
effect because of the symmetric lateral structure (17, 19). After the lateral
MAPbBr3 device was electrically poled by a moderate electrical field of
0.3 to 0.5 V/mmat room temperature (RT) for 1 to 2min, a largeVOC of
about 1.1 to 1.3 V was obtained (Fig. 1A) from the MAPbBr3 devices,
with an electrode spacing of 50mm,which is close to the bestVOC (1.4V)
reported for vertical structure MAPbBr3 solar cells (32, 33). The gener-
ation of this large VOC in a device with symmetrical electrodes can be
ascribed to the in situ formation of a p-i-n or p-n structure in the
MAPbBr3 film induced by ion migration and space-charge doping, as
illustrated in Fig. 1A (middle) (19, 33). The short-circuit current (ISC) is
~300 pA for devices with an active area of 50 mm × 1 mm under an
illumination intensity of 25mW/cm2. The device’sVOC showed a linear
relationship with the poling bias, as shown in Fig. 1 (B and C). Aston-
ishingly, when the lateral MAPbBr3 device was poled by a larger elec-
trical field of 5V/mm for 1 to 2min, theVOC further increasedmarkedly
to 7.4 eV, which is much larger than the bandgap (2.3 eV) ofMAPbBr3.
Meanwhile, the photocurrent increased slightly to 490 pA (Fig. 1B). In
lateral devices with aMAPbI3 photoactive layer, noVOC larger than the
bandgap was observed at RT, which is consistent with our previous
study (17, 19). Nevertheless, a similar over-bandgap VOC of 2.6 V was
observed when the poling temperature was elevated to be around 330 K
(fig. S1). The anomalously large VOC in the OIHP materials was found
to increasewith the spacing between the two electrodes (Fig. 1, C andD)
when the poling electrical fieldwas fixed at 5V/mm.A largeVOCof 14.9V
was found in MAPbBr3 solar cells with an electrode spacing of 100 mm
after an electrical poling at 5 V/mm for 1 to 2min. There is a threshold at
an electrode spacing of 8 mm, below which VOC exceeding the bandgap
cannot be found, even at a high poling field of 5 V/mm.

This is the first time that OIHP solar cells with aVOC larger than the
bandgap have been observed, which needs a mechanism for interpreta-
tion. AnAPVeffect dependent on electrode spacing has been frequently
observed in some materials that lack a center of symmetry, generally
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known as a bulk photovoltaic (BPV) effect due to the generation of
“shift current” under illumination (30, 34). The BPV effect has more
frequently been observed in ferroelectric materials, which have an
aligned internal field after poling (24, 29). The ratio between the avail-
ableVOC and the electrode spacing (0.1 to 0.2V/mm) inOIHP is close to
that of the BPV-basedAPV effect in some typical inorganic ferroelectric
materials, such as bismuth ferrite (BFO; ~0.1 V/mm) and lanthanum-
doped lead zirconate titanate (PLZT; ~0.2 V/mm) (25–27). However,
MAPbBr3 at RT has a cubic structure and thus does notmeet the crystal
structure for ferroelectricity. On the other hand, the ordering of polar
organic cations, such asMA+, has been theoretically predicted to be the
other route of polar domain formation (35, 36). Nevertheless,many the-
oretical and experimental studies indicate thatMA+ cations easily rotate
in the inorganic cage at RT (37–40). The quick reorientation of the or-
ganic cations was claimed to contribute to the dynamic screening of en-
ergetic hot carriers in hybrid perovskites (41). On the experimental side,
although switchable local phase contrast in PFM imaging of MAPbI3
films was observed, which, in principle, could be explained by the
MA+ ordering, no reliable hysteretic piezoresponse force microscopy
(PFM) loop has been observed at RT in either single crystalline or poly-
crystalline samples (42). To date, there is no solid experimental evidence
to support the notion of ferroelectricity inMAPbI3 despite speculations
on the polar ordering in tetragonal MAPbI3 at RT (20, 43). Moreover,
the anomalous VOC has only showed up in MAPbI3 devices at an
elevated poling temperature of around 330 K, which is also contrary
to the ferroelectric mechanism because if ferroelectricity exists, then
the spontaneous polarization should vanish above the phase transition
temperature (330 K for MAPbI3). In addition, a dependence of the
anomalous VOC on the polarization direction of the incident light is
considered as a fingerprint of the BPV in ferroelectric materials (27).
Here, the anomalous VOC observed in OIHPmaterials did not respond
to the light polarization direction change (fig. S2), which also excludes
the contribution of the BPV effect. There was a new interesting mech-
anism of photoferroelectricity [proposed by Liu et al. (44)] that suggests
Yuan et al., Sci. Adv. 2017;3 : e1602164 17 March 2017
light-induced ordering of MA+ in MAPbI3, which could explain the ex-
perimentally observed light-enhanced piezoelectricity (43). However, its
contribution to the APV effect observed here can be excluded, because
a similar above-bandgap VOC (for example, 5.9 V) can be obtained when
thepolarMA+ inMAPbBr3was replacedbynonpolarCs

+ cations (fig. S3).
It has been established that ionmigration occurs inOIHPmaterials

under electric poling, which is responsible for the current hysteresis
and many other unique properties of perovskite electronic devices
(13, 16–19, 45–48). Ions may diffuse back after turning off the poling
bias, which may also generate a current. It is thus necessary to find
out whether the observedVOC is an artifact caused by the back diffusion
of ions. Because the ion migration process is very sensitive to tempera-
ture, freezing the ion migration at low temperature should exclude its
contribution to the photocurrent.

The APV effect was studied for a large temperature range (from 120
to 330 K), as shown in Fig. 2 (A and B). The anomalously large VOC

remained (for example, 5.1 V) when the device was measured at a suf-
ficiently low temperature of 120 K. The large VOC was obtained by
scanning the device in both forward and backward directions (fig. S4).
No hysteresis effect was observed in a wide temperature range of 120 to
330 K, which is consistent with our previous observation and excludes
the contribution of ion redistribution to the photocurrent observed here.
This can be explained by the fact that the I-V (current-voltage) curves
scanned here only applied a small electrical field (0.1V/mm) to theOIHP
films and hence should not cause significant ionmigration (19). The ISC
lost nearly half of its value when the temperature decreased from 330 to
120 K, which can be explained by themore severe charge trapping effect
at lower temperature. Typical VOC enhancement at lower temperature
due to the reduced saturated dark current was not observed here because
the random (or noncontinuous) tunneling junction distribution results
in the leakage current dominating the total dark current.

When the illumination light intensity changed, a semilogarithmic
increase in VOC with the photocurrent ISC was observed, that is,VOC ¼
nkT
q ln ISC

Io

� �
, where k is the Boltzmann constant,T is the temperature, q is
Fig. 1. APV effect in OIHP solar cells. (A) Scheme of the lateral perovskite solar cells before (top) and after electrical poling (middle and bottom), where the device structure is
Au/MAPbBr3 (orMAPbI3)/Au. Eg, bandgap. (B) I-V curves of theMAPbBr3 devices after different intensities of electrical poling (for example, poling for 1 to 2min at 0.2, 0.3, 0.8, 2, and
5 V/mm, respectively). (C) I-V curves of the electrically poled (5 V/mm) MAPbBr3 devices with different electrode spacings. (D) Summarized VOC of lateral MAPbBr3 devices with
different poling electrical fields and electrode spacings. E-field, electrical field.
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the unit charge, and n is the ideal factor (~31). This anomalous VOC

variation behavior, with respect to the incident light intensity (Fig. 2C),
also excludes ion back diffusion as the dominating contribution to the
photocurrent because ionbackdiffusion current is sensitive only topoling
bias and not to light intensity. Note that if the I-V curve scan is conducted
immediately after the electrical poling, then there is an ion back diffu-
sion current component added onto the photocurrent (Fig. 2D). Howev-
er, its contribution quickly decreases after poling and becomes negligible
after ~200 s, the time scale in which the photocurrent was measured for
this project. On the other hand, the photocurrent generated by the APV
effect was much more stable. Figure 2E shows that the photocurrent
output of a MAPbBr3 solar cell measured at a fixed voltage of 4 V can
last for several hours. When stored in the dark, the electrically poled
MAPbBr3 solar cell can maintain its above-bandgap VOC overnight
(fig. S5). The slow photocurrent decrease in the time scale of 1000 s
(Fig. 2E) is attributed to the light-induced degradation of the perovskite
film, because the uncovered MAPbI3 (MAPbBr3) tends to lose methyl-
ammonium and probably iodine much faster in vacuum and under il-
lumination (see a demonstration in fig. S6).

To further confirm the over-bandgap VOC, we mapped the surface
potential of the electrically poledOIHP solar cells by Kelvin probe force
microscopy (KPFM) in N2 atmosphere (Fig. 3A). The surface potential
continuously changed from the cathode region to the anode region (Fig. 3,
B and C) without any abrupt potential change (fig. S7). Under a light
intensity of ~100 mW/cm2, a potential difference of 3.5 V from the an-
ode to the cathode side was obtained under open-circuit conditions,
which was above the bandgap. These KPFM results indicated that the
Yuan et al., Sci. Adv. 2017;3 : e1602164 17 March 2017
anomalously large VOC was uniformly contributed by the whole poly-
crystalline MAPbBr3 film, agreeing with the observation that larger
electrode spacing yielded larger VOC.
DISCUSSION
We had previously established that poling of lateral structure films
could yield the formation of p-i-n or p-n structure devices, which output
a VOC below the bandgap (17, 19). To interpret the APV phenomenon
observed here, it is proposed that there are many local p-i-n or p-n
structures formed separately in the polycrystallineMAPbBr3 (orMAPbI3
and CsPbBr3) films during the poling process. Because both cation and
anion vacancies need tomove in opposite directions upon poling, p- and
n-type doped regions are expected to be generated, and they can be ad-
jacent to each other. The p-i-n or p-n structures comprise a certain
amount of grains, which act as local photovoltaic units (PVUs) in the
micrometer scale. However, it is well known that, in the absence of me-
tallic interconnecting layers or tunneling junctions, simply connecting
p/n/p/n structures does not form a tandem cell. Hence, there must be a
mechanism that allows all the photovoltages generated in each individ-
ual PVU to be accumulated, even if their polarities are aligned by the
poling field.

Formation of tunneling junctions in the perovskite films is possible
because of the accumulation of ions or ion vacancies at locations where
ions have low mobility, such as large-gap grain boundaries (GBs), with
their direction normal to the applied electrical field or positions with
nonuniformmorphology. The buildupof ionswith positive andnegative
Fig. 2. Characterizations of the APV effect. (A) and (B) show the temperature-dependent photovoltage and photocurrent of the MAPbBr3 device, respectively. (C) Semi-
logarithmic relationship between the anomalous photovoltage and photocurrent obtained at different light intensities. a.u., arbitrary units. (D) Comparison of the I-V curves
of the MAPbBr3 device measured immediately after electrical poling or 1000 s after electrical poling, where the cyan area is defined by the difference between two I-V curves
obtained, indicating the contribution from ion back diffusion current. (E) Durable photocurrent output at a bias of 4 V, where the influence of ion diffusion current disappeared
quickly in a few hundreds of seconds.
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charges around GBs can heavily n-dope (n++) and p-dope (p++) the
MAPbBr3 at opposite sides of GBs, forming an interfacial p++/n++

tunneling junction at the GBs. This ion blocking effect is not surprising
because the ionmigration rate should be nonuniform in polycrystalline
film. It is not in conflict with our recent finding that ions migrate faster
along theGBs than through lattice because, in that case, GBs are parallel
with the applied field (46).

The presence of a tunneling junction at GBs should give rise to
abrupt band bending around GBs, which, however, was not observed
in the surface potential mapping shown in Fig. 3 (B and C). This might
be caused by the low resolution of KPFM (tens of nanometers), which is
significantly larger than the tunneling junction thickness or GB thick-
ness (which are in the nanometer scale). Another reason is that the
tunneling junction formed in polycrystalline film is discontinuous
and randomly dispersed at GBs (labeled as “dispersed tunneling junc-
tion” in Fig. 3D), which imperceptibly contributes to the photovoltage
accumulation but may not form a clear abrupt potential change on the
film surface. This is because the PVUs in the bulk of polycrystalline film
Yuan et al., Sci. Adv. 2017;3 : e1602164 17 March 2017
are staggered in both the out-of-plane and in-plane directions, and the
KPFM tip only collected an “averaged” signal under the conductive tip
on the film surface. According to this picture, if the ion accumulation
regions are well aligned and/or become continuous (labeled as “aligned
tunneling junction” in Fig. 3E), then the presence of the tunneling junc-
tion should be detectable.

To verify this hypothesis, we conducted another KPFM study on
MAPbBr3 solar cells with artificial boundaries to control ion accumu-
lation. This was realized by intentionally broadening the thickness of
GBs with an electron beam (E-beam) under scanning electron micros-
copy (SEM; fig. S8). It is often observed that an E-beam (10 to 20 kV)
causes the decomposition of OIHP materials. The evaporation of the
MAPbBr3 reduces the grain size and hence broadens the GBs (Fig. 3F),
which allows the ion accumulation to be controlled at designated
positions to form controllable patterns.

Here, we “wrote” two Z-shaped lines in the lateral structure devices
by using anE-beam, as shown in Fig. 3G.After electrical poling, an over-
bandgap VOC of 3.5 V was obtained in this sample. By aligning the ion
Fig. 3. Role of ion accumulation in APV effect. (A) Scheme of the KPFM characterization, where the anode of the solar cell was grounded. (B) Surface potential distribution of
theMAPbBr3 devicemeasured in the dark and under light (in N2 atmosphere), respectively. (C) Surface potential profiles at the positionmarked in (B). (D) Scheme of the dispersed
tunneling junction inOIHP film,which consists ofmanydiscontinuous, randomlydistributed tiny tunneling junction regions. Iph, photocurrent. (E) Schemeof the aligned tunneling
junction. (F) Broadened GBs in OIHP film by E-beam treatment under SEM (10 to 20 kV), which was used to control the position of ion accumulation. (G) and (H) show the
topography and surface potential of the E-beam–treated OIHP film (90 mm × 90 mm) with controlled ion accumulation pattern with “Z” shapes, respectively. (I) Topography
(top) and surface potential (bottom) profiles of the position marked in (H).
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accumulation, two abrupt band-bending regions appeared in the sur-
face potential mapping image (Fig. 3H). Their positions coincided with
the E-beam written regions (Fig. 3G), which should be attributed to the
intentionally increased density of “dispersed tunneling junctions” inside
the E-beam–treated region (~100 nm inwidth). This result demonstrated
the close relationship between ion accumulation and the possibility of
forming tunneling junctions. Figure 3I compares the morphology and
surface potential profile in the position marked in Fig. 3H. The abrupt
surface potential change was around 1.0 V for each junction. In the case
of regular OIHP film without E-beam treatment, the ion accumulation
and the tiny interfacial tunneling junction were randomly distributed
(Fig. 3D). Nevertheless, these polycrystalline films still had the capability
to generate anAPV effect, although its equivalent circuit was not yet fully
understood. A qualitative explanation based on the proposed working
mechanism is that the band bending induced by local tunneling junctions
canbe anadditional kindof driving force for the separation and collection
of photogenerated charge carriers, which lead to an over-bandgap VOC

(fig. S9). Phenomenally, a difference between theAPV effect based on the
dispersed tunneling junction and tandem solar cells is the continuously
adjustable VOC by electrode spacing or poling electrical field in lateral
OIHP solar cells (Fig. 1D).
Yuan et al., Sci. Adv. 2017;3 : e1602164 17 March 2017
We discovered that the APV effect in OIHP is sensitive to oxygen
absorption. For the electrically poled OIHP solar cells with an initial
VOC of 18 V (electrode spacing was 100 mm), the APV effect disap-
peared gradually when the device was exposed to oxygen (Fig. 4A). This
VOC loss should not relate tomaterial degradation by oxidation because
it is reversible. Once the oxygen atmosphere was removed by vacuum-
ing, theVOC recovered to be over-bandgap again (Fig. 4B). At an oxygen
pressure of 100 to 1000Pa, it took about 30 to 40min for theOIHP solar
cells to lose most of theirVOC, and likewise, under a vacuum condition,
it took about 30 to 40min to recover the anomalously largeVOC (Fig. 4C),
indicating a quick diffusion of oxygen in and out of the OIHP polycrys-
talline films. Under KPFM, the over-bandgap potential difference shown
in Fig. 3B disappeared immediately when the atmosphere was changed
from N2 to air, leaving a residual VOC of ~1.0 V spanning the entire
MAPbBr3 film (fig. S10). Consistently, the tunneling junctions in
MAPbBr3 solar cells with controlled ion accumulation disappeared when
the sample was exposed to air (Fig. 3, D and F). The disappearance of the
tunneling junctionmay be caused by amuch lower doping concentration
at GBs by the charge trapping effect of absorbed oxygen (see the scheme
in Fig. 4H). Zohar et al. (49) studied the electrochemical reaction in
MAPbI3 filmswith impedance spectroscopy, inwhich then-typeMAPbI3
Fig. 4. Oxygen-sensitive APV effect. (A) Vanished APV due to oxygen injection, where the electrode spacing of OIHP solar cells was 100 mm. (B) Recovered APV in the same
MAPbBr3 device as shown in (A) by pumping oxygen away. (C) Evolution of the photovoltaic against time, where theMAPbBr3 solar cells were exposed to oxygen (100 to 1000 Pa)
during the first 45min and then kept in vacuum from the 46thminute. (D) Topography of the E-beam–patternedMAPbBr3 film, where themeasured areawas 60 mm× 90 mm.
(E) and (F) show the surface potential images of the electrically poledMAPbBr3 film in N2 and air, respectively, where the abrupt potential change vanished because of oxygen
absorption. (G) and (H) show the schematic energy diagrams at GBs in N2 and air, respectively, where the ion accumulation–induced tunneling junction vanished because of
oxygen absorption. CB, conduction band; VB, valence band.
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filmwas shown tobe dedoped toward the intrinsic statewhen the filmwas
kept in O2-rich ambient. This explains the disappearance of tunneling
junction in our study well. This oxygen-sensitive APV effect in OIHP
might explain why it was not noticed previously in some other studies
carried out in air (47).

In summary, we have demonstrated an APV effect for the first time
in MAPbBr3, MAPbI3, and CsPbBr3 lateral structure solar cells. The
largest obtained VOC (14 to 18 V) was multiple times larger than the
materials’ bandgap. This APV effect was not related to the “ferro-
electricity” of OIHP materials, as excluded by the polarized light study
and elevated temperature study. ThisAPVeffectwas sensitive to oxygen
absorption. The origins of the APV effect have been proven to be the
formation of dispersed tunneling junctions and many staggered local
PVUs in OIHP film, which provide an experimentally proven mecha-
nism for the explanations of APV effects. This discovery also provides a
new strategy to form large and continuously adjustable photovoltages
without being limited by the materials’ bandgap, which may find new
applications in self-powered, highly integrated chips (for example, >5V)
or microelectromechanical systems. Moreover, this work also suggests
that ion migration in OIHP is useful in some situations because it
enables the formation of novel optoelectronic devices.
MATERIALS AND METHODS
Perovskite precursor synthesis
Methylammonium iodide (CH3NH3I) was synthesized by the method
described by Lee et al. (3). A concentrated aqueous solution of hydroiodic
acid [15.0 ml, 57 weight % (wt %) in water; Alfa Aesar] was reacted with
methylamine (CH3NH2) (13.5 ml, 40 wt % in aqueous solution; Alfa
Aesar) at 0°C for 2hourswith constant stirring undernitrogen atmosphere.
Methylammonium iodide was crystallized by removing the solvent using a
rotary evaporator. The generated white powder was washed three times
with diethyl ether (Alfa Aesar) and then dried in a vacuum overnight.

Film formation and device fabrication
The lateral MAPbBr3 and MAPbI3 devices were fabricated on pre-
cleaned glass substrates. First, 75-nm-thick Au electrodes with varied
spacings of 8, 30, 50, or 100 mmwere thermally deposited using a shad-
owmask. Subsequently, a 300-nm-thickMAPbBr3 orMAPbI3 filmwas
spin-coated on substrate with a “two-step” interdiffusion method. In
particular, for the fabrication of MAPbBr3 film, PbBr2 (45 wt %) and
MABr (4.0 wt %) were dissolved in dimethylformamide and 2-propanol,
respectively, to form precursor solutions. The PbBr2 hot solution was
spun onto glass at 6000 rpm. Then, the hot MABr solution was spin-
coated on PbBr2 film at 6000 rpm for 35 s. The bilayer films were then
annealed at 100°C for 1 hour. Similarly, for MAPbI3 film, PbI2 (40 wt %)
and MAI (4.0 wt %) were first dissolved in dimethylformamide and
2-propanol, respectively, to form precursor solutions. The PbI2 hot so-
lutionwas spun onto glass at 6000 rpm. Then, the hotMAI solutionwas
spin-coated on PbI2 film at 6000 rpm for 35 s. The bilayer films were
then annealed at 100°C for 1 hour. The CsPbBr3 films were fabricated
by a one-step method. The precursor solution was prepared by dissol-
ving 149 mg of CsBr and 257 mg of PbBr2 in a mixed solvent of 800 ml
ofN,N′-dimethylformamide and 200 ml of dimethyl sulfoxide. The so-
lutionwas stirred overnight and filtered through a polytetrafluoroethylene
filter. Then, the precursor solution was spun onto a glass substrate with
gold electrodes at 4000 rpm for 30 s. The samples were drop-castedwith
120 ml of toluene at the eighth second after the spin-coating started. Af-
ter spin-coating, the sample was annealed at 100°C for 30 min.
Yuan et al., Sci. Adv. 2017;3 : e1602164 17 March 2017
Film and device characterization
Measurements on lateral solar cells were conducted in a probe station
chamber under a vacuum of 10−5 Pa, with white light (25 mW/cm2)
through a quartzwindow.The substratewas located on ametal platewith
its temperature controlled by a heater and injected liquidN2, which could
vary from 80 to 340 K. During the testing, the atmosphere of the probe
station chamberwas changedby injecting dry oxygengas froma charging
valve. A high voltage supply (Keithley 240A) with a maximum available
voltage output of 1200 V was used for the poling process. A semi-
conductor analyzer (Keithley 4200) was used for the I-V characterization.

KPFM measurements
Measurements were conducted in a small, closed cell with continuous
dry N2 flow or in air. Pt/Ir-coated conductive probes were used in the
KPFMmeasurements. The two-pass KPFMmode was used tomeasure
the topographic and surface potential signals from the same sample ar-
ea. The first pass was used to acquire the morphology, and the second
pass was used to acquire the surface potential with the tip lifted by a
fixed distance following the surface profile. The scanning area and tip
velocity were 90 mm × 90 mm (or 2 mm × 2 mm; 4 mm/s) and ~54 mm/s,
respectively. The tip-surface distance for KPFMmeasurements was 40 nm
for all samples. During testing, the perovskite solar cells were kept under
open-circuit conditions with the cathode groundedwithin the shield of the
equipment. A white light with an intensity of ~100 mW/cm2 was shined
from the bottom of the transparent glass substrate. All the KPFMmea-
surementswere carried out at least 10 to 15min after the electrical poling.
The KPFM scanning process itself usually lasts for 20 to 200 min (turn
light on, turn light off, change locations, adjust the N2 flow, etc.). During
theKPFMscanning, the solar cellswere keptunder open-circuit conditions
with no bias applied.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/3/3/e1602164/DC1
fig. S1. APV effect in lateral MAPbI3 solar cells.
fig. S2. Independence of the APV effect on light polarization directions.
fig. S3. APV effect in nonpolar CsPbBr3-based lateral perovskite solar cells.
fig. S4. I-V curves of electrically poled MAPbBr3 lateral solar cells at different temperatures.
fig. S5. Stabilities of the APV effect under dark and illuminating conditions.
fig. S6. Accelerated degradation of MAPbBr3 polycrystalline films by illumination and
vacuuming.
fig. S7. Continuously formed over-bandgap VOC in MAPbBr3 solar cells.
fig. S8. Illustration of the GB broadening process caused by E-beam treatment.
fig. S9. Illustration of the proposed working mechanism for dispersed tunneling junction–
induced APV effect.
fig. S10. Disappearance of APV effect induced by oxygen absorption.
table S1. VOC obtained at forward and backward scanning at different temperatures.
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