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We present a statistical test to detect that a presented state of
a reversible Markov chain was not chosen from a stationary dis-
tribution. In particular, given a value function for the states of
the Markov chain, we would like to show rigorously that the pre-
sented state is an outlier with respect to the values, by establish-
ing a p value under the null hypothesis that it was chosen from
a stationary distribution of the chain. A simple heuristic used in
practice is to sample ranks of states from long random trajecto-
ries on the Markov chain and compare these with the rank of the
presented state; if the presented state is a 0.1% outlier compared
with the sampled ranks (its rank is in the bottom 0.1% of sam-
pled ranks), then this observation should correspond to a p value
of 0.001. This significance is not rigorous, however, without good
bounds on the mixing time of the Markov chain. Our test is the
following: Given the presented state in the Markov chain, take a
random walk from the presented state for any number of steps.
We prove that observing that the presented state is an ε-outlier
on the walk is significant at p =

√
2ε under the null hypoth-

esis that the state was chosen from a stationary distribution.
We assume nothing about the Markov chain beyond reversibil-
ity and show that significance at p≈

√
ε is best possible in gen-

eral. We illustrate the use of our test with a potential applica-
tion to the rigorous detection of gerrymandering in Congressional
districting.

Markov chain | mixing time | gerrymandering | outlier | p value

The essential problem in statistics is to bound the probabil-
ity of a surprising observation under a null hypothesis that

observations are being drawn from some unbiased probability
distribution. This calculation can fail to be straightforward for
a number of reasons. On the one hand, defining the way in
which the outcome is surprising requires care; for example, intri-
cate techniques have been developed to allow sophisticated anal-
ysis of cases where multiple hypotheses are being tested. On
the other hand, the correct choice of the unbiased distribution
implied by the null hypothesis is often not immediately clear;
classical tools like the t test are often applied by making sim-
plifying assumptions about the distribution in such cases. If the
distribution is well-defined but is not be amenable to mathemat-
ical analysis, a p value can still be calculated using bootstrapping
if test samples can be drawn from the distribution.

A third way for p value calculations to be nontrivial occurs
when the observation is surprising in a simple way and the null
hypothesis distribution is known but where there is no simple
algorithm to draw samples from this distribution. In these cases,
the best candidate method to sample from the null hypothesis is
often through a Markov chain, which essentially takes a long ran-
dom walk on the possible values of the distribution. Under suit-
able conditions, theorems are available that guarantee that the
chain converges to its stationary distribution, allowing a random
sample to be drawn from a distribution quantifiably close to the
target distribution. This principle has given rise to diverse appli-
cations of Markov chains, including to simulations of chemical
reactions, Markov chain Monte Carlo statistical methods, pro-
tein folding, and statistical physics models.

A persistent problem in applications of Markov chains is the
often unknown rate at which the chain converges with the sta-
tionary distribution (1, 2). It is rare to have rigorous results on
the mixing time of a real-world Markov chain, which means that,
in practice, sampling is performed by running a Markov chain
for a “long time” and hoping that sufficient mixing has occurred.
In some applications, such as in simulations of the Potts model
from statistical physics, practitioners have developed modified
Markov chains in the hopes of achieving faster convergence (3),
but such algorithms have still been shown to have exponential
mixing times in many settings (4–6).

In this article, we are concerned with the problem of assess-
ing statistical significance in a Markov chain without requiring
results on the mixing time of the chain or indeed, any special
structure at all in the chain beyond reversibility. Formally, we
consider a reversible Markov chainM on a state space Σ, which
has an associated label function ω : Σ→<. (The definition of
Markov chain is recalled at the end of this section.) The labels
constitute auxiliary information and are not assumed to have any
relationship to the transition probabilities ofM. We would like
to show that a presented state σ0 is unusual for states drawn from
a stationary distribution π. If we have good bounds on the mix-
ing time ofM, then we can simply sample from a distribution of
ω(π) and use bootstrapping to obtain a rigorous p value for the
significance of the smallness of the label of σ0. However, such
bounds are rarely available.

We propose the following simple and rigorous test to detect
that σ0 is unusual relative to states chosen randomly according
to π, which does not require bounds on the mixing rate ofM.

The
√
ε test. Observe a trajectory σ0, σ1, σ2 . . . , σk from the

state σ0 for any fixed k . The event that ω(σ0) is an ε-outlier
among ω(σ0), . . . , ω(σk ) is significant at p =

√
2ε under the null

hypothesis that σ0∼π.
Here, we say that a real number α0 is an ε-outlier among

α0, α2, . . . , αk if there are, at most, ε(k + 1) indices i for which

Significance

Markov chains are simple mathematical objects that can be
used to generate random samples from a probability space
by taking a random walk on elements of the space. Unfortu-
nately, in applications, it is often unknown how long a chain
must be run to generate good samples, and in practice, the
time required is often simply too long. This difficulty can pre-
clude the possibility of using Markov chains to make rigorous
statistical claims in many cases. We develop a rigorous sta-
tistical test for Markov chains which can avoid this problem,
and apply it to the problem of detecting bias in Congressional
districting.
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αi ≤α0. In particular, note for the
√
ε test that the only relevant

feature of the label function is the ranking that it imposes on the
elements of Σ. In SI Text, we consider the statistical power of
the test and show that the relationship p≈

√
ε is best possible.

We leave as an open question whether the constant
√

2 can be
improved.

Roughly speaking, this kind of test is possible, because a
reversible Markov chain cannot have many local outliers (Fig. 1).
Rigorously, the validity of the test is a consequence of the follow-
ing theorem.

Theorem 1.1. Let M=X0,X1, . . . be a reversible Markov
chain with a stationary distribution π, and suppose the states of
M have real-valued labels. If X0∼π, then for any fixed k , the
probability that the label of X0 is an ε-outlier from among the
list of labels observed in the trajectory X0,X1,X2, . . . ,Xk is, at
most,

√
2ε.

We emphasize that Theorem 1.1 makes no assumptions on the
structure of the Markov chain beyond reversibility. In particular,
it applies even if the chain is not irreducible (in other words, even
if the state space is not connected), although in this case, the
chain will never mix.

In Detecting Bias in Political Districting, we apply the test
to Markov chains generating random political districting for
which no results on rapid mixing exist. In particular, we show
that, for various simple choices of constraints on what con-
stitutes a “valid” Congressional districting (e.g., that the dis-
tricts are contiguous and satisfy certain geometric constraints),
the current Congressional districting of Pennsylvania is signifi-
cantly biased under the null hypothesis of a districting chosen
at random from the set of valid districting. (We obtain p values
between ≈ 2.5 ·10−4 and ≈ 8.1 ·10−7 for the constraints that we
considered.)

One hypothetical application of the
√
ε test is the possibility of

rigorously showing that a chain is not mixed. In particular, sup-
pose that Research Group 1 has run a reversible Markov chain

Fig. 1. This schematic illustrates a region of a potentially much larger
Markov chain with a very simple structure; from each state seen here, a
jump is made with equal probability to each of four neighboring states. Col-
ors from green to pink represent labels from small to large, respectively. It
is impossible to know from this local region alone whether the highlighted
green state has unusually small label in this chain overall. However, to an
unusual degree, this state is a local outlier. The

√
ε test is based on the fact

that no reversible Markov chain can have too many local outliers.

for n1 steps and believes that this was sufficient to mix the chain.
Research Group 2 runs the chain for another n2 steps, producing
a trajectory of total length n1 +n2, and notices that a property of
interest changes in these n2 additional steps. Heuristically, this
observation suggests that n1 steps were not sufficient to mix the
chain, and the

√
ε test quantifies this reasoning rigorously. For

this application, however, we must allow X0 to be distributed not
exactly as the stationary distribution π but as some distribution
π′ with total variation distance to π that is small, as is the sce-
nario for a “mixed” Markov chain. In SI Text, we give a version
of Theorem 1.1, which applies in this scenario.

One area of research related to this manuscript concerns
methods for perfect sampling from Markov chains. Beginning
with the Coupling from the Past (CFTP) algorithm of Propp and
Wilson (7, 8) and several extensions (9, 10), these techniques are
designed to allow sampling of states exactly from the station-
ary distribution π without having rigorous bounds on the mix-
ing time of the chain. Compared with the

√
ε test, perfect sam-

pling techniques have the disadvantages that they require the
Markov chain to possess a certain structure for the method to be
implementable and that the time that it takes to generate each
perfect sample is unbounded. Moreover, although perfect sam-
pling methods do not require rigorous bounds on mixing times
to work, they will not run efficiently on a slowly mixing chain.
The point is that for a chain that has the right structure and that
actually mixes quickly (despite an absence of a rigorous bound
on the mixing time), algorithms like CFTP can be used to rig-
orously generate perfect samples. However, the

√
ε test applies

to any reversible Markov chain, regardless of the structure, and
has running time k chosen by the user. Importantly, it is quite
possible that the test can detect bias in a sample even when k is
much smaller than the mixing time of the chain, which seems to
be the case in the districting example discussed in Detecting Bias
in Political Districting. Of course, unlike perfect sampling meth-
ods, the

√
ε test can only be used to show that a given sample is

not chosen from π; it does not give a way for generating samples
from π.

Definitions
We remind the reader that a Markov chain is a discrete time ran-
dom process; at each step, the chain jumps to a new state, which
only depends on the previous state. Formally, a Markov chainM
on a state space Σ is a sequenceM=X0,X1,X2, . . . of random
variables taking values in Σ (which correspond to states that may
be occupied at each step), such that, for any σ, σ0, . . . , σn−1 ∈ Σ,

Pr(Xn = σ|X0 = σ0,X1 = σ1, . . . ,Xn−1 = σn−1)

= Pr(X1 = σ|X0 = σn−1).

Note that a Markov chain is completely described by the distribu-
tion of X0 and the transition probabilities Pr(X1 =σ1|X0 =σ0)
for all pairs σ0, σ1 ∈ Σ. Terminology is often abused, so that the
Markov chain refers only to the ensemble of transition probabil-
ities, regardless of the choice of distribution for X0.

With this abuse of terminology, a stationary distribution for
the Markov chain is a distribution π, such that X0∼π implies
that X1∼π and therefore, that Xi ∼π for all i . When the dis-
tribution of X0 is a stationary distribution, the Markov chain
X0,X1, . . . is said to be stationary. A stationary chain is said
to be reversible if, for all i , k , the sequence of random variables
(Xi ,Xi+1, . . . ,Xi+k ) is identical in distribution to the sequence
(Xi+k ,Xi+k−1, . . . ,Xi). Finally, a chain is reducible if there is a
pair of states σ0, σ1, such that σ1 is inaccessible from σ0 via legal
transitions and irreducible otherwise.

A simple example of a Markov chain is a random walk on a
directed graph beginning from an initial vertex X0 chosen from
some distribution. Here, Σ is the vertex set of the directed graph.
If we are allowed to label the directed edges with positive reals
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and if the probability of traveling along an arc is proportional
to the label of the arc (among those leaving the present vertex),
then any Markov chain has such a representation, because the
transition probability Pr(X1 =σ1|X0 =σ0) can be taken as the
label of the arc from σ0 to σ1. Finally, if the graph is undirected,
the corresponding Markov chain is reversible.

Detecting Bias in Political Districting
A central feature of American democracy is the selection of Con-
gressional districts in which local elections are held to directly
elect national representatives. Because a separate election is held
in each district, the proportions of party affiliations of the slate
of representatives elected in a state do not always match the pro-
portions of statewide votes cast for each party. In practice, large
deviations from this seemingly desirable target do occur.

Various tests have been proposed to detect “gerrymandering”
of districting, in which a district is drawn in such a way as to bias
the resulting slate of representatives toward one party, which can
be accomplished by concentrating voters of the unfavored party
in a few districts. One class of methods to detect gerrymandering
concerns heuristic “smell tests,” which judge whether districting
seems generally reasonable in its statistical properties (11, 12).
For example, such tests may frown on districting in which differ-
ence between the mean and median votes on district by district
basis is unusually large (13).

The simplest statistical smell test, of course, is whether the
party affiliation of the elected slate of representatives is close in
proportion to the party affiliations of votes for representatives.
Many states have failed this simple test spectacularly, such as in
Pennsylvania; in 2012, 48.77% of votes were cast for Republican
representatives and 50.20% of votes were cast for Democrat rep-
resentatives in an election that resulted in a slate of 13 Republi-
can representatives and 5 Democrat representatives.

Heuristic statistical tests such as these all suffer from lack of
rigor, however, because of the fact that the statistical proper-
ties of “typical” districting are not rigorously characterized. For
example, it has been shown (14) that Democrats may be at a nat-
ural disadvantage when drawing electoral maps, even when no
bias is at play, because Democrat voters are often highly geo-
graphically concentrated in urban areas. Particularly problematic
is that the degree of geographic clustering of partisans is highly
variable from state to state: what looks like gerrymandered dis-
tricting in one state may be a natural consequence of geography
in another.

Some work has been done in which the properties of valid dis-
tricting are defined (which may be required to have roughly equal
populations among districts, districts with reasonable bound-
aries, etc.), so that the characteristics of a given districting can
be compared with what would be typical for valid districting of
the state in question, by using computers to generate random
districting (15, 16); there is discussion of this in ref. 13. However,
much of this work has relied on heuristic sampling procedures,

Fig. 2. (Left) The current districting of Pennsylvania. (Right) Districting produced by the Markov chain after 240 steps. (Detailed parameters for this run are
given in SI Text.)

which do not have the property of selecting districting with equal
probability (and more generally, distributions that are not well-
characterized), undermining rigorous statistical claims about the
properties of typical districts.

In an attempt to establish a rigorous framework for this kind
of approach, several groups (17–19) have used Markov chains to
sample random valid districting for the purpose of such compar-
isons. Like many other applications of real-world Markov chains,
however, these methods suffer from the completely unknown
mixing time of the chains in question. Indeed, no work has even
established that the Markov chains are irreducible (in the case of
districting, irreducibility means that any valid districting can be
reached from any other by a legal sequence of steps), even if valid
districting was only required to consist of contiguous districts of
roughly equal populations. Additionally, indeed, for very restric-
tive notions of what constitutes valid districting, irreducibility
certainly fails.

As a straightforward application of the
√
ε test, we can achieve

rigorous p values in Markov models of political districting,
despite the lack of bounds on mixing times of the chains. In par-
ticular, for all choices of the constraints on valid districting that
we tested, the

√
ε test showed that the current Congressional dis-

tricting of Pennsylvania is an outlier at significance thresholds
ranging from p≈ 2.5 · 10−4 to p≈ 8.1 · 10−7. Detailed results of
these runs are in SI Text.

A key advantage of the Markov chain approach to gerryman-
dering is that it rests on a rigorous framework, namely comparing
the actual districting of a state with typical (i.e., random) district-
ing from a well-defined set of valid districting. The rigor of the
approach thus depends on the availability of a precise definition
of what constitutes valid districting; in principle and in practice,
the best choice of definition is a legal question. Although some
work on Markov chains for redistricting (in particular, ref. 19)
has aimed to account for complex constraints on valid districting,
our main goal in this manuscript is to illustrate the application of
the
√
ε test. In particular, we have erred on the side of using rela-

tively simple sets of constraints on valid districting in our Markov
chains, while checking that our significance results are not highly
sensitive to the parameters that we use. However, our test imme-
diately gives a way of putting the work, such as that in ref. 19, on
a rigorous statistical footing.

The full description of the Markov chain that we use in this
work is given in SI Text, but its basic structure is as follows:
Pennsylvania is divided into roughly 9,000 census blocks. (These
blocks can be seen on close inspection of Fig. 2.) We define a
division of these blocks into 18 districts to be a valid districting of
Pennsylvania if districts differ in population by less than 2%, are
contiguous, are simply connected (districts do not contain holes),
and are “compact” in ways that we discuss in SI Text; roughly,
this final condition prohibits districts with extremely contorted
structure. The state space of the Markov chain is the set of
valid districting of the state, and one step of the Markov chain
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consists of randomly swapping a precinct on the boundary of a
district to a neighboring district if the result is still a valid dis-
tricting. As we discuss in SI Text, the chain is adjusted slightly to
ensure that the uniform distribution on valid districting is indeed
a stationary distribution for the chain. Observe that this Markov
chain has a potentially huge state space; if the only constraint on
valid districting was that the districts have roughly equal popu-
lation, there would be 1010000 or so valid districtings. Although
contiguity and especially, compactness are severe restrictions
that will decrease this number substantially, it seems difficult
to compute effective upper bounds on the number of result-
ing valid districtings, and certainly, it is still enormous. Impres-
sively, these considerations are all immaterial to our very general
method.

Applying the
√
ε test involves the choice of a label function

ω(σ), which assigns a real number to each districting. We have
conducted runs using two label functions: ωvar is the (negative)
variance of the proportion of Democrats in each district of the
districting (as measured by 2012 presidential votes), and ωMM
is the difference between the median and mean of the propor-
tions of Democrats in each district; ωMM is motivated by the
fact that this metric has a long history of use in gerrymandering
and is directly tied to the goals of gerrymandering, whereas the
use of the variance is motivated by the fact that it can change
quickly with small changes in districtings. These two choices
are discussed further in SI Text, but an important point is that
our use of these label functions is not based on an assumption
that small values of ωvar or ωMM directly imply gerrymandering.
Instead, because Theorem 1.1 is valid for any fixed label func-
tion, these labels are tools used to show significance, which are
chosen because they are simple and natural functions on vectors
that can be quickly computed, seem likely to be different for typ-
ical versus gerrymandered districtings, and have the potential to
change relatively quickly with small changes in districtings. For
the various notions of valid districtings that we considered, the√
ε test showed significance at p values in the range from 10−4

to 10−5 for the ωMM label function and the range from 10−4 to
10−7 for the ωvar label function (see Fig. S1 and Table S1).

As noted earlier, the
√
ε test can easily be used with more com-

plicated Markov chains that capture more intricate definitions of
the set of valid districtings. For example, the current districting
of Pennsylvania splits fewer rural counties than the districting in
Fig. 2, Right, and the number of county splits is one of many met-
rics for valid districtings considered by the Markov chains devel-
oped in ref. 19. Indeed, our test will be of particular value in cases
where complex notions of what constitute valid districting slow
the chain to make the heuristic mixing assumption particularly
questionable. Regarding mixing time, even our chain with rela-
tively weak constraints on the districtings (and very fast running
time in implementation) seems to mix too slowly to sample π,
even heuristically; in Fig. 2, we see that several districts still seem
to have not left their general position from the initial districting,
even after 240 steps.

On the same note, it should also be kept in mind that, although
our result gives a method to rigorously disprove that a given dis-
tricting is unbiased—e.g., to show that the districting is unusual
among districtings X0 distributed according to the stationary
distribution π—it does so without giving a method to sample
from the stationary distribution. In particular, our method can-
not answer the question of how many seats Republicans and
Democrats should have in a typical districting of Pennsylvania,
because we are still not mixing the chain. Instead, Theorem 1.1
has given us a way to disprove X0∼π without sampling π.

Proof of Theorem 1.1
We let π denote any stationary distribution forM and suppose
that the initial state X0 is distributed as X0∼π, so that in fact,

Xi ∼π for all i . We say σj is `-small among σ0, . . . , σk if there
are, at most, ` indices i 6= j among 0, . . . , k , such that the label of
σi is, at most, the label of σj . In particular, σj is 0-small among
σ0, σ1, . . . , σk when its label is the unique minimum label, and we
encourage readers to focus on this `= 0 case in their first reading
of the proof.

For 0 ≤ j ≤ k , we define

ρkj ,` := Pr (Xj is `-small among X0, . . . ,Xk )

ρkj ,`(σ) := Pr(Xj is `-small among X0, . . . ,Xk | Xj = σ).

Observe that, because Xs ∼π for all s , we also have that

ρkj ,`(σ) =

Pr (Xs+j is `-small among Xs , . . . ,Xs+k | Xs+j = σ). [1]

We begin by noting two easy facts.

Observation 4.1.

ρkj ,`(σ) = ρkk−j ,`(σ).

Proof. Because M=X0,X1, . . . is stationary and reversible,
the probability that (X0, . . . ,Xk ) = (σ0, . . . , σk ) is equal to
the probability that (X0, . . . ,Xk ) = (σk , . . . , σ0) for any fixed
sequence (σ0, . . . , σk ). Thus, any sequence (σ0, . . . , σk ) for
which σj =σ and σj is a `-small corresponds to an equiprob-
able sequence (σk , . . . , σ0), for which σk−j =σ and σk−j is
`-small. �

Observation 4.2.

ρkj ,2`(σ) ≥ ρjj ,`(σ) · ρk−j
0,` (σ).

Proof. Consider the events that Xj is an `-small among
X0, . . . ,Xj and among Xj , . . . ,Xk . These events are condition-
ally independent when conditioning on the value of Xj =σ, and
ρjj ,`(σ) gives the probability of the first of these events, whereas
applying Eq. 1 with s = j gives that ρk−j

0,` (σ) gives the probability
of the second event.

Finally, when both of these events happen, we have that Xj is
2`-small among X0, . . . ,Xk . �

We can now deduce that

ρkj ,2`(σ)≥ ρjj ,`(σ) · ρk−j
0,` (σ) = ρj0,`(σ) · ρk−j

0,` (σ)

≥
(
ρk0,`(σ)

)2
. [2]

Indeed, the first inequality follows from Observation 4.2, the
equality follows from Observation 4.1, and the final inequality
follows from the fact that ρkj ,`(σ) is monotone nonincreasing in k
for fixed j , `, σ.

Observe now that ρkj ,` = E ρkj ,`(Xj ), where the expectation is
taken over the random choice of Xj ∼ π.

Thus, taking expectations in Eq. 2, we find that

ρkj ,2` = Eρkj ,2`(σ) ≥ E
((

ρk0,`(σ)
)2)

≥
(

Eρk0,`(σ)
)2

= (ρk0,`)
2
, [3]

where the second of the two inequalities is the Cauchy–Schwartz
inequality.

For the final step in the proof, we sum the left- and right-hand
sides of Eq. 3 to obtain

k∑
j=0

ρkj ,2` ≥ (k + 1)(ρk0,`)
2
.
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If we let ξj (0≤ i ≤ k) be the indicator variable that is one when-
ever Xj is 2`-small among X0, . . . ,Xk , then

∑k
j=0 ξj is the num-

ber of 2`-small terms, which is always, at most, 2`+1. Therefore,
linearity of expectation gives that

2`+ 1 ≥ (k + 1)(ρk0,`)
2
, [4]

giving that

ρk0,` ≤
√

2`+ 1

k + 1
. [5]

Theorem 1.1 follows, because if Xi is an ε-outlier among
X0, . . . ,Xk , then Xi is necessarily `-small among X0, . . . ,Xk

for ` = bε(k + 1) − 1c ≤ ε(k + 1) − 1, and then, we have
2`+ 1 ≤ 2ε(k + 1)− 1 ≤ 2ε(k + 1).
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