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Total synthesis of mycobacterial arabinogalactan
containing 92 monosaccharide units
Yong Wu1, De-Cai Xiong1, Si-Cong Chen1, Yong-Shi Wang1 & Xin-Shan Ye1

Carbohydrates are diverse bio-macromolecules with highly complex structures that are

involved in numerous biological processes. Well-defined carbohydrates obtained by chemical

synthesis are essential to the understanding of their functions. However, synthesis of

carbohydrates is greatly hampered by its insufficient efficiency. So far, assembly of long

carbohydrate chains remains one of the most challenging tasks for synthetic chemists.

Here we describe a highly efficient assembly of a 92-mer polysaccharide by the preactivation-

based one-pot glycosylation protocol. Several linear and branched oligosaccharide/

polysaccharide fragments ranging from 5-mer to 31-mer in length have been rapidly

constructed in one-pot manner, which enables the first total synthesis of a biologically

important mycobacterial arabinogalactan through a highly convergent [31þ 31þ 30] coupling

reaction. Our results show that the preactivation-based one-pot glycosylation protocol may

provide access to the construction of long and complicated carbohydrate chains.
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C
arbohydrates are involved in many key biological
processes, such as cell signaling, cell proliferation and
differentiation and viral and bacterial infections, as well as

immunoresponse1–3. Naturally occurring carbohydrates and
glycoconjugates usually exist in microheterogeneous forms,
making the isolation of pure carbohydrates and glycoconjugates
from natural sources difficult or even impossible in most cases.
Therefore, chemical synthesis becomes the main approach to
obtain well-defined carbohydrates4–7. However, unlike peptides
and oligonucleotides, which can be routinely prepared
by automated solid-phase synthesizers, the oligosaccharide
synthesis is much more difficult. The major challenge for
oligosaccharide preparation is the regio- and stereochemistry8,9

issues in each glycosidic bond formation, making oligosaccharide
synthesis a tedious and time-consuming process. Therefore,
oligosaccharide synthesis becomes a daunting task, especially
when polysaccharides are chosen as the target molecules. Indeed,
only a few examples of the synthesis of oligosaccharide sequences
containing 420 units have been reported over the past few
decades10–18. These syntheses are challenging because multiple
steps of protective group manipulation and intermediate
purification are required in most cases.

Arabinogalactan is an essential structural constituent
of mycobacterial cell wall, which plays critical roles in the
infectivity and pathogenicity of Mycobacterium tuberculosis19.
Based on experiments and analyses20–22, the primary structure
of arabinogalactan has been established as a linear galactan
composed of about 30 alternating b-(1-5)-linked and b-(1-6)-
linked D-galactofuranose (Galf) residues, to which up to two22

highly branched arabinan chains (each containing 31 D-arabino-
furanose (Araf) residues) are attached. The arabinogalactan
motifs are useful probes for investigating the biosynthesis of
mycobacterial cell wall, especially for characterization of the
enzymes that process this polysaccharide, and those enzymes are
attractive targets for the development of new antituberculosis
drugs23. To this end, some solution phase14,15,24–27 and
automated solid-phase28 strategies have been developed for
the assembly of motifs up to 22 residues, among which the
Lowary group14 and Ito group15 have elegantly synthesized the
docosasaccharide arabinan motif via the convergent [5þ 5þ 12]
and [7þ 7þ 8] coupling strategies, respectively. While almost all
these syntheses relied upon the stepwise synthesis of
oligosaccharide fragments, the object of this study is to achieve
the total synthesis of the whole complex polysaccharide rather
than the truncated fragments in an efficient way.

In the preactivation-based one-pot glycosylation strategy, several
glycosyl donors are allowed to react sequentially in the same vessel
regardless of the anomeric reactivities, generating a single
oligosaccharide as the main product, which can significantly
simplify the synthetic process and increase the overall efficiency29.
Herein, by utilizing the preactivation-based one-pot glycosylation
protocol, we report the first total synthesis of a biologically
important mycobacterial arabinogalactan composed of 92 mono-
saccharide units. Our synthetic strategy involves: (1) several
scalable one-pot coupling reactions to generate the linear and
branched oligosaccharide fragments, (2) the stereoselective
b-arabinofuranosylation by preactivation protocol, (3) the further
one-pot coupling reactions of oligosaccharide fragments for the
rapid assembly of polysaccharides up to 31-mer, and (4) the
convergent [31þ 31þ 30] coupling reaction for the final
construction of the target polysaccharide.

Results
Retrosynthetic analysis. The target polysaccharide arabinoga-
lactan 1 was disconnected into two sizeable fragments, that is, the

linear Galf30 acceptor 2 and the branched Araf31 donor 3 (Fig. 1).
It was conceived that Galf30 acceptor 2 would be rapidly
assembled via a five-component one-pot coupling of several
oligosaccharide fragments 4–7. As for the synthesis of Araf31

donor 3, oligosaccharide fragments 10–12 were designed to carry
out a four-component one-pot glycosylation reaction. For
the preparation of heptasaccharide 10, thioglycoside donors
13a–c and thioglycoside acceptor 14 were planned for the
construction of the challenging b-arabinofuranosyl linkages.
Finally, it was expected that all the oligosaccharide fragments
(8, 9, 15–17) would be accessible by the preactivation-based
one-pot oligosaccharide synthesis starting from various
monosaccharide building blocks. Overall, it was anticipated that
the major challenge of our plan towards the total synthesis
of arabinogalactan 1 would rely on the efficiency of one-pot
glycosylation reactions, especially when large oligosaccharide
fragments were attempted as the components in one-pot coupling
reactions.

Synthesis of Galf30 acceptor 2. To test our one-pot strategy
for oligosaccharide synthesis, three monosaccharide building
blocks 18–20 were designed and synthesized (Supplementary
Fig. 1). Using these building blocks, the assembly of
hexasaccharide 8 in a six-component one-pot manner
(18þ 19þ 20þ 19þ 20þ 19) by preactivation protocol was
tried, which should be rather challenging as up to five glycosidic
linkages must be correctly constructed. To our delight, when
promoted by stoichiometric p-toluenesulfenyl chloride/silver
triflate (p-TolSCl/AgOTf)29, all glycosylation steps underwent
smoothly and none of the side products interfered with
the reaction. After optimization of the reaction conditions,
hexasaccharide 8 was obtained in 63% overall yield and on
a perfect scale (1.07 g) within several hours (Fig. 2a). The desily-
lation of 8 provided 5 (85% yield), which was re-protected with
benzoyl group to give 4 in 96% yield. Subsequently, the coupling
reaction of 8 with 1-octanol afforded 21 (91% yield), which was
followed by desilylation to provide 6 in 87% yield.

With hexasaccharides 4–6 in hand, the further iterative
one-pot glycosylation was performed. The five-component
one-pot coupling of these oligosaccharides (4þ 5þ 5þ 5þ 6)
was realized successfully, producing the 30-mer polysaccharide
22 in 68% overall yield (Fig. 2b). It was noteworthy that some
deletion sequences were difficult to be removed by column
chromatography on silica gel. Gratifyingly, given the difference in
molecular weight between the deletion sequences and
desired product, size exclusion chromatography was then
used to obtain the pure 30-mer polysaccharide 22 (Supple-
mentary Fig. 2). The identity of 22 was confirmed by its nuclear
magnetic resonance (NMR) and matrix-assisted laser desorption/
ionization–time of flight (MALDI-TOF) mass spectra
(see Supplementary Information for details). Finally, the global
deprotection of 22 via successive debenzoylation and debenzyla-
tion provided the 30-mer galactan 23 ([MþNa]þ m/z calcd.
for 5017.4, found: 5018.1).

Having established a highly efficient one-pot approach to the
synthesis of polysaccharide up to 30-mer, we turned to
accomplish the construction of Galf30 acceptor 2. As shown in
Fig. 1, an additional hexasaccharide 9 equipped with two
levulinoyl groups was needed. Initially, monosaccharide
24a (Supplementary Fig. 3) was designed as a building block
for a six-component one-pot assembly of 9. However, the efforts
failed due to the migration of levulinoyl group from the O-5 to
O-6 position. As an alternative route, disaccharide 24b was
synthesized (Supplementary Fig. 3). Therefore, a four-component
one-pot coupling reaction (18þ 24bþ 24bþ 19) finally gave the
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Figure 1 | The structure of mycobacterial arabinogalactan 1 and its retrosynthetic analysis. Bn, benzyl; Bz, benzoyl; Lev, levulinoyl; TBS, tert-butyl-

dimethylsilyl; TIPDS, tetraisopropyldisiloxanylidene; TIPS, triisopropylsilyl; Tol, p-tolyl.
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desired hexasaccharide 9 in 79% yield (Fig. 2c), which
was subjected to desilylation to afford 7 (90% yield). Subse-
quently, polysaccharide 25 was assembled in a five-component
one-pot manner as described in the construction of 22 by
coupling the oligosaccharide fragments (4þ 5þ 5þ 7þ 6) in
64% overall yield (Fig. 2d). Exposure of 25 to hydrazine acetate
successfully fulfilled the preparation of the desired Galf30 acceptor
2 (85% yield).

Synthesis of Araf31 donor 3. The assembly of the branched
Araf31 donor 3 required three oligosaccharide intermediates,
that is, b-Araf-containing heptasaccharide 10, branched
pentasaccharide 11 and linear hexasaccharide 12. For this
purpose, a set of arabinofuranosyl building blocks (13a–c, 26–29)
were designed and synthesized (Supplementary Fig. 4).
A six-component iterative one-pot glycosylation of mono-
saccharides 26 and 27 (26þ 27þ 27þ 27þ 27þ 27) afforded
hexasaccharide 17 in excellent yield (73%) and on gram scale
(1.20 g) (Fig. 3a). The desilylation of 17 resulted in the desired
hexasaccharide 12 (92% yield). Likewise, the one-pot coupling
reaction of building blocks 26, 28 (ref. 30) and 27 provided a
branched pentasaccharide 16 very smoothly (78% yield), which
was further converted into diol 11 by desilylation in 95% yield
(Fig. 3b). For the preparation of heptasaccharide 10, another diol

14 was required. Initially, the glycosyl donor 29a (ref. 31) with
chloroacetyl group at the O-2 position was chosen for the one-pot
construction of pentasaccharide 15a (Supplementary Table 1),
but the overall yield was moderate (43%). Fortunately, when the
donor 29 equipped with a levulinoyl group was employed for the
one-pot glycosylation reaction, pentasaccharide 15 was rapidly
assembled in 76% overall yield (Fig. 3b). Ultimately, deacylation
of 15 gave diol 14 (94% yield).

Our attention was then turned to the synthesis of heptasac-
charide 10, which involved the stereocontrolled installation
of two challenging b-arabinofuranosyl linkages. Among a number
of innovative glycosyl donors developed by several groups25,31–37,
perbenzyl-protected thioglycoside 13a (ref. 25) and 3,5-O-tetraiso
propyldisiloxanylidene-protected thioglycosides 13b,c (ref. 31)
were synthesized for the current purpose (Supplementary
Table 2). Although these donors proved useful for direct
b-arabinofuranosylation, whether they could be subjected to
thioglycoside acceptor 14 under the donor-preactivation
conditions38 remained to be explored. After some optimization,
the best result arised when 4.0 equiv. of 13b was preactivated by
p-TolSCl/AgOTf and subsequently glycosylated with 1.0 equiv. of
diol 14, delivering heptasaccharide 30b with good
stereoselectivity (b,b-isomer/other isomers¼ 9/1). Removal of
the silyl groups in 30b afforded 31 (74% over two steps, Fig. 3c),
in which the newly formed b-arabinofuranosyl linkages were
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confirmed by the 13C NMR spectrum (appearance at 99.6 and
99.1 p.p.m.)39. Finally, the re-protection of 31 with benzoyl
groups yielded the desired heptasaccharide 10 (97% yield).

With oligosaccharide building blocks 10–12 in hand, the
assembly of Araf31 donor 3 by preactivation-based one-pot
glycosylation protocol was attempted. This one-pot reaction was
expected to be more challenging due to the steric hindrance
in the double glycosylation of Araf5 acceptor 11 using
Araf7 donor 10. Surprisingly, the reaction proceeded smoothly
when 2.3 equiv. of 10 was reacted with 1.0 equiv. of 11, delivering
an Araf19 intermediate, which was sequentially coupled with
two Araf6 acceptors 12 in a single flask without any intermediate
isolation to afford the Araf31 donor 3 in 70% overall yield
(Fig. 3d). To further confirm the identity of this 31-mer
polysaccharide, an Araf6 acceptor 32 bearing an alkyl group
at the reducing end was synthesized (Fig. 3a). Thus a four-
component one-pot coupling reaction of oligosaccharides
10–12 and 32 gave a similar 31-mer polysaccharide 33 in
65% yield (Fig. 3d), which was fully deprotected via deacylation
and hydrogenolysis to afford the arabinan 34 ([MþNa]þ

monoisotopic m/z calcd. for 4246.4, found: 4246.3; [MþK]þ

monoisotopic m/z calcd. for 4262.4, found: 4262.2). Gratifyingly,
the 1H and 13C NMR data of 34 were found to be identical

with previous reports14,40 except for the differences in some
repeating units.

Assembly of arabinogalactan 1. Our final task was the glycosy-
lation of Galf30 acceptor 2 with Araf31 donor 3 to finish the
assembly of target polysaccharide. To the best of our knowledge,
no glycosylation reactions between polysaccharide sequences
composed of 420 units were reported to date. For the planned
[31þ 31þ 30] coupling reaction, it was anticipated that the
biggest challenge would come from the steric hindrance by
the bulky size of both the donor and acceptor, especially
when a double glycosylation was required. Indeed, when
a wide variety of promoter systems such as p-TolSCl/AgOTf29,
NIS/AgOTf41, NIS/TfOH42, N-(p-methylphenylthio)-e-capro-
lactam/Tf2O43, TBPA44, Ph3Bi(OTf)2 (ref. 45), BSP/Tf2O46 and
Ph2SO/Tf2O47 were examined (Supplementary Table 3), no
double glycosylation product or only some monoglycosylation
product was observed before the donor decomposed, prompting
us to further screen the reaction conditions. Encouragingly, it was
found that benzenesulfinyl morpholine/triflic anhydride (BSM/
Tf2O)48 developed by our group is the most effective promoter.
And indeed, when promoted by BSM/Tf2O, this double
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(d) Synthesis of Araf31 donor 3 and 31-mer arabinan 34. Reagents and conditions: (1) TTBP, 4 Å MS, CH2Cl2, p-TolSCl, AgOTf, then 27, � 78 �C to room

temperature; (2) p-TolSCl, AgOTf, then 27, � 78 �C to room temperature; (3) TBAF, AcOH, THF; (4) p-TolSCl, AgOTf, TTBP, 1-octanol, 4 Å MS, CH2Cl2,

� 78 �C; (5) TTBP, 4 Å MS, CH2Cl2, p-TolSCl, AgOTf, then 28, � 78 �C to room temperature; (6) H2NNH2-AcOH, THF/CH3OH (10:1); (7) p-TolSCl, AgOTf,

then 14, � 78 �C; (8) TBAF, THF; (9) Bz2O, DMAP, pyridine, CH2Cl2, reflux; (10) TTBP, 4 Å MS, CH2Cl2, p-TolSCl, AgOTf, then 11, � 78 �C to room

temperature; (11) p-TolSCl, AgOTf, then 12, � 78 �C to room temperature; (12) p-TolSCl, AgOTf, then 12 or 32, � 78 �C to room temperature; (13) NaOCH3,

CH3OH/CH2Cl2 (2:1); (14) Pd/C, H2, EtOAc/THF/1-PrOH/H2O (2:1:1:1). TBAF, tetra-n-butylammonium fluoride.
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glycosylation was extremely clean and complete (indicated by
thin-layer chromatography analysis), delivering the fully
protected arabinogalactan 35 in 84% yield (Fig. 4). Although
signals of the anomeric protons in 1H NMR spectrum were
obscured due to the extensive overlapping, the anomeric carbons
were distinctive in 13C NMR spectrum (all anomeric carbons of
a-Araf residues and b-Galf residues were between 105 and 107
p.p.m., and anomeric carbons of b-Araf residues appeared at
101.0 and 100.6 p.p.m.). The identity of 35 was further supported
by its MALDI-TOF mass spectrum ([MþNa]þ m/z calcd. for
33885.4, found: 33884.7). Finally, the global deprotection of 35 by
the successive deacylation and hydrogenolysis was conducted,
affording the target polysaccharide arabinogalactan 1 successfully.

Discussion
We have developed a concise and highly efficient strategy for the
first total synthesis of 92-mer mycobacterial arabinogalactan 1.
This work not only represents the longest well-defined carbohy-
drate chain synthesis up to date, but also provides useful
compounds as probes for further investigations on mycobacterial
cell wall-related biological events. Our synthetic strategy
highlights a series of efficient preactivation-based one-pot
glycosylation reactions to minimize the synthetic steps, the
stereoselective b-arabinofuranosylation by preactivation protocol
and the convergent [31þ 31þ 30] double glycosylation reaction,
thus offering a straightforward access to the target polysaccharide.
Our work may open an avenue to the synthesis of complex
polysaccharides with biological importance that are either
difficult or impossible to access through isolation or
semisynthesis.

Methods
General. The complete experimental details and compound characterization data
can be found in Supplementary Methods. For the NMR, HPLC and MALDI-TOF
mass spectra of the compounds in this article, see Supplementary Figs 5–126.

General procedure for preactivation-based one-pot glycosylation reaction.
A mixture of glycosyl donor, TTBP and freshly activated 4 Å molecular sieves
in anhydrous CH2Cl2 under argon atmosphere was stirred for 20 min at room

temperature and cooled to � 78 �C. After 5 min, stoichiometric amount of
p-TolSCl was added to the mixture, followed by the addition of AgOTf. After
another 5 min, a solution of glycosyl acceptor in anhydrous CH2Cl2 was slowly
added. The resulting mixture was slowly warmed to room temperature within 2 h,
stirred for another 20 min and cooled back to � 78 �C. The glycosylation operation
mentioned above was repeated until the generation of the desired product.

Data availability. The authors declare that the data supporting the findings
of this study are available within the article and its Supplementary Information
files. And all data are available from the authors upon reasonable request.
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