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Heat waves and air pollution episodes pose a serious threat to human
health and may worsen under future climate change. In this paper,
we use 15 years (1999–2013) of commensurately gridded (1° x 1°)
surface observations of extended summer (April–September) surface
ozone (O3), fine particulate matter (PM2.5), and maximum tempera-
ture (TX) over the eastern United States and Canada to construct a
climatology of the coincidence, overlap, and lag in space and time of
their extremes. Extremes of each quantity are defined climatologically
at each grid cell as the 50 d with the highest values in three 5-y
windows (∼95th percentile). Any two extremes occur on the same
day in the same grid cell more than 50% of the time in the north-
eastern United States, but on a domain average, co-occurrence is
approximately 30%. Although not exactly co-occurring, many of
these extremes show connectedness with consistent offsets in space
and in time, which often defy traditional mechanistic explanations.
All three extremes occur primarily in large-scale, multiday, spatially
connected episodes with scales of >1,000 km and clearly coincide
with large-scale meteorological features. The largest, longest-lived
episodes have the highest incidence of co-occurrence and contain
extreme values well above their local 95th percentile threshold,
by +7 ppb for O3, +6 μg m−3 for PM2.5, and +1.7 °C for TX. Our
results demonstrate the need to evaluate these extremes as synergis-
tic costressors to accurately quantify their impacts on human health.
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Statistically extreme events in pollution and weather often
pose risks to human health. In this paper, using 15 y of ob-

servations over eastern North America (ENA), we examine three
health extremes: surface ozone (O3), fine particulate matter
(PM2.5, defined as aerosols of diameter ≤2.5 μm), and heat
waves, measured as maximum temperature (TX). O3 and PM are
the two major air pollutants threatening human health (1). Heat
waves also pose a major threat to human life (2–4). The average
magnitude of local air pollution is controlled primarily by local
and regional emissions of the pollutants and their precursors,
but, like heat waves (5), extreme air pollution is often driven by
synoptic meteorology (6, 7). These three extremes are often as-
sociated with slow-moving high-pressure systems that accumulate
pollutants and heat owing to the overlying meteorological con-
ditions, namely high temperatures, abundant solar insolation,
low precipitation, and low wind speeds (7–10).
Aside from the direct influence of meteorology, there exist mul-

tiple interactions and feedbacks that act further to exacerbate ex-
treme conditions. For example, the high temperatures during a heat
wave increase emission rates of biogenic volatile organic compounds,
which augment the production of surface O3 and secondary organic
aerosols (i.e., PM2.5). The drought-like conditions that often ac-
company heat waves can inhibit stomatal uptake of O3 (11) and,
through soil moisture feedback, can both amplify the heat waves and
worsen air quality (12). Energy demands for air-conditioning in-
crease during heat waves (13), which increases anthropogenic
emissions and thus pollutant abundance. In any case, the extremes
often co-occur as a result of their shared underlying drivers, greatly
increasing the risks to human health (14). The imperative to

understand the co-occurrence of health extremes is driven in part
by the recognition that episodes of extreme temperatures (15–18)
and poor air quality (19–24) may become more frequent, longer
lasting, and more intense in a warming climate, in which many
climate-driven feedbacks can alter air quality independent of
emissions (e.g., 8, 10, 25, 26).
That combined extremes produce greater impacts or risks than

those summed simply from single extremes acting alone is a prevalent
concept in the climate change community (27). In this case, however,
the multiple stressors go beyond physical extremes—such as the
health events analyzed here—to include economic, social, and po-
litical events (figure 1.5 in ref. 28). There is evidence indicating that
combined pollution extremes and heat waves are such synergistic
stressors (i.e., impact modifiers), and that combined extremes pro-
duce disproportionately greater adverse health impacts (14, 29–33).
Here we used the methods developed in previous work (24, 34,

35) to calculate regularly gridded, daily surface values for O3,
PM2.5, and temperature. These quantities are continuous with
real units (parts per billion by molar fraction, micrograms per
cubic meter, and degrees Celsius), which allowed us to develop a
probability distribution for each grid cell and define extreme
events in terms of a return time or frequency (days per year). An
important, relevant finding from previous work was that the O3
levels in an extreme pollution episode generally increase with
increasing geographic extent and duration of the episode (35).
The use of a daily air stagnation index (ASI) (36) as a proxy

for health extremes has been developed further by others (26,
37), and we include the ASI here because stagnation describes
the basic meteorological conditions that exacerbate pollution
episodes and heat waves. However, this index is Boolean and
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thus cannot be used to define extreme events in terms of fre-
quency or magnitude; for example, approximately 40% of sum-
mer days are considered stagnant in the southeastern United
States, compared with approximately 20% in the more polluted
northeastern states (Fig. 1D).
We begin by defining extreme events, taking into account the

nonstationarity of all three extremes. We then present a case
study of an episode of co-occurring extremes and build a cli-
matology of the statistics of overlap and lag in space and time.
We conclude by attempting to understand the unique spatio-
temporal patterns found for each of our health extremes.
Overall, the clear identification of large, overlapping extreme
pollution episodes—quantified in terms of observations of O3,
PM2.5, and temperature—provides a baseline evaluation for any
model used to project future air quality and heat waves.

Results
Defining Extreme Events and Episodes. Previous work (24, 34, 35)
has defined O3 extremes over the 2000–2009 decade in a local
climatological manner as the 100 d (∼97.3th percentile) with the
highest maximum daily 8-h average (MDA8). This approach en-
abled clear identification of large-scale multiday pollution episodes
consisting of connected, locally extreme daily events that were not
readily seen using the US Environmental Protection Agency’s
(EPA) absolute threshold approach. That is, neighboring regions
often have large systematic differences in absolute O3 levels, and
thus a 75-ppb exceedance in one cell might not occur in its neigh-
boring cell even though both had a 97th percentile event. Here we
continue this approach (i.e., number of events = 10 times the
number of years) to define extremes in O3, PM2.5, and daily TX.
These three quantities can be treated identically, using their local
probability distributions to define extreme events; however, the
ASI, being Boolean, cannot define extremes in terms of severity.
PM2.5 extremes can occur in both summer and winter in ENA

(38), but because the vast majority of temperature and O3 extremes
occur between late spring and early fall, our statistics consider only
days during the extended summer season (April 1– September 30).
We adopt the ∼95th percentile (see below) as the local extreme
threshold, because that is equivalent to our 100-d per decade

definition if all extremes occur during this extended summer period.
Alternative heat wave definitions exist (39), but our choice main-
tains consistency across all three quantities and is remarkably close
to the local 95th percentile warm season (May 1–September 30)
temperature used by Anderson and Bell (39). Their definition,
unlike ours, requires two consecutive exceedance days, but most of
our extremes are multiday.
Fig. 1 A–C shows the 95th percentile over the entire period

(1999–2013) for the three observed extremes at each grid cell. The
95th percentile of MDA8 O3 (Fig. 1A) has an approximate range of
45–80 ppb across the domain, with the highest abundances in the
Ohio River Valley and along the eastern urban corridor. The 95th
percentile of PM2.5 (Fig. 1B) ranges from approximately 15 to
30 μg m−3, with a swath of >25 μg m−3 almost everywhere east of
the Mississippi River between 33°N and 43°N. The 95th percentile
of TX (Fig. 1C) is highest in the southwest sector of the domain
(>37 °C) and decreases monotonically to its minimum over the
Great Lakes and the northeast sector (<23 °C). Fig. 1D shows
stagnation day frequency, which accounts for >30% of the extended
summer days in almost all grid cells south of 40°N and >40% in a
swath across the Gulf Coast states. Stagnation is much less common
in the north and drops dramatically northward across 40°N. Aver-
aged over our domain, ∼26% of the days are stagnant, many more
than the upper 5% used for our extreme criteria.

Trends in Air Quality and Temperature. Precursor emission reduc-
tions resulted in a clear decreasing trend in the 2000–2009 gridded
MDA8 O3 time series of Schnell et al. (34), causing the identifi-
cation of more extremes in the early part of the decade. Emission
reductions have been similarly effective in reducing PM2.5. Fig. 1E
shows the domain-averaged annual value of the quantities shown
in Fig. 1 A–D. Air quality management has reduced the highest
values of both MDA8 O3 and 24-h average PM2.5, with annual
95th percentile trends from 1999 to 2013 of –0.9 ppb y−1 for O3
and –0.9 μg m−3 y−1 for PM2.5 (P < 0.01 for both). These reduc-
tions are much greater than those in the median, with trends for
O3 and PM2.5 of –0.4 ppb y−1 and –0.3 μg m−3 y−1, respectively
(P < 0.01 for both). Temperature extremes are also occurring on
an overall warming background (40), but the 95th percentile trend
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Fig. 1. Spatial patterns and time series of extreme thresholds. (A–C) 95th percentile of April–September 1999–2013. (A) MDA8 O3 (ppb). (B) 24-h average PM2.5

(μg m−3). (C) daily maximum temperature (°C). (D) Air stagnation frequency (% of days). (E) Annually derived 95th percentile of the quantities in A–D, indicated by
blue, green, red, and black lines, respectively. Also shown are linear trends of 95th percentile (median) MDA8 O3 (ppb yr−1) and 24-h average PM2.5 (μgm−3 yr−1), along
with interpair correlations of all quantities (MDA8 O3 and 24-h average PM2.5 trends removed).
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here is not significant at the 95% confidence level. Stagnation
frequency has no obvious trend, but the interannual variability
(IAV) follows the other three quantities (see the correlations, r, in
Fig. 1E). These trends must be accounted for when identifying ex-
treme events. One solution is to force each year to have the same
number of events (10), but then IAV information is lost. Indeed, the
95th percentile values of O3 and PM2.5 when calculated annually
show very similar IAV values, with a correlation coefficient of 0.63
over their detrended 1999–2013 time series (Fig. 1E). Some factors,
such as wildfires, may drive IAV in PM2.5 (8), but not necessarily
O3. The magnitude of the interpair correlations shown in Fig. 1E,
especially those with stagnation, indicates that meteorology is the
most likely factor driving the extremes (41, 42). To minimize con-
tamination by background trends while preserving interannual
meteorological variability, we break the 1999–2013 O3 and PM2.5
time series into three 5-y windows. To avoid similar bias in tem-
perature, we treat the temperature record similarly. We follow the
methods of Schnell et al. (34) and define extreme events in MDA8
O3 (O3X), 24-h average PM2.5 (PMX), and daily maximum tem-
perature (TXX) at each grid cell as the 50 d with the highest values
in each 5-y window (∼94.5th percentile).

An Example of Co-Occurrences: June 20–28, 2005. Fig. 2 A–D shows
columns of a daily sequence (rows) of extreme maps for the mul-
tiday pollution episode of June 20–28, 2005. The first three columns
(Fig. 2 A–C) show O3X (blue), PMX (green), and TXX (red). The
fourth column (Fig. 2D) shows a combination of the first three
columns, identifying cells with single or co-occurring extremes. For
a single occurrence, the cell retains the same color as in first three
columns, whereas cells with co-occurrences are colored with the
combined colors. Stippling denotes a grid cell stagnation day. Ani-
mations showing maps of the identified extremes, co-occurrences,
and stagnation for each day of the 15-y record (separated into three
5-y movies) are provided in Movies S1–S3.
The episode began on June 20 (Fig. 2, top row) on the western

edge of the domain with O3X and PMX. The episode grew in size
and propagated eastward over the next 3 d. O3X first extended in
a thin southwest-northeast filament along the leading edge of a
cold front, then eventually covered most of the domain by June 24.
(Weather map access is discussed inMaterials and Methods.) PMX
coverage first extended eastward, and then built over the upper
midwest along the western edge of the surface high on June 23.
This feature highlights the potential role of meteorological
transport on the location and timing of PMX. For example, be-
cause the highest PM2.5 abundances are found in the southeast
(both in this example and on average; Fig. 1B), anticyclonic cir-
culation can transport high-PM2.5 air to relatively cleaner areas,
such as the upper midwest. Indeed, PM2.5 extremes in the United
States have been found to occur on the backside of high-pressure
systems (43). TXX were rare until June 23, when they then oc-
curred in the northwest quadrant of the domain behind a warm
front. Over the entire 9-d sequence, TXX occurred almost ex-
clusively in the northern half of the domain. By June 24, the high-
pressure ridge enveloped most of the domain, and the episode
reached its maximum size; 87% of the grid cells had at least one
type of extreme, 64% had at least two types, and 23% had all three
types. Over the final 3 d, the episode moved eastward and de-
creased in size, likely owing to widespread precipitation over the
region. The identified ASI days show erratic overlap with the
health extremes, sometimes coinciding almost exactly (PMX on
June 22) and sometimes being exclusive (TXX on June 23–24).
However, the rows of Fig. 2D show that in most cases, at least one
type of extreme occurred when the grid cell was considered
stagnant (68% of all grid cells and days).
Although the foregoing example is one of the larger episodes, it

is hardly unusual (Discussion and Movies S1–S3), and we find that
stagnation and most extreme levels of O3, PM2.5, and TX occur in
large-scale, multiday, coherent structures. The individual extremes
also tend to group together within their own smaller-scale clusters
but often overlap (i.e., co-occurrences).

Fig. 3 shows the frequency of co-occurrence over the entire 15-y
period (percentage of 150 events) at each grid cell for the three two-
event combinations (i.e., O3X+PMX, O3X+TXX, and PMX+TXX
in Fig. 3 A–C, respectively) and the three-event combination (Fig.
3D). Averaged over the domain, O3X+PMX was most likely
(35%), followed by O3X+TXX (30%), PMX+TXX (29%), and
O3X+PMX+TXX (16%). The greatest co-occurrence frequencies
for all event combinations are seen in the northeast, >50% for any
two co-occurring events and ∼30% for all three. The lowest co-oc-
currence frequencies are found in Florida, the Gulf Coast, and the
western edge of the domain (44). The generally lower (higher) co-
occurrences in the southwest (northeast) imply that the extremes are
caused by different (similar) synoptic drivers. In the north, the ex-
tremes may be related to cold front frequency (and thus high-pres-
sure persistence), whereas the low values in the south may be caused
by opposing effects of the Bermuda High (45).

A B C D

Fig. 2. Nine-day (June 20–28, 2005) episode progression for O3X (blue) (A), PMX
(green) (B), TXX (red) (C), and their combinations (D). Colors in D correspond to the
combined individual RGB triplets, i.e., O3X+PMX (cyan), O3X+TXX (magenta),
PMX+TXX (yellow), and O3X+PMX+TXX (black). Stippling denotes an identified
stagnation day (white stipples in D if the grid cell has all three extreme types).
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The extremes may show consistent offsets in space and time
owing to set spatial patterns in precursor emissions or meteo-
rology and related transport. For example, temperature is a well-
known driver of O3 production (46), and thus TXX may precede
O3X in grid cells with large precursor emissions (7, 47). Owing to
the typical eastward progression of weather systems, this mech-
anism may result in displacement of O3X westward of TXX.

Systematic Offsets in Space. We tested for systematic spatial offsets
by calculating co-occurrence frequency as a function of spatial lag
averaged across all grid cells. The 1° × 1° domain extended 27° in
latitude and 30° in longitude, but because the extremes are unlikely
to be correlated beyond ∼500–1,000 km, we limited the lags to ±8°
and did not extrapolate any grid cell’s lags beyond the masked
domain. Fig. 4 A–C shows the domain average co-occurrence as a
function of spatial lag for the corresponding co-occurrence types in
Fig. 3 A–C. Also provided is the fraction in each quadrant and the
2D weighted centroid (white X). Note that the (0°, 0°) lag repre-
sents the domain average co-occurrences in Fig. 3 A–C. The no-
tation is as follows: for PMX with respect to O3X (Fig. 4A), the
contours show the likelihood (% of events) that PMX occur at the
latitude-by-longitude offset in 1° cells from O3X. For example, Fig.
4A shows that the highest coincidence of PMX+O3X (35%) is
roughly centered on (latitude, longitude) = (0°, 0°), but that on
average, PMX occur to the northwest of O3X (+0.5°, –0.8°) and at
a maximum to the southwest. The relatively large region of high
values in Fig. 4A shows that O3X and PMX co-occur not only more
frequently, but also over larger spatial scales than either do with
TXX. TXX tend to occur to the northeast of both O3X (+1.1°,
+0.01°) and PMX (+1.6°, +0.4°). These offsets are averaged over
the full domain for more robust statistics; however, it is clear that
patterns vary across the domain (see below), and that conclusions
based on the domain average might not apply in all regions. These
spatial offsets can be manifestations of offsets in time, because
large episodes typically propagate eastward across the domain. For
example, the westward displacement of PMX with respect to O3X
(Fig. 4A) may be evidence that PMX occur after O3X at a given
grid cell (i.e., after the O3X episode has moved east).

Systematic Offsets in Time.We tested for systematic temporal offsets
by calculating the frequency of co-occurrence at each grid cell as a

function of time lag, from –7 to +7 d. Fig. 4D–F shows the weighted
average lag (in days, with weights equal to each lag’s co-occurrence
frequency) at each grid cell for the corresponding event co-occur-
rence types in Fig. 3 A–C. For example, Fig. 4D (PMX with respect
to O3X) shows positive values (∼1 d) over much of the domain,
meaning that PMX occur approximately 1 d after O3X. We can
speculate on the mechanisms for this lag, but an understanding will
require a well-tested model that reproduces these observations. For
example, the PMX delay may occur simply because PM2.5 simply
takes longer to accumulate than O3, or because the different diurnal
cycles and averaging windows cause a shift in PM2.5 to the next
morning. The TXX with respect to O3X map (Fig. 4E) shows a
sharp regime shift at 40°N. To the north of 40°N, TXX occur 1–2 d
after O3X; but to the south, TXX precede O3X by ∼1 d (except in
parts of Florida and Georgia). The south shows the expected
temperature–O3 causal relationship in which O3 abundance in-
creases following a temperature increase. To the north, we may be
seeing quicker activated photochemistry with respect to tempera-
ture or evidence of suppression of O3 by high temperatures. This
suppression has been identified previously, with one study impli-
cating enhanced PAN decomposition and reduced isoprene emis-
sions (48), and another study finding that the suppression is caused
not by temperature-dependent effects on chemistry or emissions,
but rather by a breakdown in the linearity of meteorology–O3
correlations (44). In any case, it is not clear why this relationship
changes at 40°N. The TXX with respect to PMX map (Fig. 4F) is
essentially Fig. 4E minus Fig. 4D. TXX typically occur after PMX,
except in the southwest corner of the domain and parts of Canada.

Average Progression of Large Episodes. The systematic spatial and
temporal offsets among the three different extremes suggests that
there may be a typical evolution of a multiextreme episode, such
as which extremes appear first and where. Based on a daily
composite of all large, weeklong episodes (Fig. S1 and SI Text), we
can describe the evolution of these “superepisodes.” At the start,
O3X were most likely in the area west of 90°W from 35°N–45°N,
PMX dominated south of 40°N, and TXX were most common north
of 40°N, except in New England. Over the next 3 d, the frequencies
increased for all three extremes, with the highest values moving
generally eastward. For the central episode day, O3X occurred with
greatest frequency (>30%) in a band at 35°N–45°N across the do-
main, PMX occurred with greatest frequency in a band at 32°N–
41°N, and TXX occupied the top half of the domain (36°N–48°N)
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Fig. 3. Co-occurrence frequency (% of 150 events) for O3X+PMX (A), O3X+TXX
(B), PMX+TXX (C), and O3X+PMX+TXX (D).
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Fig. 4. Spatial and temporal offsets of co-occurrences. (A–C) Domain av-
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PMX (C). Also shown are the 2D weighted centroids (white Xs) and the av-
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at each grid cell for the corresponding event co-occurrence types in A–C.
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and were most common overall (>40% in some grid cells). O3X
disappeared the most rapidly, whereas TXX remained frequent in
the northeast. The average pattern shown in Fig. S1 resembles the
pattern seen in June 22–28 of the sample episode in Fig. 2.
Whether these observed patterns can provide a semiempirical

prediction capability is not clear; nevertheless, they do provide
stringent observational tests for models used in air quality pre-
dictions. Most notably, the size of heat waves is clearly larger (in
space and time) than either pollution extreme. This difference is
likely emissions-driven, because pollution precursors, although
ubiquitous over ENA, are not as uniform as the meteorology.

Size and Enhancement of Extreme Episodes. The clustering algorithm
(Materials and Methods) identifies connected-cell, multiday episodes
of size S (units = 104 km2 d = ∼1° grid cell). Fig. 5A shows the
distribution of episode sizes for each type of extreme as the com-
plementary cumulative distribution (CCD), i.e., the fraction of
events’ time integrated area occurring in episodes of size S or larger
(see figure 11 of ref. 34). Fig. 5A can be read as saying that ∼100%
of all events occur in episodes with S >1 × 104 km2 d (by definition),
90% occur with S >30 × 104 km2 d, and that 40% of O3X and PMX
events occur in episodes of size S >500 × 104 km2 d. The TXX
episodes are larger, and the larger episodes contain a greater
fraction of the events; 40% occur in episodes of size S >900 × 104

km2 d. Average episode sizes,〈S〉, calculated as a geometric mean
with weights equal to S, confirm that TXX episodes are clearly
larger:〈STXX〉= 478 × 104 km2 d;〈SO3X〉= 249× 104 km2 d;
and〈SPMX〉= 282 × 104 km2 d. The annual variation in〈S〉(Fig.
5B) shows moderate correlation across the three extremes, with
paired correlation coefficients ranging from 0.21 to 0.74. O3X and
TXX are the most closely correlated, but TXX clearly shows years
with large heat waves that are not matched in PMX and O3X (i.e.,
1999, 2006, 2007, and 2012).
Co-occurring extremes at a cell-by-cell level are generally

more likely for larger episodes and on days with maximum spa-
tial coverage (Fig. S2), except for the largest TXX episodes
(S >300 × 104 km2 d) where co-occurrence frequency decreases
and likely reflects the propensity of TXX episodes to be signif-
icantly larger than O3X and PMX.
Identifying the size of an episode is highly valuable in terms of

predictive capability of its severity. Using the 95th percentile as the
baseline in each cell, we find a clear relationship between episode
size and the value of the extremes above this baseline that is linear
in log(S) (Fig. 5C). For episodes with S = 1,000 × 104 km2 d com-
pared with those with S = 1 × 104 km2 d, O3 abundances are 7 ppb
higher, PM2.5 abundances are ∼6 μg m−3 higher, and TX is ∼1.7 °C
higher. Consistently across all episode sizes, the larger episodes
have the highest pollution levels and the hottest temperatures. Each
extreme is also greatest on average when it co-occurs with one or

both of the other extremes and lowest when it occurs by itself (Fig.
S3). This effect is most pronounced for the combination of all three
extremes in the far northeast, with enhancements above the 95th
percentile threshold of up to +10 ppb for O3X, +9 μg m−3 for
PMX, and +2 °C for TXX.

Discussion
By combining detailed site measurements of surface O3 and PM2.5
over the ENA with meteorological reanalysis of surface temper-
atures, we have created a consistently mapped climatology of two
different types of air pollution and heat waves on a standard 1° ×
1° grid. The gridded results represent averaged quantities and thus
are directly comparable to Earth system models. We present a
wide range of statistics describing the space-time structure of the
extremes, including their coincidence, spatial and temporal offsets
with respect to one another, and overall large-scale connectedness
and how it relates to their severity. This 15-y climatology is
intended for the analysis of the structure and co-occurrence of
extreme air pollution episodes and heat waves, impact studies on
human health and agriculture, and chemistry-climate model
evaluation. Thus, all datasets are objectively interpolated in space
to give average values over each grid cell (34).
Extreme events tend to cluster into multiday, spatially con-

nected episodes with spatial scales on the order 1,000 km or
greater. For the largest episodes, values for O3, PM2.5, and tem-
perature are well above the statistical threshold defining their
extremes. Meteorology clearly drives the extremes, with the three
different types of extreme episodes often coinciding or appearing
slightly offset in space or time. The sequencing of events does not
always support simple mechanistic arguments; for example,
warmer temperatures make O3 pollution more severe, because the
O3 events precede temperature events for much of the ENA.
Obviously, there are many mechanisms driving these patterns of
extremes of air pollution and temperature, and thus these obser-
vations present evidence of a model evaluation of cause.
Large-scale, overlapping extreme episodes pose the greatest

potential health risk, not only because they coincide, but also
because they are found to have the highest pollution levels and
hottest temperatures. Thus, a multistressor approach must be
taken when evaluating impacts on human health and vegetation.
Furthermore, there is evidence that heat waves and pollution
episodes will intensify under a warming climate in some regions,
and thus we need to develop climate models that can effectively
reproduce large-scale pollution episodes and heat waves.

Materials and Methods
We used a combination of surface monitoring station data and meteorological
data over a 15-y period (1999–2013) to identify climatologically extreme events in
each cell of a regular 1° × 1° grid over the ENA. For surface O3, we used hourly
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abundances from the US EPA’s Air Quality System (AQS; https://www.epa.gov/aqs)
and Clean Air Status and Trends Network (CASTNet; https://www.epa.gov/castnet)
and Environment Canada’s National Air Pollution Surveillance Program (NAPS;
maps-cartes.ec.gc.ca/rnspa-naps/data.aspx). The AQS and NAPS networks also
provide observed daily average PM2.5. The hourly O3 and daily PM2.5 abundances
were interpolated onto a 1° × 1° grid over the ENA (96°W–66°W, 24°N–50°N)
following the algorithm of Schnell et al. (34). MDA8 O3 was derived at each grid
cell from the interpolated hourly abundances. The disparity between the O3 and
PM2.5 averaging windows reflects what is typically used for regulatory purposes
and health impacts. For temperature, we used the European Centre for Medium-
Range Weather Forecasting (ECMWF; apps.ecmwf.int/datasets/data/interim-full-
daily/levtype=sfc/) reanalysis data, which provides gridded, 6-h maximum
temperatures at a 2-m height. Daily maximum temperature was calculated
as the maximum of each day’s four values. ECMWF data were taken from
the available 0.5° × 0.5° grid, and four such cells were averaged to calculate
our 1° × 1° product. As an additional analysis tool, we calculated the ASI
following Horton et al. (37), using reanalysis data on 500-mb and 10-m wind
speeds (2.5° remapped to 1°) from the National Centers for Environmental
Prediction (www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html) and
daily cumulative precipitation from the National Aeronautics and Space

Administration’s Global Precipitation Climatology Project (49). A grid -cell
day was considered stagnant at 10-m wind speed <3.2 m s−1, 500-mb wind
speed <13.0 m s−1, and cumulative precipitation <1 mm. Daily weather maps
referred to in the discussion of Fig. 2 can be obtained via the National
Oceanic and Atmospheric Administration’s Weather Prediction Center
(www.wpc.ncep.noaa.gov/dailywxmap/). The 1° × 1° datasets of MDA8 O3,
24-h average PM2.5, daily TX, and ASI are available from the corresponding
author on request.

Large-scale, multiday pollution episodes were defined from the extreme
events in each cell using a clustering algorithm (34). This method links events
located within 1 d or 1° in latitude and longitude of one another, and thus
episodes can be assigned a size (km2 d) and followed throughout their
synoptic development. We use “event” to describe a single-day statistical
extreme at a cell and “episode” to describe a cluster of such events.
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