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A Brief Review of Bioinformatics Tools for  
Glycosylation Analysis by Mass Spectrometry

Pei-Lun Tsai1,2 and Sung-Fang Chen*,1

1 Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
2 Mithra Biotechnology Inc., New Taipei City, Taiwan

�e purpose of this review is to provide updated information regarding bioinformatic so�ware for the use 
in the characterization of glycosylated structures since 2013. A comprehensive review by Woodin et al. An-
alyst 138: 2793–2803, 2013 (ref. 1) described two main approaches that are introduced for starting research-
ers in this area; analysis of released glycans and the identi�cation of glycopeptide in enzymatic digests, re-
spectively. Complementary to that report, this review focuses on mass spectrometry related bioinformatics 
tools for the characterization of N-linked and O-linked glycopeptides. Speci�cally, it also provides informa-
tion regarding automated tools that can be used for glycan pro�ling using mass spectrometry.
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INTRODUCTION

Overview of glycoprotein
Glycosylation, a speci�c enzymatic process in which gly-

cans are attached to proteins or lipids, and is an important 
biological process that plays a role in cell signaling, cell 
adhesion, and the regulation of biochemical pathways. Of 
all post-translational modi�cations (PTMs), glycosylation 
is one of the most commonly observed type.2) It is believed 
that more than 50% proteins are glycosylated. �e biological 
functions of glycoproteins are involved many types of bio-
logical processes. �erefore, automated tools for the identi-
�cation of glycoproteins and the glycans that are attached to 
them, become fundamentally important. For analysis, tan-
dem mass spectrometry (MS/MS) is a popular and e�cient 
method in glycoproteomics because of its high sensitivity 
and selectivity.

Glycosylation heterogeneity
Glycoproteins generally exist as populations of glyco-

sylated variants (glycoforms) of a single polypeptide. Al-
though the same glycosylation machinery is available for 
all proteins that enter the secretory pathway in a given cell, 
most glycoproteins emerge with characteristic glycosylation 
patterns and the glycans at each glycosylation site are het-
erogeneous. �e recognition of identical motifs in di�erent 
glycans allows a heterogeneous population of glycoforms 
to participate in speci�c biological interactions. �is is the 
most challenging factor for glycan analysis. Two major types 

of protein glycosylation are known: N-Linked glycans that 
contain asparagine-X-serine/threonine sequons (N-X-S/T) 
where X is any amino acid except proline. O-Linked glycans 
attached to the hydroxyl oxygen of either serine, threonine, 
tyrosine, hydroxylysine, or hydroxyproline side-chains, or 
oxygen atoms on lipids such as ceramide represent the sec-
ond type of modi�cation.

Glycoprotein analysis strategies for mass spec-
trometry

Mass spectrometry (MS) has been successfully used to de-
termine glycan composition and their structures.3–5) Figure 
1 shows MS strategies that are currently in use for glycopro-
tein analysis. �ese approaches can generally be divided into 
top-down and bottom-up strategies. �e determination of 
the molecular weight of a glycoprotein represents a typical 
top-down analysis, which provides the most direct method 
for obtaining information on glycans in a glycoprotein. By 
calculating the molecular weight di�erences between the 
peaks, it is possible to determine the types of glycan modi�-
cations on that protein. Such an analysis, however, frequent-
ly lacks sensitivity and structure information. Because of 
this, glycoprotein analyses are o�en divided into two main 
strategies for collecting glycoprotein information using MS 
techniques. One involves an analysis of released glycans, 
while the other involves characterizing glycopeptides that 
are obtained by proteolytic digestion of the original glyco-
protein.

Previous reviews have dealt with so�ware tools that 
permit glycosylation to be accomplished based on MS data 
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alone, as well as so�ware designed to speed up the interpre-
tation of glycan and glycopeptide fragmentation from MS2 
data.1) Compared to previous reviews, this review not only 
describes new bioinformatics tools for glycan analysis, but 
also focuses on so�ware applications for glycopeptide analy-
sis and glycan pro�ling.

BIOINFORMATIC TOOLS FOR THE ANALYSIS 
OF RELEASED GLYCANS

�e analysis of glycans released from a glycoprotein by 
enzymatic digestion is the most common method for char-
acterizing glycoproteins. Although less site-speci�c when 
compared with glycopeptide analysis, some types of bioin-
formatics so�ware that can be used in conjunction with this 
method are listed below.

MS approaches for released glycan analysis
Goldberg et al. described a so�ware program called “Car-

toonist” for pro�ling N-glycans based on MALDI TOF mass 
spectra. Cartoonist has some interesting features. It uses a 
library of biosynthetically plausible cartoons that contain 
about 2800 cartoons derived from 300 archetypes. In ad-
dition, it computes a con�dence score for each assignment 
a glycan peak according match mass.6) “GlycoWorkbench” 
was developed by the EUROCarbDB initiative.7) In this 
system, MS data can be interpreted by using GlycoWork-
bench annotations. According to a theoretical list of frag-
ment masses compared with a list of peaks derived from 
the spectrum, GlycoWorkbench provides glycan structural 
constituents based on a collection of fragmentation types.8) 
“SysBioWare” is a web-based interface that allows raw MS 
data to be processed. �e unique function of SysBioWare 
is peak isotopic grouping, charge deconvolution, and con-
tinuous wavelet analysis. Candidate structures are generated 
based on a database search by this algorithm.9) Yu et al. pre-
sented a so�ware called “MultiGlycan” that packages an au-
tomated annotation of a user-de�ned list of of glycans based 
on MALDI-TOF or LC-ESI-MS data. MultiGlycan functions 
by matching theoretical isotopic envelopes of glycans and 
accounts for overlapping glycan isotope distributions. Es-
pecially for ESI, isotopic envelopes can be simultaneously 
calculated by using speci�ed adducts or multiple adducts to 
mass data. Both label-free and labeled glycans can be pro-

cess by MultiGlycan for quantifying glycans.10,11)

MS/MS approaches for released glycan analysis
“STAT,” which was designed by Gaucher et al., represents 

the �rst web-based computational program for the determi-
nation of glycan composition using MS/MS spectra. STAT 
has the ability to rapidly analyze sequence information 
from a set of MS/MS spectra for up to ten monosaccharide 
residues. Another function of STAT is that possible struc-
tures are listed and given a ranking system based on correct 
sequence when more than one candidate glycan matches the 
data.12) �e “StrOligo” program can successfully analyze 
tandem mass spectra of complex N-linked oligosaccharides. 
StrOligo �nds the most intense peak in a tandem mass 
spectrum and compares the potential experimental isotopic 
distribution to one or two theoretical isotopic distributions. 
Some of the optimized parameters can be used by this al-
gorithm to remove isotopic peaks and retain monoisotopic 
peaks; the overall intensities of both isotopic distributions, 
the position of the �rst isotopic distribution, and the m/z 
separation between both distributions.13) “GlycoFragment” 
enables the easy generation of all theoretically possible A-, 
B-, C-, X-, Y- and Z-fragments of a de�ned glycan structure 
according to the de�nitions of Domon and Costello.14) �e 
algorithm uses the Sweet-II15,16) program to interpret no-
menclature and chooses suitable templates from a database 
according to linkage information. “GlycoSearchMS” im-
ports a mass spectrum to a database search of theoretically 
calculated spectra and identi�es the best candidate spectra. 
It includes most of the theoretically possible spectra of N- 
and O-glycans, which were extracted from SweetDB.17,18)

�e Oligosaccharide Subtree Constraint Algorithm 
(“OSCAR”) restructures analyst-selected fragments into 
branching or linkage glycan structures and provides a de 
novo algorithm for identifying a glycan structure without 
being limited by presumed biosynthetic structures. In par-
ticular, OSCAR can interpret MSn data for permethylated 
O-linked oligosaccharides, but the disadvantage is that it 
cannot process LC-MS data smoothly.19,20) Goldberg et al. 
also described an algorithm called “CartoonistTwo” that 
generates all possible cartoons and ranks them by score, 
similar to Cartoonist, but with a more sophisticated scoring 
function.6) �is feature of CartoonistTwo permits fragmen-
tation ions of O-linked glycans to be automatically anno-

Fig. 1. Strategies for glycoprotein analysis using mass spectrometry.



BIoInFormatIcs TooLs For GLYcosYLatIon AnaLYsIs BY MS Vol. 6 (2017), S0064 

 Page 3 of 5

tated.21) “Glyco-Peak�nder” is useful for the de novo deter-
mination of glycan compositions. Knowledge concerning for 
this so�ware computation is not based on a biologcal back-
ground or fragmentation information. �e fragment ions of 
monosaccharide cross-ring cleavage products or multiply 
charged ions can be annotated using Glyco-Peak�nder.22) 
“SimGlycan” is a commercially available so�ware program 
that uses MS/MS raw data �les obtained from many dif-
ferent types of mass spectrometers. Based on exact mass 
spectra, SimGlycan has a built-in database system for use in 
glycan database searches and special scoring techniques that 
provides the most likely glycan structures.23) “GlycanID” is 
a so�ware program that can be used for the analysis of LC-
MS/MS data for pro�ling and identifying glycans. A glycan 
pro�le is generated with feature detection and alignment 
tools developed for proteomics. �e features of GlycanID 
is its ability to distinguish the complexity fragmentation 
ions caused by salt adducted ions or contaminants, multiple 
charge states, and possible in-source decay.24)

In conclusion, “Glyco-Peak�nder” can be easily used for 
released glycan analysis on both sections of MS and MS/MS 
approaches (http://www.glycoworkbench.org/).

AUTOMATED ANALYSIS OF GLYCOPEPTIDES

Glycopeptide-based analysis is used to inform research-
ers the nature of glycans on one or more proteins.25) �e 
method’s key attractive feature is its ability to link infor-
mation regarding glycosylation to exact locations (glyco-
sylation sites) on proteins. Some commonly used tools for 
glycopeptide identi�cation, which are divided into MS and 
MS/MS analysis of N-linked or O-linked glycans are listed 
below.

Glycopeptide MS Data
“GlycoMod” is a so�ware program that can help re-

searchers �nd all possible compositions of a glycan struc-
ture from their experimentally data. �e program can be 
used to annotate the composition not only underivatised 
reducing ends, but derivatised by methylated or acetylated 
monosaccharides as well. �e algorithm will match the ex-
perimentally determined masses against in silico predicted 
enzymatic digested peptides obtained using SWISS-PROT 
or TrEMBL databases which have the potential to be gly-
cosylated with either N- or O-linked glycans.26) “GlycoX” 
computes, not only the assignment of site-speci�c glycosyl-
ation without any glycan information, but also provides in-
formation on glycan heterogeneity. �e GlycoX program has 
three main functions, 1. Isotope Filter. 2. Oligosaccharide 
Calculator. 3. Determination of Glycosylation Sites. It sup-
ports the interpretation of MS data obtained for fragments 
from a glycoprotein produced by nonspeci�c protease treat-
ment.27) Desaire and colleagues presented a web-based tool, 
“GlycoPep DB.” �e principle is similar to GlycoMod and is 
designed to �nd all possible compositions for glycopeptides 
by comparing experimentally measured masses to all calcu-
lated glycopeptide masses from a carbohydrate database for 
N-linked glycans. In comparison to GlycoMod, GlycoPep 
DB has the ability to process data for multiply charged ions 
and for making glycopeptide compositional assignment 
more e�cient from the concept of “smart searching.”28) 
“GlycoSpectrumScan” was developed by Deshpande et al. 

It computes the masses of all possible glycopeptides, similar 
to GlycoMod and GlycoPep DB. Notably, the relative abun-
dance based on signal intensities in a mass spectrum can 
also be calculated.29)

Here, the “GlycoPep DB” provides friendly user experi-
ence and it is available for free (http://hexose.chem.ku.edu/
sugar.php).

Glycopeptide MS/MS Data
“GlycoPep ID” is a freely accessible web-based program 

that was speci�cally developed to identify peptide portions 
of glycopeptides. �e glycopeptides may be generated by 
proteolytic cleavage with either a speci�c or a nonspeci�c 
enzyme. When the glycosylation sites are determined, the 
program generates a table consisting of all possible peptide 
sequences around these glycosylation sites. �e most notable 
feature is that negatively charged glycopeptides can also be 
identi�ed by GlycoPep ID.30) “GlycopeptideID” is a web tool 
developed to identify intact glycopeptides. �e emphasis 
is on resolving a complicated peptide and a glycan that is 
unknown. Peptides are identi�ed by matching the MS/MS 
spectra against a protein database and the glycans against a 
glycan database created from the GlycomeDB, and pre-load-
ed to the GlycopeptideID web server. �e features of Gly-
copeptideID include a de novo glycan search, assigning the 
peptide and glycan modi�cation, and uses probability based 
scoring for both peptide and glycan.31,32) “GlycoMiner” was 
developed by Ozohanics et al. It has the ability to auto-
matically identify tandem mass spectra which correspond 
to N-glycopeptides by evaluating low mass oxonium ions, 
deduces oligosaccharide losses from the protonated mol-
ecule, and identi�es the mass of the peptide residue. �e 
disadvantage of GlycoMiner is that the glycan compositions 
assignments when the quality the spectra input is low.33) 
“Protein Prospector” combines CID and ETD search results 
into a single output �le for glycopeptide identi�cation by a 
database search. In addition, the so�ware permits a manual 
comparison of the potential site assignments and the anno-
tation of the glycosylated and de-glycosylated fragment ions 
in the same spectrum, which is a particularly useful feature 
for CID spectra of O-linked glycopeptides, where both frag-
ment types are generally present.34)

Mayampurath et al. modi�ed the “GlypID” algorithm,35) 
and developed a new so�ware tool that implements several 
algorithmic approaches for utilizing MS information includ-
ing accurate precursor mass and spectral patterns from both 
HCD and CID spectra, thus allowing for an unequivocal 
and accurate characterization of N-linked glycosylation sites 
of proteins.36) “GlycoPeptide Search (GPS)” incorporates a 
tool that simpli�es the interpretation of N-glycopeptide CID 
MS/MS data and conjunction with the GlycomeDB data-
base.37) �e output results must have, not only glycopeptide 
oxonium ions, but also glycopeptide fragment ions that are 
consistent with the intact mass of the peptides.38) �e “Gly-
colyzer” contains a full data analysis pipeline in one so�-
ware package to allow for minimal user intervention. �e 
general modules of this algorithm include data importing 
and exporting, FT-ICR signal preprocessing, internal cali-
bration, noise threshold calculation, peak selection, isotope 
grouping and �ltering, glycan annotation, intensity normal-
ization, missing value �lling, multiple spectra averaging, 
hypothesis testing, and multiple testing corrections. It can 
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be applied to identifying glycan biomarkers.39)

“GlycoPep Grader (GPG)” is a free so�ware tool designed 
to analyze MS/MS data obtained for N-linked glycopep-
tides. �e scoring approach relies on the identi�cation of 
unique dissociation patterns shown for high mannose, hy-
brid, and complex N-linked glycoprotein types, including 
patterns that are speci�c to those structures that contain 
fucose or sialic acid residues. �e useful function of this 
tool is the scoring algorithm that was speci�cally designed 
for dealing with low resolution CID data.40) “Byonic” is a 
commercially available so�ware package that can be used 
for identifying peptides and proteins by tandem mass spec-
trometry. Byonic provides some features: Top-down and 
bottom-up search, Modi�cation Fine Control™, Wildcard 
Search™, glycopeptide search, sequence variant search and 
modi�cation site localization. One of the items, glycopep-
tide search, provides three ways to specify glycopeptide 
searches: internal tables, external tables, and �ne control 
modi�cation.41) “GlycoMaster DB” incorporates an N-linked 
glycan database that was extracted from GlycomeDB. Us-
ing the GlycoMaster DB algorithm involves three steps. 
�e �rst is �ltration of glycopeptide spectra, the second 
is glycan assignment, and the third is peptide identi�ca-
tion. the HCD/ETD spectrum can be used for glycopeptide 
analysis using GlycoMaster DB that permits glycopeptides 
and deglycosylated glycopeptides to be analyzed simulta-
neously to obtain glycans and peptide sequences. It also 
provides a GSM score scheme, similar to the PSM score in 
proteomics.42)

“GPQuest” is an algorithm used for the site-speci�c 
identi�cation of intact glycopeptides using higher-energy 
collisional dissociation (HCD). �e application of the 
GPQuest algorithm requires matching the spectra of HCD-
fragmented glycopeptides with the experimental spectral 
library (ESL). �e advantage of GPQuest is that tandem 
mass spectra of intact glycopeptides containing oxonium 
ions and some of the fragment ions generated through HCD 
fragmentation from their deglycosylated counterparts can 
be analyzed.43) “MAGIC” is a mass spectrometry-based au-
tomated glycopeptide identi�cation platform that permits 
peptide sequences and glycan compositions to be identi-
�ed directly by means of a conventional database sequence 
search. MAGIC uses the Y1 (peptideY0+GlcNAc) ion for 
�ltering out unknown glycoproteins with a novel algorithm 
called Trident that detects a triplet pattern from the frag-
mentation of the common trimannosyl core of N-linked 
glycopeptide. MAGIC also provides fast computing power 
for large-scale complex proteome data sets.44) “GlycoSeq” 
uses a heuristic iterated glycan sequencing algorithm that 
incorporates prior knowledge of the N-linked glycan syn-
thetic pathway to achieve rapid glycan sequencing. �e lim-
iting factor for GlycoSeq is glycan and glycopeptides is that 
peptides containing more than one potential glycosylation 
site cannot be distinguished due to the lack of signature 
fragment ions to identify peptide backbone information.45) 
“pGlyco” is a novel pipeline for the identi�cation of intact 
glycopeptides by integrating HCD-MS/MS, CID-MS/MS 
and MS3 information. Both HCD-MS/MS and CID-MS/MS 
could be used to optimize glycopeptide identi�cation with a 
false discovery rate. Data-dependent acquisition of MS3 for 
the most intense peaks of HCD-MS/MS was used to provide 
fragments to identify the peptide backbones.46)

In this “Glycopeptide MS/MS Data” section, “GlycoPep-
tide Search (GPS)” can be downloaded from https://edward-
slab.bmcb.georgetown.edu/trac/GlycoPeptideSearch/. It is 
also a free so�ware for glycopeptide tandem mass spectrum 
database search.

CONCLUSION AND PERSPECTIVES

In the recent years, mass spectrometry has become a 
powerful tool for the identi�cation and structural charac-
terization of glycans. With the development of the mass 
spectrometer, the trend for this research has led to two main 
strategies for use in studies of protein glycosylation: Glycan 
analysis and glycopeptide analysis. Compared with glycan 
analysis, glycopeptide identi�cation by tandem mass spec-
trometry provides for the site-speci�c elucidation and col-
lection of glycan information concerning a sequence derived 
from an enzyme digested glycopeptide. Bioinformatic tools 
for glycopeptide analysis is rapidly advancing and promises 
to continue to expand, since it provides for the smooth and 
relatively rapid analysis of glycosylation end products.
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