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Abstract

Research in free recall has demonstrated that semantic associations reliably influence the 

organization of search through episodic memory. However, the specific structure of these 

associations and the mechanisms by which they influence memory search remain unclear. We 

introduce a likelihood-based model-comparison technique, which embeds a model of semantic 

structure within the context maintenance and retrieval (CMR) model of human memory search. 

Within this framework, model variants are evaluated in terms of their ability to predict the specific 

sequence in which items are recalled. We compare three models of semantic structure, latent 

semantic analysis (LSA), global vectors (GloVe), and word association spaces (WAS), and find 

that models using WAS have the greatest predictive power. Furthermore, we find evidence that 

semantic and temporal organization is driven by distinct item and context cues, rather than a single 

context cue. This finding provides important constraint for theories of memory search.
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Introduction

Findings from list-learning paradigms such as free recall demonstrate that the temporal 

structure of a learning experience has an important influence on how studied materials are 

remembered. The effects of this temporal structure are evident in the primacy and recency 

effects of free recall (Murdock, 1962). Furthermore, temporal structure influences the order 

in which memories are retrieved; participants tend to successively recall items that were 

presented adjacent to one another in the study list (Kahana, 1996). Although much 

theoretical work has focused on understanding the effects of temporal structure on memory 

(e.g. Raaijmakers and Shiffrin 1980; Brown et al. 2007; Howard and Kahana 2002a), 

research has also demonstrated that the prior experience of a participant also strongly 

influences search of episodic memory, in the form of semantic organization, the tendency for 

participants to successively recall items that are semantically related to one another 
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(Bousfield, 1953; Glanzer, 1969; Romney et al., 1993; Howard and Kahana, 2002b). 

Semantic organization (also known as semantic clustering) is observed both when a list 

contains obvious taxonomic category structure (Bousfield, 1953; Puff, 1966), as well as 

when there is no systematic semantic structure to the list (Schwartz and Humphreys, 1973; 

Romney et al., 1993; Howard and Kahana, 2002b). Although empirical work has established 

the importance of semantic knowledge for shaping new episodic memories, there is little 

consensus about the structure of semantic knowlege or the specific mechanisms that mediate 

its influence on memory search (Cohen, 1963; Sirotin et al., 2005; Polyn et al., 2009; 

Kimball et al., 2007). Furthermore, efforts to characterize semantic organization are 

complicated by the simultaneous influence of temporal organization on recall sequences 

(Howard and Kahana, 2002b; Howard et al., 2007; Polyn et al., 2011). Here, we developed 

set of computational models to test different ways that temporal and semantic information 

might influence memory search during free recall.

Measurement of semantic organization

In order to measure semantic organization, it is necessary to specify the semantic relatedness 

of the studied items. Early examinations of semantic organization focused on the effect of 

coarse semantic structure based on taxonomic category membership (e.g. Bousfield 1953; 

Cohen 1963; Roenker et al. 1971). More recently, theoretical and computational advances in 

characterizing semantic knowledge have made it possible to calculate more sophisticated 

measures of semantic similarity, leading to development of a variety of models of semantic 

structure which allow one to assign a relatedness/similarity score to any pair of words in a 

corpus or word pool (Romney et al., 1993; Lund and Burgess, 1996; Landauer and Dumais, 

1997; Steyvers et al., 2004; Griffiths et al., 2007; Jones and Mewhort, 2007). Despite this 

profusion of semantic models, it is unclear which best corresponds to the structure of 

semantic memory in humans.

In the domain of list-learning, the structure of a person’s semantic memory is thought to give 

rise to semantic organization in their recall sequences. If all pairs of items in a study list 

have been assigned semantic relatedness scores, semantic organization can be quantified by 

examining the similarity scores of neighboring pairs of items in the recall sequence. These 

scores are then compared to a baseline measure, representing the expected distribution of 

similarity scores in the absence of semantic influence. In many cases, this baseline measure 

has been modeled in terms of the expectation of the organizational statistic given a random 

ordering of the recalled words (Bousfield, 1953; Roenker et al., 1971; Stricker et al., 2002). 

This assumption of random sampling is problematic, as it fails to take temporal influences 

on recall into account. Romney et al. (1993) developed a method that accounted for 

differences in memorability of items from different serial positions (thus accounting for the 

influence of the primacy and recency effects on semantic organization), but this measure did 

not account for sequential dependencies due to temporal organization.

Temporal organization is a near-ubiquitous phenomenon in free-recall tasks (Kahana, 1996; 

Kahana et al., 2008; Sederberg et al., 2010) that can influence measures of semantic 

organization (Puff, 1966; Morton et al., 2013). Because of temporal organization, traditional 

measures of semantic organization which do not take the ordering of the input list into 
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account, such as ratio of repetition (Bousfield, 1953), adjusted ratio of clustering (Roenker et 

al., 1971), and list-based clustering (Stricker et al., 2002), will be inflated whenever 

semantically related items are presented in proximity. This is a particularly critical issue 

when examining how semantic organization is influenced by manipulations of presentation 

order (e.g. Glanzer 1969; Borges and Mandler 1972; for a review, see Puff 1974). Morton et 

al. (2013) demonstrated a permutation-based technique that can be used to estimate the 

baseline level of semantic organization expected in the presence of temporal organization. 

They measured free-recall behavior on both mixed lists composed of items from different 

categories, and pure lists with items from a single category. They randomly relabeled the set 

of pure list items with the category labels from a mixed list, and calculated a semantic 

organization score for each of these relabeled lists, to measure the tendency for same-

category items to be grouped together during recall. This randomization was repeated many 

times to obtain a baseline distribution of semantic organization scores. Semantic 

organization scores calculated for the mixed lists could then be compared to this distribution. 

Although this technique provides a useful estimate of the influence of temporal organization 

on measures of semantic organization, it relies on the assumption that semantic and temporal 

information do not interact with one another, an assumption that is unlikely to be valid 

(Glanzer, 1969; Howard and Kahana, 2002b; Polyn et al., 2011).

Simulating influences on recall organization

It is unclear whether it is possible to develop a simple measure of semantic or temporal 

organization that is process pure, given that these forms of information interact with one 

another in the cognitive system. In order to understand the nature of these interactions, 

researchers have developed computational models designed to characterize the joint 

influence of semantic and temporal structure on behavior in memory tasks (e.g., Anderson 

1972; Batchelder and Riefer 1980; Romney et al. 1993; Sirotin et al. 2005; Kimball et al. 

2007; Socher et al. 2009; Polyn et al. 2009). In order to properly account for the influence of 

semantic information on behavior, each of these models must specify the semantic 

relatedness of any pair of items that might be studied. These semantic relatedness values 

have been drawn from existing models of semantic knowledge, such as latent semantic 

analysis (LSA; Landauer and Dumais 1997) and word association spaces (WAS; Steyvers et 

al. 2004).

In the domain of free recall, computational models of memory are typically evaluated 

through a generative process: The model is used to generate a large number of synthetic 

recall sequences, and a number of summary statistics are calculated, for example, the 

probability of recall by serial position, or a semantic organization score. These summary 

statistics are then compared to the same summary statistics calculated from the recall 

sequences collected in the actual experiment. The fitness of the model is then quantified in 

terms of how well the model’s summary statistics match the observed summary statistics 

(e.g. Raaijmakers and Shiffrin 1980; Sederberg et al. 2008; Brown et al. 2007). However, a 

difficulty arises when one wishes to assess the model’s predictions regarding semantic 

organization: The same semantic model can be used to create the semantic associative 

structures in the model, and to calculate the degree of semantic organization in the recall 

sequences generated by the model. This leads to a circularity that can complicate the 
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evaluation of the validity of the model (as examined by Manning and Kahana 2012 and 

Polyn et al. 2009).

A predictive framework for evaluating models of recall organization

We present a computational modeling framework based on the context maintenance and 

retrieval (CMR) model. CMR is well-suited to examine the nature of temporal and semantic 

interactions in free recall, as it makes detailed predictions regarding behavior in this 

paradigm (Polyn et al., 2009; Healey and Kahana, 2014; Lohnas et al., 2015), including 

higher-order effects of compound temporal cuing (Lohnas and Kahana, 2014). We used a 

recently developed variant of CMR that allows direct calculation of the probability of entire 

recall sequences (Kragel et al., 2015), allowing for the exact calculation of the likelihood of 

observing a set of free-recall data according to the model. Within our modeling framework, 

we constructed competing model variants by combining one of three different models of 

semantic similarity with one of three different models of how temporal and semantic 

information interact. Along with a baseline model with no semantic structure, this yields ten 

model variants, which are described in more detail below. We examine the behavior of these 

model variants in three free-recall experiments which vary on a number of methodological 

characteristics.

To contrast different model variants, we used a maximum likelihood statistic to determine 

how well a given model variant can predict the behavior of the participants in an experiment. 

For each model variant, we first optimized a set of parameters to fit each participant in an 

experiment. These parameters determine the behavior and predictions of the model, allowing 

us to calculate the likelihood of each recall event, conditional on both the structure of the 

study list, and the specific sequence of recalls leading up to that event. The maximum 

likelihood then provides an unbiased measure for evaluating competing models of memory 

search. While evaluating models based on maximum likelihood provides important benefits 

such as high consistency and efficiency in parameter estimation (Myung, 2003), little work 

has used this technique with models of free recall (Farrell and Lewandowsky, 2008; Socher 

et al., 2009). The dearth of likelihood-based fitting in models of free recall may stem from 

the historical emphasis on fitting certain summary statistics such as the serial position curve 

(e.g. Sederberg et al. 2008), as well as the common use of simulation models for which exact 

likelihoods cannot easily be calculated (e.g. Raaijmakers and Shiffrin 1980; Sederberg et al. 

2008; Polyn et al. 2009; Davelaar et al. 2005; Farrell 2012). In addition to comparing models 

based on maximum likelihood, we also examined summary statistics that focus on specific 

aspects of recall behavior. Using the best-fitting parameters for each participant, we used the 

model to generate recall sequences. We then calculated the same set of summary statistics 

for the observed data and model-generated data, to determine whether model variants can 

account for specific theoretically important empirical phenomena observed in the 

experiment.

The CMR model is one of a class of retrieved-context models, which propose that a feature-

based representation of each studied item causes item-specific information to be integrated 

into a gradually changing representation of temporal context (Kahana et al., 2008; Polyn and 

Kahana, 2008). When an item is recalled, the context associated with it is reactivated, 
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providing a good cue for items studied nearby in the list and resulting in temporal 

organization. We use our framework to examine how temporal and semantic information 

interact during memory search. While each model variant we examined used temporal 

context as a cue, we examined the possibility that item cues might also be involved in 

probing semantic associations. The first type of cuing model we examined is the version of 

CMR described by Polyn et al. (2009). This model uses context-based semantic cuing: The 

item-specific information integrated into temporal context activates a set of pre-experimental 

semantic associations, such that the same contextual representation guides both temporal 

and semantic organization (Figure 2a, right side). We contrasted this with a version of CMR 

in which temporal and semantic organization are more independent. This second model 

variant uses item-based semantic cuing, in which the feature-based representation of the 

retrieved item directly activates pre-experimental semantic associations, resulting in 

semantic organization during memory search (Figure 2a, center). In the item-based semantic 

cuing model, temporal organization is guided by the temporal context representation, but 

semantic organization is guided by the reactivated representation of the remembered item. 

The predictive power of these two model variants were compared with that of a third, in 

which both item-based and context-based semantic cuing mechanisms operate 

simultaneously. Each model variant simply changes the locus of semantic influences. For all 

three variants, temporal organization is guided by the temporal context representation.

Each of the three cuing models are combined with each of three distinct vector space models 

of semantic similarity: Latent Semantic Analysis (LSA), Word Association Spaces (WAS), 

and Global Vectors (GloVe). Each vector space model constructs a representational vector 

for each word in a corpus. The representational similarity of any two vectors (calculated by 

the cosine operation) determines the strength of semantic association between the two 

corresponding items.

LSA is a well-established vector space model of semantic similarity that is based on the co-

occurrence statistics of words in a large text corpus (Landauer and Dumais, 1997). The 

corpus is partitioned into distinct documents, and each word is assigned a representational 

vector specifying the set of documents in which it occurs. The dimensionality of this vector 

is reduced using singular value decomposition (SVD), which helps the model infer indirect 

relationships between words. If two words appear alongside similar sets of words across 

many documents, they are assigned similar representational vectors. LSA has been shown to 

account for some aspects of semantic organization in free recall (Sirotin et al., 2005; Polyn 

et al., 2009).

WAS is another well-established vector space model based on data from a large set of free-

association norms (Steyvers et al., 2004). Representational vectors specify which words 

were associated with one another in the original free-association study (Nelson et al., 2004), 

and like LSA, SVD is used to reduce the dimensionality of those vectors. Prior work 

suggests that WAS can predict category clustering (Sirotin et al., 2005) and intrusions 

(Steyvers et al., 2004) more accurately than LSA, but comparing WAS and LSA using 

standard behavioral measures is difficult given differences in the distributions of similarity 

values in the two models (Howard et al., 2007; Manning and Kahana, 2012).
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GloVe is a recently developed vector space model that, like LSA, is based on co-occurrence 

statistics in a text corpus, but which also contains characteristics of prediction-based 

semantic models (Pennington et al., 2014). GloVe has been shown to outperform LSA (and a 

number of other semantic models) on several validation tests, including word similarity, 

named entity recognition, and word analogies (Pennington et al., 2014).

Each of the model variants (combining each cuing model with each semantic similarity 

model) is assessed using the complementary measures of fit to a set of summary statistics 

and overall maximum likelihood. The summary statistics show whether a given model 

variant produces the relevant empirical phenomena observed in the experiments. However, 

the summary statistics that measure semantic organization are often calculated in terms of 

the same vector space models used to define semantic structure in the cognitive model. The 

likelihood statistic avoids this circularity by quantifying model performance in terms of the 

model’s ability to predict the specific sequence of recalls made on every trial.

Methods

We tested competing models of temporal and semantic organization based on their ability to 

predict recall behavior in three free-recall experiments. These experiments differed in a 

number of characteristics, including stimulus pool, presentation time, encoding task, and 

delay before recall, allowing us to assess the generality of our conclusions across a range of 

experimental procedures.

Experiment 1

Participants—Participants included 41 people (14 female) between the ages of 18 and 30. 

Participants were recruited as part of a series of studies designed to examine 

electrophysiological correlates of encoding and retrieval in free recall. We focus on the first 

study of the series, which included 4 sessions for each participant. Analyses on the data from 

these participants appear in Lohnas et al. (2011), Lohnas and Kahana (2014), and Lohnas et 

al. (2015).

Stimuli and Procedure—A pool of 1655 nouns were selected from a larger pool of 5018 

words that formed the corpus for the word association spaces (WAS) model (Steyvers et al., 

2004). These words were identified as nouns using the CELEX2 English database (Baayen 

et al., 1995), and were identified (by three raters) as being appropriate for the binary 

classification tasks used in the free-recall experiment (size and animacy judgments, 

described below). Words were excluded if they were abstract or were highly ambiguous for 

either of the judgment tasks. Three additional raters performed the size and animacy 

judgments on the set of 1655 nouns; these ratings were used to balance the lists with regard 

to the classification responses, as described below. During the course of the study, an 

additional 17 words were excluded because they sounded similar to other words in the pool. 

This final set of 1638 words was the same as those used in Expt. 3, described below.

Each participant performed 4 experimental sessions (held on separate days), each of which 

contained 12 trials. Each trial consisted of a study period, followed by a free-recall period. 

There were two types of trials: control trials and task-shift trials. On control trials, every 
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word in the list was studied with the same encoding task. On task-shift trials, half of the 

items were studied with each encoding task. Within each session, a participant performed 6 

control trials, for a total of 24 trials across the four sessions. Here, we focus on these control 

trials, and all analyses are carried out without regard to encoding task.

During the study period, a series of 24 words was presented, one word at a time. Each word 

remained on the screen for 3 s, and was followed by a blank 0.8–1.2 s inter-stimulus interval. 

Each word was presented with a task cue above it, indicating the judgment that the 

participant should make for that word (either judging whether the item would fit in a 

shoebox, or whether the item was living or nonliving). Participants indicated their judgment 

for each word by pressing a key.

After the final item was presented, a row of asterisks and a beep indicated the start of the 

recall period. Participants were given 90 seconds to vocally recall as many words as they 

could remember from the most recent list, in whatever order they came to mind.

The binary judgments from the three raters (described above) were averaged together to 

assign each word an average response for each encoding task. These average responses were 

used to ensure that the study lists were well balanced in terms of the judgments, making sure 

that no particular list was dominated by a particular class of response. Items judged big or 

living were assigned a value of 1, small or nonliving items were assigned a value of 0. As 

such, a word that was judged big by two of the three raters was assigned a value of 0.66 for 

the size judgment; if all three raters judged the word to be nonliving, it would be assigned a 

value of 0 for the animacy judgment. The words on a given list were chosen such that the 

average value of the words judged with a given task fell between 0.3 and 0.7.

LSA similarity values were not available for two words that were used in Experiment 1. 

Therefore, we excluded from all analyses 27 lists that included either of those words, leaving 

957 trials considered here.

Experiment 2

Participants—Participants included 48 people between the ages of 18 and 30. Scalp EEG 

was recorded in a subset of these participants; results from those participants were 

previously reported by Sederberg et al. (2006).

Stimuli and Procedure—The experimental procedure was described in detail by 

Sederberg et al. (2006). Stimuli consisted of 308 common nouns (Friendly et al., 1982). 

Participants studied and recalled 48 lists which each contained 15 words drawn from the 

stimulus pool. Words did not appear more than once in a given list, but appeared in 1–3 lists 

for a given participant. Each word appeared for 1.6 seconds, followed by an inter-stimulus 

interval of 0.8–1.2 s. Participants were instructed to visualize each word as it was presented. 

Immediately following each list presentation, participants performed an arithmetic 

distraction task for 20 s. After the distraction period, participants were given 45 s to vocally 

recall items from the previous list in any order they wished.
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WAS similarity values were not available for 11 words that were used in Experiment 2. 

Therefore, we excluded from all analyses 992 trials that included any of these words, leaving 

1312 trials considered here.

Experiment 3

Participants—Participants included 126 people between the ages of 17 and 30, from the 

Penn Electrophysiology of Encoding and Retrieval Study (PEERS). Scalp EEG was 

recorded in these participants, and results from these participants were previously reported 

by Healey and Kahana (2014).

Stimuli and Procedure—The experimental procedure was described in detail by Healey 

and Kahana (2014); we describe the relevant details here. Stimuli were the 1,638 nouns 

described above (Expt. 1). Participants studied and recalled 112 lists which each contained 

16 words drawn from the stimulus pool. Different lists had different encoding task 

conditions; here, we focus on the 28 lists for each subject that were studied with no explicit 

encoding task. Word association spaces similarity values (Steyvers et al., 2004) were used to 

group words into four similarity bins (high similarity: cos(θ) > 0.7; medium-high similarity: 

0.4 < cos(θ) < 0.7; medium-low similarity: 0.14 < cos(θ) < 0.4; low similarity: cos(θ) < 

0.14). In each list, two pairs of items from each of the groups were arranged such that one 

pair occurred at adjacent serial positions and the other pair was separated by at least two 

other items. Each word appeared for 3 seconds, followed by an inter-stimulus interval of 

0.8–1.2 s.

After the final item was presented in each trial, there was a 1.2–1.4 s delay, followed by the 

presentation of a row of asterisks and a beep indicating the start of the recall period. 

Participants were given 75 seconds to vocally recall as many words as they could remember 

from the most recent list, in whatever order they came to mind.

LSA similarity values were not available for two words that were used in Experiment 3. 

Therefore, we excluded from all analyses 47 lists that included either of those words, leaving 

2725 trials considered here.

Models of semantic associations

The word association spaces (WAS) algorithm (Steyvers et al., 2004) provides similarity 

scores for all word pairs in a corpus of 5018 words, a subset of which were used to create the 

study lists in Experiments 1 & 3. These similarity scores are derived from the University of 

South Florida free-association norms (Nelson et al., 2004). We used the 400-dimension 

singular value decomposition of the  measure described by Steyvers et al. (2004), which 

is freely available online1. We defined the WAS similarity between two words as the cosine 

of the angle between their corresponding vectors.

The latent semantic analysis (LSA) algorithm (Landauer and Dumais, 1997) was used to 

derive similarity scores for all word pairs in the Touchstone Applied Science Associates, Inc. 

1http://psiexp.ss.uci.edu/research/software.htm
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(TASA) corpus. This technique produces a 400 dimensional vector for each word. We 

defined the LSA similarity between two words as the cosine of the angle between their 

corresponding vectors.

We used publicly available 300 dimensional GloVe vectors2 that were trained on a 

combination of the Gigaword 5 corpus (Parker et al., 2011) and a dump of Wikipedia article 

text from 2014. The corpus was tokenized and converted to lowercase, and a vocabulary was 

created with the 400,000 most frequent words. Co-occurrence was based on a decreasing 

weighting function, where words that are d words apart contribute 1/d to the co-occurrence 

count. As with WAS and LSA, we calculated similarity between each pair of words based on 

the cosine similarity of their vectors.

Figure 1 provides a visualization of the semantic similarity values for the different semantic 

models that we considered3. The circle of words represents a sample study list from 

Experiment 1. The weight of the line connecting two words indicates how strongly 

associated the two words are. These schematic figures highlight a difference between the co-

occurrence based models (LSA and GloVe) and WAS: While WAS has relatively sparse 

connectivity, LSA and GloVe have many connections of moderate strength (see also 

Manning and Kahana 2012). We examined the degree to which the different semantic 

models captured similar relations between items by calculating rank correlations between 

the similarity values from each model. For the 1655 words included in Experiments 1 and 3, 

each pair of models demonstrated a significant but small Spearman’s correlation (LSA-

GloVe: ρ = 0.366, p < 0.0001; GloVe-WAS: ρ = 0.232, p < 0.0001; LSA-WAS: ρ = 0.199, p 
< 0.0001), demonstrating that the interitem similarities predicted by the different models 

were largely distinct.

Model of memory search

We used a modified version of the context maintenance and retrieval model (CMR) as a 

framework to evaluate the impact of different models of semantic associations and different 

semantic cuing mechanisms on behavior in free recall. CMR consists of two interacting 

representations: a context layer and a feature layer. Two associative matrices (feature-to-

context, and context-to-feature) allow these representations to influence one another. When 

an item is studied, a representation of it becomes active on the feature layer. This 

representation is projected through the feature-to-context associative connections, which 

causes contextual information associated with the item to be retrieved and integrated into the 

context representation. This contextual integration mechanism causes the contextual 

representation to change slowly over time. Thus, at any moment, context reflects a recency-

weighted average of information related to recently presented stimuli. Studied items become 

associated to the context that was active when they were presented, so that context can serve 

as a cue to retrieve items, and recalled items can retrieve the context that is associated with 

them. When an item is recalled, its feature representation is reactivated, which allows the 

system to reinstate the context representation associated with the item. This reinstated 

2http://nlp.stanford.edu/projects/glove/
3Visualization created using code modified from the Schemaball package: http://www.mathworks.co.uk/matlabcentral/fileexchange/
42279-schemaball
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context can then be used to cue for another item on the list. Items that are associated with 

similar states of context (such as adjacent items in a list) tend to be good cues for one 

another. See Formal description of the model for further details about model mechanisms. 

The mechanisms of item-context association, contextual cuing, and context reinstatement 

allow the model to account for a number of behavioral effects in free recall, including 

recency and temporal contiguity effects (Howard and Kahana, 2002a; Howard, 2004; 

Howard et al., 2005; Sederberg et al., 2008; Polyn et al., 2009).

Polyn et al. (2009) introduced CMR, which is based on the temporal context model (TCM; 

Howard and Kahana 2002a). CMR added, among other things, a mechanism to explain how 

semantic associations influence recall. Under this framework, the model is initialized with 

pre-experimental associations representing a person’s prior experience with an item. When 

an item is studied or recalled, these associations cause the system to retrieve the item’s pre-

experimental context. This pre-experimental context is associated with the item’s semantic 

associates. As such, when this pre-experimental context is used as part of a retrieval cue, the 

item’s semantic associates are likely to be retrieved next, giving rise to semantic 

organization. We refer to this mechanism as context-based semantic cuing (Fig. 2); when 

this mechanism is in operation, the context representation is responsible for both temporal 

and semantic organization.

Context-based semantic cuing can be contrasted with an alternative mechanism, which we 

refer to as item-based semantic cuing. Using this mechanism, semantic associations link 

item representations directly to one another (without using the context representation as a 

mediator). During free recall, when an item is recalled, its reactivated representation serves 

as a direct cue for semantically related items. The item-based semantic cuing mechanism has 

been used as part of several versions of the search of associative memory (SAM) model 

(Raaijmakers and Shiffrin, 1980; Sirotin et al., 2005; Kimball et al., 2008; Kahana, 2012). In 

the item-based semantic cuing models we examine here, although item representations are 

used to probe semantic associations, the context representation still projects through 

episodic associations as in other versions of CMR.

With item-based semantic cuing, semantic organization is only influenced by the just-

recalled item, as depicted in Figure 2b. In contrast, with context-based semantic cuing, any 

items whose pre-experimental context is part of the context representation will influence 

semantic organization, because the context retrieved with each recalled item only partially 

updates the context representation (Lohnas and Kahana, 2014). Thus, semantic organization 

will be influenced by the set of items recalled prior to the current recalled item, though the 

semantic identity of the most recently retrieved item will have the most influence. In 

addition to examining the item-based semantic cuing and context-based semantic cuing 

models, we also evaluated whether semantic cuing might involve a weighted combination of 

item and context information. Note that while these different model variants used different 

types of semantic cuing, each of them used context-based episodic cuing (Fig. 2), allowing 

each variant to account for the temporal organization observed in free recall (Kahana, 1996).

The version of CMR described by Polyn et al. (2009) used context-based semantic cuing. 

Under this mechanism, semantic organization after recall of a given item should be sensitive 
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to the items that were recalled prior to that item. Polyn et al. (2009) showed that this version 

of CMR can produce a reasonable overall amount of semantic organization while 

simultaneously accounting for temporal and source organization. However, that study 

focused on semantic organization conditional only on the just-recalled item; the more 

nuanced predictions of the model have not been evaluated.

Here, we use the CMR framework to assess the relative validity of the LSA, GloVe, and 

WAS models of semantic association, and to contrast the item-based, context-based, and 

item+context semantic cuing mechanisms described above. To accomplish this, each of the 

cuing mechanisms was paired with each model of semantic association. For each of the three 

experiments reported here, we evaluated a base model with no semantics, and every 

combination of semantic association model and cuing mechanism. We first compared these 

models based on their ability to predict the sequences of individual recalls that were 

observed in the experiment.

Likelihood calculation

During each recall period, the participant produces a sequence of responses. This recall 

sequence is described as a series of recall events, followed by a recall termination event. For 

simplicity, we excluded repeated items and intrusions from the set of recall events, so that 

the remaining recall events corresponded to correct recalls. We discuss the impact of 

excluding repeats and intrusions below in Exclusion of recall errors. For each recall event, 

the model is used to calculate each individual item’s probability of being recalled from the 

list, as well as the probability of recall termination (Fig. 3). From this set of probabilities, we 

record the probability of whatever recall event actually took place (for example, recalling 

item 24 in the list), and take the logarithm of this probability (to avoid precision issues 

caused by very low probabilities). Thus, if the participant recalled item 24, the model 

simulates recall of item 24, which involves reactivation of the item representation, and 

updating of the context representation. The updated model is then used to predict the next 

event in the recall sequence (either another successful recall, or termination), and the 

logarithm of this probability is recorded. This process is repeated until we reach the end of 

the recall sequence being examined. At this point the model is re-initialized and applied to 

the next list of the experiment. The log-transformed probabilities of all recall and 

termination events in the experiment are summed to obtain the log-likelihood of the entire 

dataset, given a specific model and a specific set of parameters.

Model comparison

For each model variant, we used a parameter optimization technique known as differential 

evolution to find the parameter set that maximized the likelihood of the observed data 

(Storn, 2008). We optimized the parameters separately for each individual participant. We 

used a MATLAB-based implementation of differential evolution, based on code developed 

by Price et al. (2005). We used a variant of the DE/best/1/bin method described by Storn 

(2008), with some modifications to make search more robust. For each search through 

parameter space, we began with 1000 parameter sets at randomly chosen points in the 

parameter space. For each iteration of the search, the likelihood of the data given the current 
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parameters was evaluated at each point. Then candidate vectors were evaluated to determine 

the composition of the next generation of the individuals.

First, mutated vectors for generation g, vi,g, were created from the current population vectors 

xi,g according to

(1)

where vj,i,g is an element j of the mutated vector i for generation g, xbest,g is a vector 

randomly sampled with replacement from the top 5% of points, F is a scaling factor that we 

set to 0.85, ηj,i,g is uniformly distributed random jitter between 0 and 0.001, and xr1,g and 

xr2,g are vectors randomly sampled from the original population. To enhance diversity, 

candidate vectors ui,g were created using a crossover step, where each element of each 

candidate vector, uj,i,g, was set according to

(2)

where the crossover probability Cr was set to 0.9.

To prevent premature convergence, candidate vectors were sometimes selected even when 

they had a lower likelihood. The candidate vector was accepted with probability α, defined 

as

(3)

where L(ui,g) and L(xi,g) are the likelihoods of the candidate and original vectors, 

respectively.

Iterations of the algorithm were run until the maximum log likelihood over all parameter sets 

examined so far had not changed more than 0.0001 over the last 100 generations. Each 

search was repeated 15 times for each subject with different random starting points, and the 

parameter set with the maximum log likelihood over all the searches was selected. If, for a 

given subject, the searches failed to find a greater or equal likelihood for a more complex 

model compared to a simpler model (e.g. a semantic model compared to the base model), 

the best parameter set for the complex model was set to the best-fitting parameter set for the 

simpler model.
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Model performance was quantified using the Aikake Information Criterion (AIC; 

Wagenmakers and Farrell 2004) and the Bayesian Information Criterion (BIC; Schwarz 

1978). For each model, we calculated AIC with a correction for finite samples:

(4)

where L is the maximum likelihood value for the candidate model, V is the number of free 

parameters, and n is the number of estimated data points.

We also calculated BIC according to:

(5)

We compared model performance using AIC weights, which indicate the probability that 

each model (of K competing models) generated the observed data, under the assumption that 

one of the models generated the data. The AIC weight for a given model i, wiAIC, is defined 

as:

(6)

where ΔiAIC is the difference in AICc between a given candidate model and the best-fitting 

model in the set. BIC weights were calculated in the same manner, substituting BIC for AIC 

(Wagenmakers and Farrell, 2004).

Analysis of recall behavior

We used a set of summary statistics to characterize the recall performance of the 

participants, and to further characterize the performance of each optimized model variant. In 

order to calculate these summary statistics on an optimized model variant, we first used the 

model to generate simulated recall sequences, as follows. For each recall attempt, we 

calculated the probabilities of each recall event (recalling an item or stopping recall), using 

the same procedure described in Likelihood calculation. We then sampled an event at 

random using this probability distribution, and updated the state of the model accordingly. 

Each recall period was simulated in this manner until a stop event was chosen. To calculate 

summary statistics for each model, we simulated each list in the experiment 100 times, and 

calculated each statistic averaged over the 100 simulated replications of the experiment.

Behavior in free recall can be described in terms of three stages: initiation, transitions, and 

termination (Kahana, 2012). We measured recall initiation by calculating the probability of 

first recalling an item as a function of the serial position in which it was presented in the list. 

After the first recall, transitions between recalled items exhibit two major forms of 

organization: temporal clustering and semantic clustering.
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Temporal clustering is the tendency of participants to successively recall items that were 

presented adjacent to one another in the list (Kahana, 1996). We used a lag-based 

conditional response probability (lag-CRP; Kahana 1996) analysis to characterize temporal 

clustering (where lag indicates the difference between the position of two items in the study 

list). The lag-CRP analysis provides the probability of making recall transitions of a 

particular lag, conditional on that lag being available for recall (an item was considered 

unavailable if there was no item presented at that serial position, or if that item had already 

been recalled previously). The first three output positions were excluded from this analysis. 

In this analysis and the other transition-based analyses described below, when analyzing the 

observed data, transitions to or from intrusions or repeats of already-recalled words were 

excluded.

We measured semantic clustering using a related measure, the semantic-CRP (Howard and 

Kahana, 2002b; Sederberg et al., 2010). Rather than partitioning recall transitions on the 

basis of lag, this analysis partitions transitions on the basis of the semantic identities of the 

items themselves. First, we tallied the number of times each participant made a transition 

from item i to item j, for each item in the stimulus pool. We also tallied a separate count of 

the number of times that each participant could have made each possible transition between 

words, given the words that were still available at each point in recall. A given transition 

between items i and j was not counted as possible if item i was never recalled. We then 

determined a set of semantic similarity bins that we used to group together inter-item 

transitions (details on how the bins were determined are specified below). Within each bin, 

we calculated the number of actual transitions in that bin, and divided by the number of 

possible transitions.

In a set of preliminary analyses, we contrasted a version of the semantic-CRP analysis 

described by Howard and Kahana 2002b with a slightly different version described by 

Sederberg et al. 2010. We found that the semantic-CRPs for the Base model, which had no 

semantic associations and therefore could not produce semantic organization, showed an 

increased probability of very low- or high-similarity transitions when the semantic-CRPs 

were calculated as described by (Howard and Kahana, 2002b). This led us to implement a 

version of the analysis more similar to that described by Sederberg et al. (2010), which did 

not demonstrate this distortion.

Prior implementations of the semantic-CRP analysis have generally used bins that contain 

deciles (Healey and Kahana, 2014) or percentiles (Howard and Kahana, 2002b; Howard et 

al., 2007). However, because semantic similarity values based on WAS and LSA are highly 

positively skewed (Manning and Kahana, 2012), this results in many bins at low similarity 

values, and very few bins at higher similarity values. To better estimate CRPs for the full 

range of similarity values, we took a different strategy of determining bin sizes so that we 

obtain a minimal sample size at each bin (see Sederberg et al. 2010 for another example of 

unequal bin sizes used for this analysis). First, we obtained the semantic similarities for each 

inter-item transition that was possible at least once over all recall sequences in the study, 

based on the semantic similarity measure of interest (LSA, GloVe, or WAS). Starting from 

the highest similarity value, we decreased the lower limit of the bin by increments of 0.05 

until there were at least 10 possible transitions per subject on average. After defining a bin, 
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the lower limit of that bin became the upper limit of the next bin, and the process was 

repeated. The center of each bin was defined as the mean similarity value over all possible 

transitions within that bin. We determined the bins from the actual data, then applied these 

bins to the simulated data from our model variants.

In order to examine the specific predictions of the context-based semantic cuing mechanism, 

we developed a novel measure to determine whether the context in which a word appears in 

the recall sequence predicts subsequent semantic organization. We used the semantic score 

metric introduced by Polyn et al. (2009) to characterize the percentile of semantic 

relatedness of each transition during recall. For each transition between recalled words, first 

the items that are still available for recall (i.e. that have not been recalled previously) are 

determined. These available words are ranked on their semantic similarity to the just-

recalled item. The percentile of the transition the participant actually made is noted, and this 

percentile is averaged over all transitions to obtain a semantic score that reflects the overall 

amount of semantic organization. We calculated semantic score by ranking available items 

based on similarity to items of recall lag n, where n is the number of output positions 

separating the previously recalled item at output position i–n from the next item i in the 

recall sequence. When n = 1, the two recall events are adjacent; this corresponds to a 

standard semantic score as described by Polyn et al. (2009). For example, say a participant 

studied the list dog king cat tree queen, then recalled “tree”, “cat”, “queen”, “dog”. After the 

participant recalled “queen”, there were two possible words that could have been recalled 

next: dog and king. For recall lag 1, these items would be ranked based on their similarity to 

the just-recalled item queen, so that king would be ranked highest and the semantic score for 

that transition would be 0 (since the participant next recalled dog instead). In contrast, for 

recall lag 2, the remaining items would be ranked based on their similarity to cat, so that dog 
would be ranked highest and the semantic score for that transition would be 1.

For each participant, we calculated the semantic score for each recall lag from 1 to 4, 

averaging over all valid transitions. For a given recall lag, a transition was excluded from the 

analysis if either item i or item i–n was a repeat or an intrusion. The first three recalled items 

were excluded from the analysis, so that the same output positions would be included for 

recall lags 1–4. Semantic score is expected to be 0.5 by chance, indicating recall without 

regard to semantic similarity. If semantic score is greater than 0.5 for n > 0, we take this as 

evidence that semantic cuing is influenced by prior items in the recall sequences, consistent 

with context-based semantic cuing.

We calculated the probability of recall termination as a function of output position. We 

excluded repeats and intrusions when calculating output position, so that the probability of 

stopping at output position list length +1 is unity. Finally, we calculated the serial position 

curve, which shows the probability of recalling each item as a function of its serial position 

in the list.

For each measure of recall behavior, we calculated confidence intervals using a bootstrap 

procedure. For each of 5000 samples, we sampled subject means with replacement, and 

calculated a simulated group mean. We set the confidence interval to include the middle 

95% of the simulated group means.
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Formal description of the CMR model

Here, we give a formal description of the equations that define CMR’s structure and 

behavior. Table 1 provides an overview of the parameters that control the behavior of the 

model.

CMR takes the form of a simplified neural network with two interacting representations, a 

feature-based representation of the studied item (the item layer, F) and a contextual 

representation (the context layer, C). The two layers communicate with one another through 

two sets of associative connections represented by matrices MFC and MCF. Each of these 

weight matrices contains both pre-experimental associations and new associations learned 

during the experiment. Pre-experimental weights are designated  and ; the 

experimental weights are  and .

In the present simulations, we are particularly interested in structure of the pre-experimental 

weights. For all model variants, we set the pre-experimental item-to-context associations 

according to

(7)

This connects each unit on F to the corresponding unit on C. The γ parameter controls the 

strength of these pre-experimental associations relative to the experimental associations 

described below.

For the base model, which does not contain any semantic associations, we set the pre-

experimental context-to-item associations according to

(8)

Here, the α parameter allows all the items to support one another in the recall competition in 

a uniform manner. Our δ parameter is similar to the γCF parameter described by Sederberg 

et al. (2008). Our implementation is different from theirs in that α is free to be non-zero, and 

some model variants also include the addition of semantic similarity strengths. In a set of 

preliminary simulations, we tested a form of the model where  was set to 0. Through a 

series of model comparison analyses (not reported here), we found that freeing both the δ 
and α parameters substantially improved the fit, based on AIC.

For the set of model variants which used context-based semantic cuing, the context-to-item 

associations were set according to
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(9)

where  gives the semantic similarity between items i and j according to WAS, GloVe, 

or LSA, and s is a scaling parameter (cf. Polyn et al. 2009). In other words, we used a linear 

transform to map semantic cosine similarity values based on WAS, GloVe, or LSA to 

semantic strengths in the model, where α serves as an intercept parameter, and s is a slope 

parameter. The diagonal of Msem is set to 0, so that self-strengths are solely determined by 

the δ parameter.

At the start of the list, context is initialized with a state that is orthogonal to the pre-

experimental context associated with the set of items. Similarly, item representations are 

assumed to be orthonormal to each other; each unit of F corresponds to one item. When an 

item i is presented during the study period, its representation on F, fi, is activated. Pre-

experimental context  is retrieved and is input to the context layer to update the current 

state of context. The input to context is

(10)

since  is assumed to be zero at the start of the list. The retrieved pre-experimental 

context  is then normalized to have length 1.

After retrieval of pre-experimental context , the current state of context is updated 

according to

(11)

where β is set to βenc, a free parameter of the model, and ρi is set so that the length of ci is 1, 

according to

(12)

After context is updated, the current item fi and the current state of context ci become 

associated, through simple Hebbian learning. After each item presentation, the experimental 

associations are updated according to
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(13)

When an item is presented, the network also learns associations from the current state of 

context to the current item, according to

(14)

where ϕi scales the amount of learning, simulating the increased attention to initial items in a 

list that has been proposed to explain the primacy effect (Sederberg et al., 2008). ϕi depends 

on the serial position i of the studied item:

(15)

The free parameters ϕs and ϕd control the magnitude and decay of this learning-rate gradient, 

respectively.

To simulate the end-of-list distraction in Experiment 2, we assumed that distraction during 

the retention interval causes a change in context (Sederberg et al., 2008). Context is updated 

according to Equation 12, where β is set to βRI, and  is a vector that is orthogonal to the 

pre-experimental contexts of the studied items.

Before initiating recall, we assume that some amount of the pre-list context is reinstated. We 

assume that context is updated according to

(16)

where cstart is the state of context at the start of free recall, N is the number of items in the 

list, c0 is the state of context at the start of the list before any items have been presented, and 

ρN+1 is calculated according to Equation 12. This mechanism is consistent with evidence 

that participants sometimes recall the start of the list and use that event as a cue (Laming, 

1999). In preliminary simulations we found that models including this start-list context 

reinstatement demonstrated a better fit to the primacy effect than models containing the 

learning-rate gradient alone (see also Kragel et al. 2015).

At each recall attempt, the current state of context is used as a retrieval cue to attempt 

retrieval of a studied item. First, the activation of each item a is determined according to

(17)
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In order to avoid the possibility of the model assigning a probability of 0 to any possible 

recall, we set a minimal activation for each item of 10−7.

At each recall attempt, we calculated the probability of stopping recall (in which case no 

item was recalled, and search terminated). Probability of stopping recall varies as a function 

of output position j (where j = 0 for the first attempt), according to

(18)

where θs and θr are free parameters that determine the scaling and rate of increase, 

respectively, of the exponential function. The stopping mechanism does not interact with any 

model mechanism, and is simply intended to capture the average probability of stopping as a 

function of output position.

The probability P(i) of recalling a given item i is defined conditional on recall not stopping 

at that position, and varies with activation strength, according to

(19)

where τ is a sensitivity parameter that determines the contrast between well-supported and 

poorly supported items. High values of τ will cause a greater influence of differences in 

support, while low values will cause relatively uniform probabilities of recalling each item.

If an item is recalled, then that item is reactivated on F. The reactivated item is then used to 

retrieve both experimental and pre-experimental context, according to

(20)

Context is then updated using Equation 11, and is used to cue for another recall attempt. The 

process continues until the model reaches the end of the recall sequence.

Item-based semantic cuing

We also examined an item-based semantic cuing model that used separate context and item 

cues for episodic and semantic associations. In this model, contextual cuing worked as 

before, but semantic associations were not included in MCF. Recall initiation was driven by 

projecting context through episodic associations on MCF. For each following recall attempt, 

the feature-layer vector corresponding to the last recalled item, fi, was projected through the 

scaled semantic similarity matrix (the diagonal, representing item self-strengths, was set to 
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0). The item activations corresponding to contextual cuing and item cuing were added to 

obtain the total item activation:

(21)

The activation values a were then used with Equation 19 to determine recall probabilities.

We also examined a model that combined context- and item-based semantic cuing. This was 

the same as the item-based semantic cuing model, but rather than cuing semantics using just 

the item vector, we used a weighted combination of context and item:

(22)

where λ is a parameter controlling the relative weighting of the item cue compared to the 

context cue. Note that this model is equivalent to the item-based semantic cuing model when 

λ = 1, and the context-based semantic cuing model when λ = 0. Note also that each model 

variant, regardless of the value of λ, used a context cue to probe the episodic associations 

stored in MCF.

Results

The modeling framework used here is designed to account for the simultaneous influence of 

temporal and semantic information on memory search in three free-recall experiments which 

differed on a number of methodological characteristics. We consider three models of 

semantic relatedness (LSA, GloVE, and WAS), which provide similarity scores specifying 

the semantic associations between the studied words. We also consider three models of 

semantic cuing (item-based semantic cuing [I], context-based semantic cuing [C], and 

hybrid semantic cuing [IC]), which specify how this semantic information is used during 

memory search. The hybrid semantic cuing model includes both forms of semantic cuing; a 

mixing parameter λ determines the relative strength of each cuing mechanism. For each 

experiment we construct a baseline model without semantic structure, and 9 models with 

semantic structure (crossing the three models of semantic relatedness with the three models 

of semantic cuing). Note that, while these models varied in the specifics of semantic 

organization, each of them used the same contextual cuing mechanism to guide temporal 

organization. We compare the set of 10 models in terms of their overall fit to the recall 

sequences (i.e., the likelihood statistic; what is the probability that the observed data was 

generated by this model?). Each model is also used to generate recall sequences, which 

allows us to compare the models in terms of their fit to a number of important summary 

statistics which characterize recall performance, temporal organization, and semantic 

organization.

Serial position effects and temporal organization

Table 2 reports the overall fitness of each of the 10 model variants in each experiment, in 

terms of AIC weights. AIC weights indicate, for a given set of competing models, the 
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probability of each model generating the observed data, under the assumption that one of 

them did. It should be noted that while the base model had the lowest AIC weight for both 

experiments (i.e., it had the worst fit to the recall sequences), it still provided an excellent fit 

to a number of important summary statistics, including the recency, primacy, and contiguity 

effects. The generative version of the Base model provided a good qualitative fit of recall as 

a function of serial position (Fig. 4a,e,i), including the widely varying magnitudes of the 

recency and primacy effects in the different experiments. Primacy was slightly under-

predicted in Experiments 1 and 3, which was an issue with each model variant examined in 

this study. Given that retrieved-context models have successfully accounted for the 

magnitude of primacy in prior work (e.g. Polyn et al. 2009), it appears that this under-

prediction of primacy is caused by our different emphasis on fitting entire recall sequences, 

rather than traditional summary statistics such as the serial position curve (as in prior work 

with retrieved-context models). The model also provides a qualitative account of the 

probability of initiating recall at each serial position (Fig. 4b,f,j). The model accounts for the 

temporal organization observed in the data, and captures the tendency for participants to 

make forward transitions more often than backward transitions (Fig. 4c,g,k). Finally, the 

model accounts for the finding of a positively accelerated increase in stop probability with 

output position (Fig. 4d,h,l). The nine model variants with semantic associations also 

accounted for each of these summary statistics for each experiment, with fits that were very 

similar to the Base model. RMSD for each model variant, pooled over the non-semantic 

summary statistics, is presented in Tables 3, 4, and 5. RMSD was not significantly different 

from the Base model for any of the models with semantic associations (p > 0.05, Bonferroni 

corrected), with one exception: In Experiment 3, the GloVe-C model had a significantly 

higher RMSD across subjects compared to the Base model (t(125) = 3.34, p = 0.01, 

Bonferroni corrected), due to a slightly worse fit of the lag-CRP. This may reflect a 

compromise in the fit between temporal and semantic organization (which are most strongly 

related in the context-based semantic cuing models).

Model comparison

Given that our Base model with no semantic associations was able to account for benchmark 

phenomena in free recall, we examined whether the predictive power of the model could be 

improved by the addition of semantic structure. The addition of associative structure based 

on LSA, GloVe, or WAS led to a substantially better fit, regardless of the cuing mechanism 

used: For each experiment, wAIC and wBIC for the set of semantic models (aggregating 

over cuing mechanisms and semantic models) was virtually 1. For all experiments and 

semantic models, AIC was lower (i.e., fitness was improved) when an item-based, rather 

than context-based, semantic cuing mechanism was used. Similarly, for a given semantic 

cuing mechanism, WAS always provided the best fit, followed by GloVe, then LSA. The 

WAS-I model provided the best fit overall for all three experiments, with AIC weights 

approaching 1. Critically, our measure of model fitness is based on the likelihood of the 

recall sequences under that model; it makes no assumptions about the actual structure of our 

participants’ semantic knowledge, and therefore avoids complications that arise when a 

semantic model is used to both generate and evaluate model predictions (Polyn et al., 2009; 

Manning et al., 2012). This analysis of AIC weights aggregates over multiple participants, 

assuming that they all use similar semantic cuing mechanisms. In the Semantic organization 
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section, we examine the possibility that people may use different cues to probe semantic 

memory.

Exclusion of recall errors

In this study, we focus on the processes giving rise to correct responses during free recall. 

While participants make error responses in the form of repeats and intrusions, they are 

relatively rare. Of the original set of recall attempts in Experiment 1, 4.52% were repeats, 

1.34% were prior-list intrusions, and 3.73% were extra-list intrusions. In Experiment 2, 

3.30% of recall attempts were repeats, 3.14% were prior-list intrusions, and 2.39% were 

extra-list intrusions. In Experiment 3, 2.97% of recall attempts were repeats, 0.56% were 

prior-list intrusions, and 2.33% were extra-list intrusions. The version of CMR used here 

was not designed to simulate these error responses; as such, we excluded repeats and 

intrusions by removing them from the recall sequences and simulating recall as if they had 

not occurred. A potential issue with this approach is that by excising these error responses, 

we introduce a discontinuity in the recall sequence, which might hurt a model’s ability to 

predict a correct recall response following an error response. This was indeed the case: 

Across all model variants, log likelihood was, on average, lower for the correct recall events 

following an excluded repeat or intrusion, indicating that these events had lower prediction 

accuracy (Experiment 1: following repeat or intrusion −2.890; other recalls −2.378; 

Experiment 2: following repeat or intrusion −2.463; other recalls −2.112; Experiment 3: 

following repeat or intrusion −2.413; other recalls −1.935).

In order to test whether these differences in log likelihood following repeats and intrusions 

affected our model comparison analysis, we calculated AIC weights with recall events 

immediately following a repeat or intrusion excluded. AIC weights for this restricted set of 

recall events were comparable to when all recall events were included (wAIC for WAS-I 

model, Experiment 1: 0.9958; Experiment 2: 0.9999; Experiment 3: 1.0000). Similar AIC 

weights were also obtained when the two recall events following a repeat or intrusion were 

excluded (wAIC for WAS-I model, Experiment 1: 0.9513; Experiment 2: 0.9996; 

Experiment 3: 1.0000)

Semantic organization

In order to characterize how the model of semantic associations (WAS, GloVe, or LSA) and 

the type of semantic cuing mechanism (item, context, or item+context) influenced the 

behavior of the models, we carried out a set of semantic-CRP analyses (Fig. 5). The 

semantic-CRP shows how the likelihood of two items being recalled in adjacent output 

positions increases as a function of the semantic similarity of the two items. We examined 

three versions of the semantic-CRP, using each of the different semantic similarity models.

Qualitatively, for each combination of model and semantic-CRP analysis, the context-based 

semantic cuing models predicted a more shallow slope for the semantic-CRP than the item-

based cuing models. This suggests that an increase in the strength of semantic associations 

in the context-based cuing models would have impaired the ability of these models to 

account for other aspects of the recall sequences. We examined whether these differences in 

fit were significant, focusing on the WAS-based models, which had the best predictive power 
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overall. We calculated RMSD, a measure of error in the model fit, for each model and 

subject, and examined whether RMSD was significantly different between the item, context, 

and item+context models for a given semantic model. There were no significant differences 

between any pair of models in Experiments 1 or 2, but in Experiment 3 RMSD was 

significantly greater for the WAS-C model when compared to the WAS-I model (t(125) = 

3.58, p = 0.00049) and the WAS-IC model (t(125) = 4.61, p = 9.9e − 6), suggesting that 

adding an item-based semantic cuing mechanism to the standard CMR model allowed a 

better fit to the data.

Testing for persistence of semantic influence

While the item-based and context-based semantic cuing models make similar predictions for 

the strength of temporal organization, they make a divergent prediction regarding how long 

semantic information should exert an influence during the recall period. The item-based 

model suggests that the semantic organizational influence of a given recalled item should be 

short-lived, only directly affecting the immediately following recall event. In contrast, the 

context-based model suggests that this influence is longer lived, given that the contextual 

information associated with that remembered item fades gradually. We designed a novel 

analysis of semantic organization to distinguish between these two accounts; this analysis is 

described in detail in the methods section (Analysis of recall behavior ). While the semantic 

CRP analysis focuses on adjacent items in the recall sequence, this analysis examines 

whether more distant items in the recall sequence can exert a semantic influence on one 

another. (Polyn et al., 2009) presented a semantic organization score that focused on the 

relatedness of items in adjacent output positions (i.e., recall events with a lag of 1). Here, we 

extend that analysis to quantify the influence of a recalled item on more distant recall events 

(i.e., recall events of lag 2–4). The context-based semantic cuing mechanism predicts that 

the semantic organization score should decrease as a function of recall lag, but should be 

greater than chance (0.5) for recall lags greater than 1.

As shown in Figure 6, the best-fitting WAS-C models predicted an above-chance WAS score 

for recall lag 2 in each experiment. In contrast to this prediction, we found that WAS factor 

for the observed data was not significantly greater than 0.5 at any recall lag greater than 1 

(Fig. 6; p > 0.05 for recall lags 2–4 in each experiment). Critically, we found that the 

predictions of the WAS-I model for semantic organization score as a function of recall lag 

were significantly more accurate than the WAS-C model. The RMSD for the WAS-C model 

was significantly greater across subjects than the WAS-I model in Experiment 2 (WAS-C 

RMSD: 0.0466, SEM 0.0037; WAS-I RMSD: 0.0453, SEM 0.0036; t(47) = 2.15, p = 0.037) 

and Experiment 3 (WAS-C RMSD: 0.0421, SEM 0.0017; WAS-I RMSD: 0.0395, SEM 

0.0016; t(125) = 4.41, p = 0.00002). A similar but non-significant trend was observed in 

Experiment 1 (WAS-C RMSD: 0.0307, SEM 0.0028; WAS-I RMSD: 0.0304, SEM 0.0027; 

p > 0.05).

Interestingly, the observed semantic organization score for recall lags 3 and 4 was 

significantly below the chance level of 0.5 in Experiment 3 (lag 3: t(125) = 2.61, p = 0.011; 

lag 4: t(125) = 3.58, p = 0.0005). In contrast, none of the models dropped below 0.5 at any 

recall lag. Therefore, this effect in the observed data is unlikely to be a product of some bias 
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in the analysis, and instead might reflect a mechanism not implemented in the model. One 

possibility is that participants sometimes strategically shift between targeting different 

clusters of semantically related items; if this were the case, then after a transition to a new 

cluster of related items, items from earlier clusters would be less likely to be recalled, 

resulting in a below-chance distance factor to those items. Evidence for strategic targeting of 

groups of related items has previously been observed in free recall of items from categorized 

lists (Pollio et al., 1969). Although the context-based semantic cuing model predicts that 

semantic cues will persist over time, it predicts that this change will be gradual, while in 

practice participants may sometimes exhibit sharper changes (e.g. shifting from targeting 

words related to animals to targeting words related to musical instruments).

Individual differences in semantic cuing

In terms of the AIC weights, which aggregate across participants, there is overwhelming 

support for the item-based semantic cuing model in each of the three experiments (Table 2). 

However, the modeling framework was designed to find the optimal parameter settings for 

each individual in each experiment, which allows us to examine whether there were 

individual differences in cuing strategy across participants. Given that WAS provided the 

best overall description of behavior relative to the other models of semantic associations 

(and regardless of the type of cuing used), we focus our examination on the hybrid WAS-IC 

model. This model contains the the free parameter λ, which specifies for each participant 

the relative weighting of item-based and context-based semantic cuing (where λ = 0 

indicates pure context-based semantic cuing, and λ = 1 indicates pure item-based semantic 

cuing). Regardless of the value of λ, all models used context-based episodic cuing to guide 

temporal organization.

Figure 7 presents a histogram for each experiment, with the best-fitting values of λ for each 

participant. In each experiment, we find that the modal value of λ is 1, indicating that the 

majority of participants in each experiment were best fit by a pure item-based semantic 

cuing model. However, we also find that in each experiment there are a subset of participants 

whose behavior is better described by a model with λ < 1, indicating some evidence for 

context-based semantic cuing. This pattern is most striking in Experiment 2, where 16 

participants were best fit by a pure context-based semantic cuing model. This result suggests 

that while there are many similarities in recall performance across participants (Healey and 

Kahana, 2014), there are differences in how semantic structure affects recall organization 

across different participants. The difference in the distribution of λ across participants may 

be related to procedural differences in the experimental paradigms. For example, the faster 

presentation time or the type of encoding task (visualization) in Experiment 2 may have 

encouraged a different type of encoding that led to semantic information being integrated 

into temporal context for a subset of participants, yielding behavior consistent with the 

context-based cuing model. This point receives more attention in the discussion.

Discussion

We developed a likelihood-based modeling framework where a model of semantic 

associations is embedded in the context maintenance and retrieval model (CMR); this 
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framework allowed us to assess the relative validity of competing models of semantic 

organization in free recall while accounting for many of the complexities of memory search. 

CMR proposes that studied items become associated with a representation of temporal 

context, which provides an important cue during memory search. This context-based 

episodic cuing mechanism has been shown to explain several important aspects of temporal 

organization in free recall (Howard and Kahana, 2002a; Sederberg et al., 2008; Howard et 

al., 2009); however, it is less clear whether temporal context also influences semantic 

organization. We contrasted two mechanisms by which semantic associations have been 

proposed to influence free recall: an item-based mechanism where retrieved items cue for 

semantic associates, and a context-based mechanism where retrieved context serves as a 

semantic cue. While temporal organization in free recall is consistent with a context-based 

cuing mechanism (Howard and Kahana, 2002a; Lohnas and Kahana, 2014), we found that 

semantic organization in free recall is more consistent with an item-based semantic cuing 

mechanism, suggesting that semantic and episodic associations are probed using distinct 

cues during memory search. Furthermore, we found that models using word-association 

spaces (WAS) to determine semantic structure outperformed models using latent semantic 

analysis (LSA) or global vectors (GloVe) to determine semantic structure, in terms of the 

models’ ability to predict the identities of a sequence of recalled items. We propose that our 

modeling framework provides specific advantages in the evaluation of computational models 

of semantic and episodic memory, and may provide the basis for developing better 

measurements of semantic organization in recall sequences.

Models of semantic association strength

Both WAS and LSA have been used to characterize behavior in free recall (Howard and 

Kahana, 2002b; Howard et al., 2007; Manning and Kahana, 2012) and have been used as 

components of models of memory search (Sirotin et al., 2005; Polyn et al., 2009). The 

present results suggest that WAS is better able than both LSA and a more recently developed 

technique, GloVe, to predict behavior in recall of lists of words with no obvious semantic 

structure. Our results complement those of Sirotin et al. (2005), who compared the ability of 

WAS and LSA to explain behavior in free recall of categorized materials. They developed a 

version of the search of associative memory (SAM) model (Raaijmakers and Shiffrin, 1980) 

that included semantic associations between items. Sirotin et al. (2005) assumed that search 

of long-term memory is driven by both episodic and semantic inter-item associations. They 

compared a model with semantic structure based on WAS to a model with semantic structure 

based on LSA, and found that the WAS-based model was better able to account for category 

clustering in a multi-trial free recall study (Kahana and Wingfield, 2000). Their analysis of 

recall behavior focused on only one aspect of semantic organization, namely clustering by 

taxonomic category. In contrast, our likelihood-based framework does not require choosing a 

particular summary statistic to evaluate the fitness of a model. As such, this framework can 

be applied to experiments where the studied items do not have a systematic category 

structure. Furthermore, the framework is flexible enough that it can be used to evaluate any 

model of semantic structure, as long as that model provides estimates of the associative 

strengths between items. While the vector-space models (WAS, GloVe, and LSA) evaluated 

here contain symmetric associative strengths, this characteristic is not necessary–the 
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framework can evaluate semantic models in which the associative strength from item i to 

item j is not the same as the associative strength of item j to item i.

We are interested in determining which model contains semantic relatedness scores that best 

correspond to those in the human memory system. In terms of predictive power and fit to 

summary statistics, WAS is the clear winner in this regard. However, the conclusions we can 

draw regarding the processes giving rise to these semantic structures are limited. The 

superior performance of the WAS model is not surprising, in that its representations are 

constructed from the results of a behavioral free-association experiment, while LSA and 

GloVe are trained on large text corpora. In other words, WAS incorporates behavioral results 

from a similar cognitive task into its structure (i.e., free association vs. free recall), 

sidestepping the need to describe the processes by which this structure develops (Jones et al., 

2015).

Nonetheless, by contrasting WAS with the other models of semantic association, we may 

gain insight into how these other models can be modified to increase their utility as cognitive 

models of semantic similarity. In our examination of the semantic CRP (Figure 5), only the 

WAS-CRP showed a linear relationship between semantic similarity and likelihood of 

semantic clustering in the observed data. In contrast, the LSA-CRP and GloVe-CRP showed 

positively accelerated curves describing this relationship. One interpretation of this 

difference is that WAS does a better job estimating the global structure of the semantic space 

containing these word representations. All three models seem to do a good job describing 

the local structure of semantic space, in that all three semantic-CRP curves capture the 

increased likelihood of clustering associated with highly related word pairs (i.e., words that 

are nearby in semantic space). However, only WAS seems to capture the behavioral 

consequences of small changes in semantic relatedness for less related word pairs (i.e., 

words that are more distant in semantic space). This interpretation is supported by our 

modeling results, in which only the WAS models are able to fit the full extent of the 

semantic-CRP, consistent with the idea that WAS provides a good match to the associations 

guiding recall. By this logic, the failure of the LSA and GloVe models to fit their 

corresponding semantic-CRP curves is likely due to the presence of semantic associations 

that don’t match the ones guiding behavior. If the strength of these semantic associations 

were increased, it would be at the cost of predicting semantic clustering that mismatches the 

observed data.

In future work, it may be possible to identify transformations on the LSA or GloVe 

representations that improve their predictive power in free recall. This would be of utility to 

many cognitive researchers interested in estimating semantic similarity, as the semantic 

similarity estimates in WAS are limited to the 5018 words that were part of the original free-

association study (Nelson et al., 2004). Such an endeavor might also inform the development 

of process-based models attempting to describe the emergence of semantic structure with 

experience (Rogers and McClelland, 2004; Jones and Mewhort, 2007; Rao and Howard, 

2008).
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Mechanisms of semantic cuing

Polyn et al. (2009) developed CMR, which extended the temporal context model (TCM) to 

account for multiple influences on recall organization, including source context and 

semantic similarity. CMR is a retrieved-context model, wherein retrieval of a particular item 

causes the system to reactivate the temporal context representation associated with that item. 

This retrieved context contains a weighted average of information related to the items 

preceding the just-recalled item in the study list. The version of CMR presented by Polyn et 

al. (2009) used a context-based semantic cuing mechanism, where retrieved temporal 

context projects through a set of semantic associations, providing support for any items that 

are semantically related to any of the items represented in the context cue. We constructed 

an alternative model in which semantic cuing was driven by semantic associations attached 

to a feature-based representation of the studied item. This item-based semantic cuing 

mechanism is similar to the semantic cuing mechanism in the eSAM model (Sirotin et al., 

2005), in which only the most recently recalled studied item is used to cue its semantic 

associates. In both variants of the model, recall organization is simultaneously determined 

by temporal and semantic information, but the nature of temporal/semantic interactions 

differs between the two versions.

Across three experiments with widely varying methodological characteristics, we found that 

the context-based semantic cuing mechanism described by Polyn et al. (2009) was inferior to 

the item-based semantic cuing mechanism. While the context-based semantic cuing 

mechanism performed substantially better than a model without any semantic structure, 

models with an item-based semantic cuing mechanism were overall best at predicting 

behavior. Under this item-based mechanism, although temporal context is still used as an 

episodic cue, only the most recently recalled item is used as a semantic cue. We developed a 

novel analysis of semantic organization to examine a divergent prediction of the two models: 

While context-based semantic cuing predicts that an item will have a gradually fading 

influence on semantic organization, the item-based mechanism predicts that the semantic 

influence of a given item will be limited to the immediately following response. As shown in 

the results of the recall-lag analysis presented in Figure 6, the predictions of the item-based 

model provided a better fit to the observed data.

An examination of individual differences in recall behavior revealed limited evidence for the 

engagement of a context-based cuing mechanism in some subjects. This evidence was most 

obvious in Experiment 2, where a substantial minority of the participants were best 

described by the context-based semantic cuing mechanism. It is possible that 

methodological differences between the experiments underlie this observation. Experiment 2 

had a faster presentation time than Experiments 1 & 3, and it included an end-of-list 

distraction period. Participants in Experiment 2 were encouraged to visualize the items, 

whereas in Experiment 1 they performed one of two binary classification tasks. In 

Experiment 3, we examined trials without an explicit encoding task, but these were 

surrounded by trials in which participants performed the same binary classification tasks as 

in Experiment 1, which may have influenced their encoding strategy. More work is needed 

to determine what circumstances determine whether recall behavior is more consistent with 

item- or context-based semantic cuing.
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One methodological characteristic common to the three experiments was that there was no 

obvious semantic structure to the study lists. Words were randomly chosen from a large 

pool. It may be that context-based semantic cuing is more likely to be engaged when study 

lists have explicit semantic structure, as in blocked categorized free recall paradigms (e.g. 

Puff 1966). Recent scalp EEG evidence is consistent with this idea. Using scalp EEG during 

encoding of categorized materials, Morton et al. (2013) found evidence of persistent 

category-specific activity, which became stronger when multiple items from the same 

category were presented in sequence. The rate at which this category-specific signal 

increased predicted individual differences in organization by stimulus category during recall. 

Morton et al. (2013) proposed that this integrative category-specific signal is consistent with 

the operation of a temporal context mechanism. If each studied item caused category-

specific information to be integrated into context, this would explain both why the category-

specific signal gets progressively stronger, and why this rate of increase is related to 

individual differences in category clustering. To test this account, Morton and Polyn (in 

preparation) created a modified version of CMR in which each item is associated with a 

distributed pre-experimental contextual representation containing semantic information. As 

in the context-based semantic cuing models examined in the present work, their distributed-

CMR model assumed that both temporal and semantic organization are driven by contextual 

cues. They simulated the Morton et al. (2013) experiment, and found that the distributed-

CMR model correctly accounts for the relationship between category-specific neural activity 

during encoding and individual differences in semantic organization. In future work, we plan 

to adapt the distributed-CMR model to work within the likelihood-based framework 

presented in this article. This will allow us to directly contrast the semantic cuing models 

evaluated here, in which semantic associations only have an influence during retrieval, with 

the distributed-CMR model, where semantic information is integrated into context during 

encoding.

One clear prediction of the context-based semantic cuing mechanism is that a weighted 

combination of the prior recalls determines the semantic influences for the current recall 

event, causing a form of compound cuing. Temporal organization shows clear compound 

cuing effects, in a way that is consistent with the CMR model (Lohnas and Kahana, 2014). 

While we observed similar temporal organization effects as in previous studies (Fig. 4), we 

found no evidence for compound semantic cuing (Fig. 6). However, it is possible that other 

types of free-recall paradigms may show evidence for compound semantic cuing. Kimball et 

al. (2007) examined behavior in the false memory paradigm, in which participants have a 

strong tendency to falsely recall critical items that are semantically related to the items from 

the study list (Deese, 1959; Roediger and McDermott, 1995). They proposed a modified 

version of the SAM model in which a compound cuing mechanism (in which multiple 

remembered items exerted semantic influences during recall) was necessary to fully account 

for data in false memory experiments. It may be that the strong semantic structure of study 

lists in the false memory paradigm leads to the engagement of a context-based cuing 

mechanism. However, more work is needed to determine whether the CMR model can 

account for the major empirical phenomena from false memory paradigms.
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Measurement of semantic organization

In the current work, the influence of semantic information is reflected in the magnitude of 

the s parameter, which scales the influence of semantic associations on memory search. 

Because the model contains other parameters which account for behavioral variance due to 

temporal structure, the best-fitting value of the s parameter may provide a good estimate of 

the magnitude of semantic organization in a given experiment. As such, the computational 

modeling framework used here may be useful for measuring semantic organization while 

accounting for other influences on recall behavior. Properly accounting for temporal 

organization is critical when considering experimental manipulations that alter the temporal 

organization of semantically related stimuli, as in experiments that contrast study lists with 

blocked vs. random presentation of categorized stimuli (Puff, 1966). However, most of the 

prior work on blocked-random effects has not accounted for this influence (e.g. Cofer et al. 

1966; D’Agostino 1969; Borges and Mandler 1972). Through bootstrapping techniques, it is 

possible to estimate the amount of semantic organization due to temporal clustering (Morton 

et al., 2013). However, this technique requires collecting data from baseline lists with no 

category structure, and involves the assumption that other aspects of recall behavior are 

unaffected by the manipulation of the temporal structure of the categorized materials. To 

avoid these issues, CMR could be fit separately to blocked and random lists. The semantic 

scaling parameter would then provide an estimate of the strength of semantic organization, 

while the other parameters (as well as the structure of the model itself) could account for 

alterations in temporal organization and other influences that might vary between conditions. 

While further work is necessary to determine whether CMR will provide reliable estimates 

of semantic organization in these experiments, the current work establishes the plausibility 

of such an approach, which may prove useful for investigating interactions between 

temporal and semantic structure during memory search.

Conclusions

While prior research has found that semantic knowledge exerts an important influence on the 

search of episodic memory, many questions remain about the cognitive mechanisms that 

mediate this influence. We developed a modeling framework that allows one to both evaluate 

the relative utility of different models of semantic associations, and to compare different 

mechanisms by which semantic information affects memory search. In order to be able to 

calculate the exact likelihood of recall sequences under a given model, we used a simplified 

version of CMR, which did not contain mechanisms to determine response latency, to 

produce recall errors, or to produce organizational effects related to source characteristics 

(Polyn et al., 2009; Lohnas et al., 2015). However, we believe it will be possible to develop 

this framework to incorporate these mechanisms, allowing one to examine different models 

of how semantic information influences inter-response times, recall errors, and other 

organizational effects. More generally, we hope that the computational modeling framework 

presented here will continue to help shed light on how prior semantic knowledge shapes the 

formation and utilization of episodic memories.
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Appendix

Maximum-likelihood parameter estimates, as well as log likelihood, AIC, BIC, AIC weights, 

BIC weights, and RMSD are shown in Tables 3–5. Although all parameters were allowed to 

vary freely for each of the model variants, many of the best-fitting parameters were quite 

similar across all models. Parameters controlling the rate of context evolution (βenc, βdelay, 

and βrec), parameters involved in the primacy effect (ϕs, ϕd, and βstart), and stopping 

parameters (θs and θr) were all comparable across the 10 model variants within each 

experiment. The semantic scaling parameter, s, was generally greater for better-fitting 

models, suggesting that the influence of semantics is increased when the model of semantic 

cuing is improved. For a given semantic model, α was increased for item-based semantic 

cuing models. Increasing α causes recall to become more stochastic (less dependent on the 

particular context cue used). This may help the item-based semantic cuing models to mimic 

the tendency of context-based semantic cuing models to predict more diffuse cuing of 

multiple items in the list (see Fig. 2d for an illustration).
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Figure 1. 
Cosine similarity between pairs of items in a sample study list from experiment 1, for 

different models of semantic similarity. Greater line saturation and thickness indicate greater 

estimated similarity. Similarity values for different models were scaled to be on the same 

range. (a) Similarity based on latent semantic analysis (LSA). (b) Similarity based on the 

global vectors (GloVe) model. (c) Similarity based on word association spaces (WAS).
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Figure 2. 
Illustration of cuing mechanisms used by the different model variants. (a) Schematic of 

model variants. Left: Model with no semantic associations. Recall is driven solely by 

episodic associations between items and context. Center: Temporal context influences recall 

through episodic cuing as before, but retrieved items also will cue for other semantically 

related items, providing additional support for those items. Right: Only context is used as a 

cue to retrieve items; context projects through both episodic and semantic associations. (b) 

Schematic of predictions for item-based semantic cuing and context-based semantic cuing, 

after learning a sample list and recalling the sequence “tree”, “cat”, “queen”. In the item-

based semantic cuing model, only the last recalled item, “queen,” is used as a semantic cue, 

resulting in stronger support for the related item “king.” In the context-based semantic cuing 

model, the entire current state of context is used as a semantic cue. Since “cat” is still 

somewhat active in context, it provides additional support for the related item “dog.”
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Figure 3. 
(a) Schematic of recall prediction for one list, in our modeling framework. First, the study 

period is simulated and the model learns the list. Then retrieval is simulated, and the model 

calculates the probability of recalling each of the items, as well as the probability of 

stopping recall. We then record the predicted probability of the observed behavior. If an item 

was recalled, we update the state of the model conditional on that recall. This process is 

repeated until the entire observed recall sequence has been simulated. (b) Schematic 

example of one list with five words. At each step of the recall process, the model makes 

predictions conditional on the observed behavior up to that point.
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Figure 4. 
Measures of recall behavior, for the observed data and for model simulations. Top row: 

Experiment 1; middle row: Experiment 2; bottom row: Experiment 3. (a) Recall probability 

as a function of serial position, for the data from Experiment 1 and the best-fitting model 

with no semantic associations. (b) Probability of starting recall with each serial position. (c) 

Conditional response probability as a function of lag. (d) Stop probability by output 

position. (e–h) Same measures as above, for Experiment 2. (i–l) Experiment 3. Shaded areas 

indicate 95% confidence intervals for the observed data.
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Figure 5. 
Measures of semantic organization, for the observed data and for model simulations. Top 

row: Experiment 1; middle row: Experiment 2; bottom row: Experiment 3. (a) Conditional 

response probability as a function of latent semantic analysis (LSA) semantic similarity bin. 

The line indicates the mean value in the data, and the shaded region represents the 95% 

confidence interval. Also shown is the performance of the LSA-based models. C: context-

based semantic cuing; I: item-based semantic cuing; IC: combined item and context-based 

semantic cuing. (b) Conditional response probability as a function of global vectors (GloVe) 

semantic similarity bin. (c) Conditional response probability as a function word association 

spaces (WAS) semantic similarity bin. (d–f) Conditional response probability by semantic 

similarity bin for Experiment 2. (g–i) Experiment 3.
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Figure 6. 
Examination of persistent effects of semantic information, for the observed data and model 

simulations. (a) Effects of semantic recall context in Experiment 1. Plot shows WAS factor 

calculated based on lag during recall (e.g. WAS score for recall lag of 1 is based on 

similarity to the last recalled item). The models with context-based semantic cuing predict 

that WAS factor will be greater than chance (0.5; indicated by the dotted line) for lags 

greater than 1; however, we did not observe this in the data. (b) Data and model simulations 

for Experiment 2. (c) Experiment 3. Shaded areas indicate 95% confidence intervals for the 

observed data.
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Figure 7. 
Value of the λ parameter for the best-fitting WAS with combined item and context-based 

semantic cuing, for each experiment. (a) In Experiment 1, most participants had values of λ 
of very near to 1, indicating that their recall behavior was more consistent with the item-

based semantic cuing mechanism. (b) In Experiment 2, a substantial subset of participants 

had values of λ that were near to 0, consistent with the context-based semantic cuing 

mechanism. (c) Most participants in Experiment 3 had behavior that was most consistent 

with item-based semantic cuing.
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Table 1

List of model parameters, with a brief description of each.

Parameter Type Parameter Description

Context Updating βenc Rate of context drift during encoding

βdelay Rate of context drift during end-of-list distraction

βstart Amount of start-list context retrieved at start of recall

βrec Rate of context drift during recall

Associative Structure α Initial strength of context-to-item connections

δ Initial strength of the diagonal of MCF

s Scaling of semantic association strengths

γ Amount of experimental context retrieved by a recalled item

ϕs Scaling of primacy gradient in learning rate on MCF

ϕd Rate of decay of primacy gradient

Recall Dynamics τ Sensitivity parameter of the Luce choice rule

θs Scaling of the stop probability over output position

θr Rate of increase in stop probability over output position

J Mem Lang. Author manuscript; available in PMC 2017 March 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Morton and Polyn Page 42

Ta
b

le
 2

A
IC

 w
ei

gh
ts

 f
or

 m
od

el
s 

w
ith

 s
em

an
tic

 s
im

ila
ri

ty
. M

od
el

s 
w

ith
 w

A
IC

 >
 0

.1
 a

re
 d

is
pl

ay
ed

 in
 b

ol
d.

 W
ei

gh
ts

 f
or

 th
e 

ba
se

 m
od

el
 n

ot
 s

ho
w

n 
(E

xp
er

im
en

t 1
: 

6.
40

4e
-4

8;
 E

xp
er

im
en

t 2
: 1

.9
3e

-9
0;

 E
xp

er
im

en
t 3

: 1
.1

4e
-8

9)
. L

SA
: l

at
en

t s
em

an
tic

 a
na

ly
si

s;
 G

lo
V

e:
 g

lo
ba

l v
ec

to
rs

 m
od

el
; W

A
S:

 w
or

d 
as

so
ci

at
io

n 
sp

ac
es

. 

C
: c

on
te

xt
-b

as
ed

 s
em

an
tic

 c
ui

ng
; I

: i
te

m
-b

as
ed

 s
em

an
tic

 c
ui

ng
; I

C
: c

om
bi

ne
d 

ite
m

 a
nd

 c
on

te
xt

-b
as

ed
 s

em
an

tic
 c

ui
ng

.

E
xp

er
im

en
t 

1
E

xp
er

im
en

t 
2

E
xp

er
im

en
t 

3

C
I

IC
C

I
IC

C
I

IC

L
SA

3.
37

e-
40

2.
22

e-
28

8.
39

e-
42

1.
95

e-
52

5.
30

e-
34

4.
20

e-
44

0
0

0

G
lo

V
e

2.
75

e-
21

2.
78

e-
6

7.
38

e-
18

3.
15

e-
11

7.
78

e-
9

2.
41

e-
11

0
1.

33
e-

29
4

2.
68

e-
31

4

W
A

S
6.

72
e-

7
0.

99
99

6.
16

e-
12

3.
87

e-
6

0.
99

99
4.

10
e-

7
3.

90
e-

74
1

4.
01

e-
8

J Mem Lang. Author manuscript; available in PMC 2017 March 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Morton and Polyn Page 43

Ta
b

le
 3

B
es

t-
fi

tti
ng

 p
ar

am
et

er
s 

fo
r 

E
xp

er
im

en
t 1

. R
ep

or
te

d 
va

lu
es

 in
di

ca
te

 a
ve

ra
ge

s 
ov

er
 s

ub
je

ct
s;

 v
al

ue
s 

in
 p

ar
en

th
es

es
 in

di
ca

te
 s

ta
nd

ar
d 

er
ro

r 
of

 th
e 

m
ea

n.
 

R
M

SD
 is

 r
ep

or
te

d 
fo

r 
th

e 
su

m
m

ar
y 

st
at

is
tic

s 
sh

ow
n 

in
 F

ig
ur

e 
4.

 L
SA

: l
at

en
t s

em
an

tic
 a

na
ly

si
s;

 G
lo

V
e:

 g
lo

ba
l v

ec
to

rs
; W

A
S:

 w
or

d 
as

so
ci

at
io

n 
sp

ac
es

. C
: 

co
nt

ex
t-

ba
se

d 
se

m
an

tic
 c

ui
ng

; I
: i

te
m

-b
as

ed
 s

em
an

tic
 c

ui
ng

; I
C

: c
om

bi
ne

d 
ite

m
 a

nd
 c

on
te

xt
-b

as
ed

 s
em

an
tic

 c
ui

ng
.

B
as

e
L

SA
-C

L
SA

-I
L

SA
-I

C
G

lo
V

e-
C

G
lo

V
e-

I
G

lo
V

e-
IC

W
A

S-
C

W
A

S-
I

W
A

S-
IC

β e
nc

0.
72

 (
0.

02
)

0.
72

 (
0.

02
)

0.
71

 (
0.

02
)

0.
72

 (
0.

02
)

0.
71

 (
0.

02
)

0.
69

 (
0.

02
)

0.
70

 (
0.

02
)

0.
72

 (
0.

02
)

0.
70

 (
0.

02
)

0.
71

 (
0.

02
)

β r
ec

0.
87

 (
0.

02
)

0.
88

 (
0.

02
)

0.
86

 (
0.

02
)

0.
87

 (
0.

01
)

0.
89

 (
0.

01
)

0.
84

 (
0.

02
)

0.
85

 (
0.

02
)

0.
89

 (
0.

01
)

0.
86

 (
0.

02
)

0.
87

 (
0.

02
)

β s
ta

rt
0.

18
 (

0.
04

)
0.

19
 (

0.
04

)
0.

18
 (

0.
04

)
0.

18
 (

0.
04

)
0.

20
 (

0.
04

)
0.

22
 (

0.
05

)
0.

22
 (

0.
05

)
0.

19
 (

0.
04

)
0.

19
 (

0.
04

)
0.

19
 (

0.
04

)

α
7.

69
 (

2.
66

)
6.

57
 (

2.
58

)
9.

09
 (

2.
75

)
8.

16
 (

2.
68

)
6.

34
 (

2.
41

)
10

.3
3 

(2
.7

2)
9.

08
 (

2.
70

)
5.

86
 (

2.
37

)
9.

79
 (

2.
96

)
8.

61
 (

2.
90

)

δ
33

.6
0 

(5
.9

6)
34

.9
0 

(6
.3

4)
34

.3
6 

(6
.0

5)
33

.5
9 

(6
.0

5)
33

.9
4 

(6
.2

5)
33

.7
9 

(5
.9

3)
33

.4
7 

(5
.9

8)
33

.7
7 

(6
.2

7)
34

.8
7 

(6
.3

1)
33

.6
4 

(6
.3

2)

γ
0.

17
 (

0.
04

)
0.

16
 (

0.
03

)
0.

20
 (

0.
04

)
0.

18
 (

0.
04

)
0.

15
 (

0.
03

)
0.

22
 (

0.
04

)
0.

18
 (

0.
04

)
0.

16
 (

0.
03

)
0.

21
 (

0.
04

)
0.

18
 (

0.
03

)

λ
–

–
–

0.
84

 (
0.

06
)

–
–

0.
91

 (
0.

04
)

–
–

0.
83

 (
0.

05
)

ϕ s
30

.8
4 

(6
.3

7)
29

.8
2 

(6
.1

7)
27

.8
5 

(6
.0

8)
27

.8
1 

(6
.0

3)
27

.8
2 

(5
.9

3)
20

.3
3 

(5
.1

6)
22

.6
7 

(5
.4

9)
30

.5
3 

(6
.2

3)
27

.3
5 

(6
.0

7)
27

.0
6 

(6
.0

6)

ϕ d
14

.4
8 

(4
.9

6)
13

.3
4 

(4
.6

5)
15

.0
6 

(5
.1

9)
14

.3
9 

(4
.6

6)
13

.5
1 

(4
.7

7)
13

.6
1 

(4
.6

4)
16

.7
6 

(5
.3

6)
16

.1
2 

(5
.2

2)
16

.0
0 

(5
.1

4)
15

.1
3 

(5
.0

5)

s
–

0.
49

 (
0.

12
)

0.
80

 (
0.

20
)

0.
81

 (
0.

19
)

0.
77

 (
0.

20
)

1.
05

 (
0.

19
)

1.
12

 (
0.

22
)

1.
60

 (
0.

31
)

1.
79

 (
0.

35
)

2.
05

 (
0.

42
)

τ
20

.8
6 

(5
.1

1)
16

.8
9 

(4
.6

0)
27

.5
6 

(5
.9

0)
22

.6
7 

(5
.3

3)
17

.2
7 

(4
.3

5)
37

.9
2 

(6
.5

1)
30

.1
8 

(6
.1

5)
16

.1
0 

(4
.1

6)
26

.8
5 

(5
.7

0)
22

.4
4 

(5
.0

8)

θ s
0.

01
 (

0.
00

)
0.

01
 (

0.
00

)
0.

01
 (

0.
00

)
0.

01
 (

0.
00

)
0.

01
 (

0.
00

)
0.

01
 (

0.
00

)
0.

01
 (

0.
00

)
0.

01
 (

0.
00

)
0.

01
 (

0.
00

)
0.

01
 (

0.
00

)

θ r
0.

32
 (

0.
01

)
0.

32
 (

0.
01

)
0.

32
 (

0.
01

)
0.

32
 (

0.
01

)
0.

32
 (

0.
01

)
0.

32
 (

0.
01

)
0.

32
 (

0.
01

)
0.

32
 (

0.
01

)
0.

32
 (

0.
01

)
0.

32
 (

0.
01

)

ln
(L

)
−

28
66

4.
34

−
28

60
0.

32
−

28
57

3.
11

−
28

55
8.

88
−

28
55

6.
78

−
28

52
2.

23
−

28
50

3.
75

−
28

52
3.

65
−

28
50

9.
44

−
28

49
0.

12

A
IC

58
27

1.
28

58
23

2.
82

58
17

8.
40

58
24

0.
21

58
14

5.
73

58
07

6.
63

58
12

9.
94

58
07

9.
47

58
05

1.
04

58
10

2.
67

B
IC

59
88

9.
35

59
99

4.
10

59
93

9.
68

60
14

4.
01

59
90

7.
01

59
83

7.
91

60
03

3.
75

59
84

0.
75

59
81

2.
33

60
00

6.
48

w
A

IC
1.

50
49

3e
-4

8
3.

37
11

8e
-4

0
2.

21
53

3e
-2

8
8.

39
42

8e
-4

2
2.

75
33

1e
-2

1
2.

77
98

7e
-0

6
7.

37
79

4e
-1

8
6.

72
36

3e
-0

7
0.

99
99

97
6.

15
62

4e
-1

2

w
B

IC
1.

88
24

6e
-1

7
3.

37
11

8e
-4

0
2.

21
53

3e
-2

8
9.

44
57

6e
-7

3
2.

75
33

1e
-2

1
2.

77
98

7e
-0

6
8.

30
21

1e
-4

9
6.

72
36

3e
-0

7
0.

99
99

97
6.

92
73

8e
-4

3

R
M

SD
0.

10
93

0.
10

82
0.

10
95

0.
10

97
0.

10
96

0.
10

88
0.

10
76

0.
10

86
0.

10
84

0.
10

86

J Mem Lang. Author manuscript; available in PMC 2017 March 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Morton and Polyn Page 44

Ta
b

le
 4

B
es

t-
fi

tti
ng

 p
ar

am
et

er
s 

fo
r 

E
xp

er
im

en
t 2

. R
ep

or
te

d 
va

lu
es

 in
di

ca
te

 a
ve

ra
ge

s 
ov

er
 s

ub
je

ct
s;

 v
al

ue
s 

in
 p

ar
en

th
es

es
 in

di
ca

te
 s

ta
nd

ar
d 

er
ro

r 
of

 th
e 

m
ea

n.
 

R
M

SD
 is

 r
ep

or
te

d 
fo

r 
th

e 
su

m
m

ar
y 

st
at

is
tic

s 
sh

ow
n 

in
 F

ig
ur

e 
4.

 L
SA

: l
at

en
t s

em
an

tic
 a

na
ly

si
s;

 G
lo

V
e:

 g
lo

ba
l v

ec
to

rs
 m

od
el

; W
A

S:
 w

or
d 

as
so

ci
at

io
n 

sp
ac

es
. C

: c
on

te
xt

-b
as

ed
 s

em
an

tic
 c

ui
ng

; I
: i

te
m

-b
as

ed
 s

em
an

tic
 c

ui
ng

; I
C

: c
om

bi
ne

d 
ite

m
 a

nd
 c

on
te

xt
-b

as
ed

 s
em

an
tic

 c
ui

ng
.

B
as

e
L

SA
-C

L
SA

-I
L

SA
-I

C
G

lo
V

e-
C

G
lo

V
e-

I
G

lo
V

e-
IC

W
A

S-
C

W
A

S-
I

W
A

S-
IC

β e
nc

0.
76

 (
0.

04
)

0.
70

 (
0.

04
)

0.
64

 (
0.

04
)

0.
66

 (
0.

04
)

0.
66

 (
0.

05
)

0.
60

 (
0.

05
)

0.
64

 (
0.

04
)

0.
63

 (
0.

05
)

0.
62

 (
0.

04
)

0.
63

 (
0.

04
)

β r
ec

0.
84

 (
0.

04
)

0.
86

 (
0.

03
)

0.
81

 (
0.

03
)

0.
81

 (
0.

03
)

0.
88

 (
0.

03
)

0.
81

 (
0.

04
)

0.
80

 (
0.

04
)

0.
86

 (
0.

03
)

0.
83

 (
0.

03
)

0.
82

 (
0.

03
)

β d
el

ay
0.

63
 (

0.
07

)
0.

63
 (

0.
07

)
0.

63
 (

0.
07

)
0.

70
 (

0.
07

)
0.

67
 (

0.
07

)
0.

65
 (

0.
07

)
0.

75
 (

0.
06

)
0.

72
 (

0.
06

)
0.

64
 (

0.
07

)
0.

73
 (

0.
06

)

β s
ta

rt
0.

20
 (

0.
05

)
0.

18
 (

0.
04

)
0.

18
 (

0.
04

)
0.

14
 (

0.
03

)
0.

17
 (

0.
04

)
0.

16
 (

0.
03

)
0.

13
 (

0.
03

)
0.

19
 (

0.
04

)
0.

23
 (

0.
05

)
0.

16
 (

0.
04

)

α
4.

17
 (

1.
51

)
5.

74
 (

2.
30

)
7.

23
 (

2.
36

)
7.

65
 (

2.
53

)
6.

20
 (

2.
28

)
10

.9
5 

(3
.6

0)
7.

77
 (

2.
36

)
8.

08
 (

3.
14

)
7.

15
 (

2.
55

)
7.

30
 (

2.
92

)

δ
3.

29
 (

1.
33

)
9.

60
 (

3.
45

)
6.

50
 (

2.
21

)
7.

69
 (

2.
47

)
9.

49
 (

3.
31

)
14

.3
3 

(4
.1

1)
11

.5
8 

(3
.3

9)
14

.2
2 

(4
.1

6)
10

.8
7 

(3
.2

7)
8.

72
 (

3.
16

)

γ
0.

45
 (

0.
05

)
0.

40
 (

0.
05

)
0.

47
 (

0.
05

)
0.

50
 (

0.
05

)
0.

41
 (

0.
05

)
0.

42
 (

0.
05

)
0.

44
 (

0.
05

)
0.

41
 (

0.
05

)
0.

49
 (

0.
06

)
0.

50
 (

0.
05

)

λ
–

–
–

0.
84

 (
0.

05
)

–
–

0.
77

 (
0.

05
)

–
–

0.
64

 (
0.

07
)

ϕ s
46

.7
2 

(6
.5

0)
31

.0
8 

(5
.7

8)
26

.3
1 

(5
.7

6)
20

.2
4 

(5
.2

5)
29

.7
1 

(5
.7

0)
25

.1
1 

(5
.5

3)
18

.3
1 

(4
.8

0)
26

.0
7 

(5
.3

5)
23

.2
0 

(5
.4

4)
23

.2
4 

(5
.3

5)

ϕ d
13

.5
7 

(4
.4

6)
15

.2
7 

(4
.7

4)
12

.5
8 

(4
.4

0)
12

.8
4 

(4
.4

8)
13

.1
7 

(4
.4

3)
11

.7
8 

(4
.3

8)
11

.4
6 

(4
.0

9)
8.

87
 (

3.
42

)
13

.2
6 

(4
.5

0)
9.

77
 (

3.
50

)

s
–

1.
34

 (
0.

57
)

1.
69

 (
0.

66
)

1.
22

 (
0.

40
)

2.
38

 (
1.

07
)

2.
05

 (
0.

89
)

1.
35

 (
0.

45
)

5.
21

 (
2.

42
)

2.
96

 (
1.

31
)

5.
19

 (
2.

49
)

τ
16

.6
2 

(4
.7

9)
25

.5
3 

(5
.7

5)
33

.0
0 

(5
.8

5)
36

.4
8 

(6
.1

8)
32

.8
9 

(6
.1

4)
38

.9
3 

(6
.0

5)
41

.8
2 

(6
.3

0)
26

.6
5 

(5
.5

0)
29

.5
0 

(5
.6

2)
27

.8
6 

(5
.6

8)

θ s
0.

01
 (

0.
00

)
0.

01
 (

0.
00

)
0.

01
 (

0.
00

)
0.

01
 (

0.
00

)
0.

01
 (

0.
00

)
0.

01
 (

0.
00

)
0.

01
 (

0.
00

)
0.

01
 (

0.
00

)
0.

01
 (

0.
00

)
0.

01
 (

0.
00

)

θ r
0.

42
 (

0.
02

)
0.

42
 (

0.
02

)
0.

42
 (

0.
02

)
0.

42
 (

0.
02

)
0.

42
 (

0.
02

)
0.

42
 (

0.
02

)
0.

42
 (

0.
02

)
0.

42
 (

0.
02

)
0.

42
 (

0.
02

)
0.

42
 (

0.
02

)

ln
(L

)
−

24
49

0.
10

−
24

34
8.

81
−

24
30

6.
36

−
24

27
5.

35
−

24
25

3.
93

−
24

24
8.

42
−

24
19

9.
92

−
24

24
2.

21
−

24
22

9.
74

−
24

19
0.

18

A
IC

50
19

9.
31

50
02

4.
30

49
93

9.
40

49
98

5.
92

49
83

4.
52

49
82

3.
51

49
83

5.
06

49
81

1.
08

49
78

6.
16

49
81

5.
57

B
IC

52
14

7.
08

52
12

8.
42

52
04

3.
52

52
24

5.
40

51
93

8.
64

51
92

7.
62

52
09

4.
54

51
91

5.
20

51
89

0.
28

52
07

5.
05

w
A

IC
1.

92
94

5e
-9

0
1.

94
52

4e
-5

2
5.

30
20

4e
-3

4
4.

20
46

7e
-4

4
3.

14
94

3e
-1

1
7.

77
67

9e
-0

9
2.

41
32

1e
-1

1
3.

87
33

5e
-0

6
0.

99
99

96
4.

10
21

1e
-0

7

w
B

IC
1.

71
81

7e
-5

6
1.

94
52

4e
-5

2
5.

30
20

4e
-3

4
7.

71
23

e-
78

3.
14

94
3e

-1
1

7.
77

67
9e

-0
9

4.
42

63
6e

-4
5

3.
87

33
5e

-0
6

0.
99

99
96

7.
52

41
8e

-4
1

R
M

SD
0.

09
82

0.
09

91
0.

09
84

0.
09

82
0.

09
88

0.
09

74
0.

09
84

0.
09

78
0.

09
81

0.
09

78

J Mem Lang. Author manuscript; available in PMC 2017 March 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Morton and Polyn Page 45

Ta
b

le
 5

B
es

t-
fi

tti
ng

 p
ar

am
et

er
s 

fo
r 

E
xp

er
im

en
t 3

. R
ep

or
te

d 
va

lu
es

 in
di

ca
te

 a
ve

ra
ge

s 
ov

er
 s

ub
je

ct
s;

 v
al

ue
s 

in
 p

ar
en

th
es

es
 in

di
ca

te
 s

ta
nd

ar
d 

er
ro

r 
of

 th
e 

m
ea

n.
 

R
M

SD
 is

 r
ep

or
te

d 
fo

r 
th

e 
su

m
m

ar
y 

st
at

is
tic

s 
sh

ow
n 

in
 F

ig
ur

e 
4.

 L
SA

: l
at

en
t s

em
an

tic
 a

na
ly

si
s;

 G
lo

V
e:

 g
lo

ba
l v

ec
to

rs
 m

od
el

; W
A

S:
 w

or
d 

as
so

ci
at

io
n 

sp
ac

es
. C

: c
on

te
xt

-b
as

ed
 s

em
an

tic
 c

ui
ng

; I
: i

te
m

-b
as

ed
 s

em
an

tic
 c

ui
ng

; I
C

: c
om

bi
ne

d 
ite

m
 a

nd
 c

on
te

xt
-b

as
ed

 s
em

an
tic

 c
ui

ng
.

B
as

e
L

SA
-C

L
SA

-I
L

SA
-I

C
G

lo
V

e-
C

G
lo

V
e-

I
G

lo
V

e-
IC

W
A

S-
C

W
A

S-
I

W
A

S-
IC

β e
nc

0.
83

 (
0.

01
)

0.
72

 (
0.

02
)

0.
70

 (
0.

02
)

0.
71

 (
0.

02
)

0.
70

 (
0.

02
)

0.
67

 (
0.

02
)

0.
70

 (
0.

02
)

0.
69

 (
0.

02
)

0.
69

 (
0.

02
)

0.
71

 (
0.

02
)

β r
ec

0.
86

 (
0.

01
)

0.
90

 (
0.

01
)

0.
80

 (
0.

01
)

0.
81

 (
0.

01
)

0.
91

 (
0.

01
)

0.
79

 (
0.

02
)

0.
81

 (
0.

01
)

0.
91

 (
0.

01
)

0.
80

 (
0.

02
)

0.
80

 (
0.

01
)

β s
ta

rt
0.

23
 (

0.
03

)
0.

28
 (

0.
03

)
0.

27
 (

0.
03

)
0.

26
 (

0.
03

)
0.

30
 (

0.
03

)
0.

26
 (

0.
03

)
0.

26
 (

0.
03

)
0.

32
 (

0.
03

)
0.

28
 (

0.
03

)
0.

28
 (

0.
03

)

α
3.

90
 (

0.
75

)
3.

63
 (

0.
58

)
9.

30
 (

1.
27

)
7.

76
 (

1.
26

)
4.

98
 (

0.
72

)
13

.9
4 

(1
.5

7)
10

.4
6 

(1
.1

0)
3.

83
 (

0.
53

)
7.

24
 (

1.
06

)
6.

35
 (

0.
93

)

δ
34

.8
8 

(3
.5

3)
37

.6
5 

(3
.4

7)
32

.3
1 

(3
.3

0)
30

.7
4 

(3
.3

2)
40

.0
3 

(3
.6

3)
33

.9
5 

(3
.1

6)
31

.9
8 

(3
.1

9)
40

.0
2 

(3
.6

6)
32

.7
9 

(3
.3

7)
32

.0
0 

(3
.3

3)

γ
0.

22
 (

0.
03

)
0.

19
 (

0.
03

)
0.

28
 (

0.
03

)
0.

26
 (

0.
03

)
0.

18
 (

0.
02

)
0.

29
 (

0.
03

)
0.

27
 (

0.
03

)
0.

18
 (

0.
02

)
0.

25
 (

0.
03

)
0.

24
 (

0.
03

)

λ
–

–
–

0.
91

 (
0.

02
)

–
–

0.
95

 (
0.

02
)

–
–

0.
81

 (
0.

03
)

ϕ s
37

.2
4 

(3
.7

4)
25

.9
2 

(3
.2

9)
19

.9
4 

(2
.9

0)
20

.1
0 

(2
.9

0)
23

.1
9 

(3
.1

4)
18

.4
8 

(2
.8

4)
19

.6
5 

(2
.9

5)
22

.2
2 

(3
.0

7)
22

.0
2 

(3
.0

1)
22

.6
8 

(3
.0

8)

ϕ d
14

.6
9 

(2
.8

2)
14

.2
1 

(2
.8

5)
10

.9
1 

(2
.5

1)
8.

07
 (

2.
06

)
12

.9
8 

(2
.6

8)
11

.1
6 

(2
.5

2)
10

.7
0 

(2
.4

5)
15

.4
1 

(2
.9

9)
14

.6
3 

(2
.9

5)
13

.0
2 

(2
.7

3)

s
–

1.
00

 (
0.

08
)

1.
95

 (
0.

28
)

1.
80

 (
0.

20
)

1.
77

 (
0.

42
)

2.
52

 (
0.

37
)

3.
25

 (
0.

87
)

1.
27

 (
0.

11
)

2.
27

 (
0.

61
)

2.
03

 (
0.

30
)

τ
21

.5
0 

(3
.3

2)
29

.3
2 

(3
.6

2)
51

.3
9 

(4
.0

4)
43

.5
5 

(3
.9

8)
34

.6
7 

(3
.7

8)
68

.1
1 

(3
.8

4)
57

.0
2 

(3
.9

6)
27

.8
3 

(3
.4

3)
36

.6
2 

(3
.7

6)
34

.1
8 

(3
.6

8)

θ s
0.

01
 (

0.
00

)
0.

01
 (

0.
00

)
0.

01
 (

0.
00

)
0.

01
 (

0.
00

)
0.

01
 (

0.
00

)
0.

01
 (

0.
00

)
0.

01
 (

0.
00

)
0.

01
 (

0.
00

)
0.

01
 (

0.
00

)
0.

01
 (

0.
00

)

θ r
0.

42
 (

0.
01

)
0.

42
 (

0.
01

)
0.

42
 (

0.
01

)
0.

42
 (

0.
01

)
0.

42
 (

0.
01

)
0.

42
 (

0.
01

)
0.

42
 (

0.
01

)
0.

42
 (

0.
01

)
0.

42
 (

0.
01

)
0.

42
 (

0.
01

)

ln
(L

)
−

55
60

8.
13

−
54

65
9.

31
−

54
39

4.
66

−
54

30
0.

50
−

54
33

5.
26

−
53

99
9.

59
−

53
90

2.
58

−
53

49
1.

95
−

53
32

2.
92

−
53

19
7.

59

A
IC

11
41

47
.9

6
11

25
32

.3
1

11
20

03
.0

1
11

20
99

.4
1

11
18

84
.2

1
11

12
12

.8
7

11
13

03
.5

8
11

01
97

.5
8

10
98

59
.5

2
10

98
93

.5
9

B
IC

11
87

20
.5

3
11

75
05

.1
0

11
69

75
.8

0
11

74
69

.6
8

11
68

56
.9

9
11

61
85

.6
6

11
66

73
.8

4
11

51
70

.3
7

11
48

32
.3

1
11

52
63

.8
5

w
A

IC
0

0
0

0
0

1.
33

19
e-

29
4

2.
67

74
3e

-3
14

3.
90

11
7e

-7
4

1
4.

00
50

1e
-0

8

w
B

IC
0

0
0

0
0

1.
33

19
e-

29
4

0
3.

90
11

7e
-7

4
1

1.
95

91
4e

-9
4

R
M

SD
0.

09
59

0.
09

72
0.

09
71

0.
09

78
0.

09
81

0.
09

67
0.

09
72

0.
09

68
0.

09
67

0.
09

58

J Mem Lang. Author manuscript; available in PMC 2017 March 20.


	Abstract
	Introduction
	Measurement of semantic organization
	Simulating influences on recall organization
	A predictive framework for evaluating models of recall organization

	Methods
	Experiment 1
	Participants
	Stimuli and Procedure

	Experiment 2
	Participants
	Stimuli and Procedure

	Experiment 3
	Participants
	Stimuli and Procedure

	Models of semantic associations
	Model of memory search
	Likelihood calculation
	Model comparison
	Analysis of recall behavior
	Formal description of the CMR model
	Item-based semantic cuing

	Results
	Serial position effects and temporal organization
	Model comparison
	Exclusion of recall errors
	Semantic organization
	Testing for persistence of semantic influence
	Individual differences in semantic cuing

	Discussion
	Models of semantic association strength
	Mechanisms of semantic cuing
	Measurement of semantic organization
	Conclusions

	References
	Appendix
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5

