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ABSTRACT

Lysyl oxidase (LOX) catalyzes the oxidative deamination of lysine residues in collagen and elastin,
key components of connective tissue. LOX is synthesized as an inactive 50 kD pre-proenzyme, and
secreted to the extracellular matrix where it is cleaved into an active 32 kD LOX, and an 18kD free
propeptide (LOX-PP), purportedly an inhibitor of fibroblast growth factor-2 (FGF-2) signaling. Given
that adipocytes are distributed inside the connective tissue, it is likely that LOX-PP has an important
regulatory role in adipogenesis, which has not been studied. Using NIH 3T3-L1 cells, we observed
that FGF-2 inhibited adipogenesis, and LOX-PP promoted adipogenesis of 3T3-L1 cells in the
presence of FGF-2; the expression of peroxisome proliferator-activated receptor (PPAR) y and
CCAAT-enhancer binding protein (C/EBP) «, two markers of adipogenesis, were enhanced in the
presence of LOX-PP. We further observed that LOX-PP down-regulated AKT and ERK1/2, two
proliferative signaling proteins down-stream of FGF-2 signaling. Similarly, inhibition of FGF-2
receptor signaling by canofin, a competitive inhibitor of FGF-2 receptor, promoted adipogenesis
albeit less effective compared to LOX-PP. To further explore whether LOX-PP promoted
adipogenesis through inhibition of FGF-2 signaling, site directed mutagenesis of LOX-PP, resulting
in an Arg158 to GIn158 mutation which abolishes the inhibitory activity of LOX-PP to FGF-2
receptor, attenuated the adipogenic promoting properties of LOX-PP. In summary, for the first time,
our data show that LOX-PP enhances adipogenesis at least partially through inhibition of FGF-2
receptor signaling. Our data suggest that LOX-PP may serve as a bona fide therapeutic target for
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regulating adipogenesis and adipose tissue development.

Introduction

Obesity is a serious health problem that results from
both hypertrophy (increase in size) and hyperplasia
(increase in number) of adipocytes leading to more seri-
ous diseases such as type II diabetes, coronary heart dis-
ease, and hypertension." By 2050 it is speculated that
58% of Americans may be obese.” Considering the cur-
rent obesity epidemic, it is critical to define mechanisms
governing adipogenesis. Adipocytes are imbedded inside
connective tissues. As a result, a local niche environment
of connective tissue likely to have critical regulatory roles
in adipogenic differentiation.” Lysyl Oxidase (LOX) is a
copper dependent enzyme that is secreted as a N-glyco-
sylated, inactive pre-protein and then cleaved into a
functional 32 kD enzyme (LOX) and an 18 kD propep-
tide (LOX-PP).* LOX catalyzes the cross-linking of lysine
residues in collagen and elastin, strengthening the extra-
cellular matrix.” In NIH 3T3-L1 fibroblasts, LOX inhib-
ited the tumorigenic phenotype of ras-transformed cells

and was thus named the ras-recision gene.® Recently, the
tumor inhibiting properties of LOX was mapped to the
162 amino acid LOX-PP domain where it inhibited ras-
dependent transformation in NIH 3T3-L1 cells.” Later, it
was found that LOX-PP inhibits ERK1/2 signaling and
subsequent proliferation of osteoblasts by blocking FGF-
2 autocrine signaling.® Also, LOX-PP inhibits FGF-2
induced ERK1/2 and AKT signaling pathways in DU
145 prostate cancer cells.” These data suggest that LOX-
PP inhibits FGF-2 signaling.

As a critical growth factor, FGF-2 promotes cell sur-
vival and proliferation.'’ The effect of FGF-2 on adipo-
genesis has been controversial, though most data point
towards FGF-2 as having an inhibitory effect on adipo-
genesis.'' "> Because LOX-PP inhibits FGF-2 signaling,
we hypothesized that LOX-PP promotes adipogenic dif-
ferentiation via inhibition of FGF-2 signaling. Here we
report that LOX-PP up-regulates adipogenesis, at least
partially through inhibition of FGF-2 signaling in
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differentiating pre-adipocytes; a point mutation of LOX-
PP (Arg 152 to Glu 152), which is required to inhibit
FGF-2 receptor, abolished the enhancing effect of LOX-
PP on adipogenesis.

Methods
Cell culture

The NIH 3T3-L1 cells were grown in Dulbecco’s modified
Eagle’s medium (DMEM) supplemented with 10% fetal
bovine serum and 1% antibiotics at 37°C. Two days after
reaching confluency, adipogenic differentiation was
induced using a standard cocktail (1 pg/ml insulin, 0.1 g/
ml dexamethazone, 27.8 ug/ml isobutylmethylaxanthine
and 10 .M troglitazone) as previously described."*

Cloning LOX-PP and site directed mutagenesis of Arg
152 to Glu 152

Total RNA was isolated from mature 3T3-L1 cells using the
Trizol method and reverse transcribed using the QuantiTect
Reverse Transcription Kit (Qiagen, Valencia, CA). The
DNA sequence encoding LOX-PP was amplified using for-
ward primer: CCCAAGCTTTCAATACGGTGAAATTG
TGCAGCCTGAGGCATA, and reverse primer: CCCAA
GCTTGCCCACCATGCGATCTATGTG.  Then, the
amplicon was cloned into pCMV vector following digestion
with BglIl and Hind III (New England Biolabs, Ipswich,
MA) resulting in a vector construct named PP-WT.

Site directed mutagenesis was performed using the
PrimeSTAR® HS DNA Polymerase kit (Mountain
View, CA) with forward primer: CGCAGCTCAG-
TAATCTGCAGCCACCCAGCCACATA, and reverse
primer: TATGTGGCTGGGTGGCTGCAGATTACT-
GAGCTGCG, which resulted in the substitution of
Arg 152 to Gln 152, and the resulting vector construct
named PP-PM.

Transfection of 3T3-L1 cells with PP-WT, PP-PM and
the empty pCMV vector (V) was conducted using the
Turbofect transfection reagent according to the manual
instruction (Fermentas, Glen Burnie, MD).

Preparation of recombinant LOX-PP

LOX-PP ¢cDNA was amplified with a forward primer:
CCCAAGCTTGCCCCGCAGACCCCGC, and a reverse
primer: GGAATTCGCCCACCATGCGATCTATGTGGC.
The amplicon was cloned into pFLAG bacterial expression
vector. The pFlag-LOX-PP vector was transfected into E.
coli and 500 M IPTG was used to induce expression. To
purify LOX-PP, cells were lysed and the supernatant was
collected. The recombinant LOX-PP containing Flag was
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purified using anti-pFLAG resin (Sigma Aldrich, St. Louis,
MO). The purity of prepared LOX-PP was confirmed by
Western blot analysis using anti-FLAG antibody, where a
single 18 kD band was observed.

Immunoblotting analysis

Antibodies against B-tubulin and PPARy were pur-
chased from Cell Signaling (Danvers, MA). IRDye
800CW goat anti-rabbit secondary antibody and IRDye
680 goat anti-mouse secondary antibody were purchased
from Li-COR Biosciences (Lincoln, NE).

Proteins were separated by electrophoresis and trans-
ferred onto nitrocellulose membrane which was blotted
with anti-PPARy and anti-g-tubulin antibodies at
1:1000 dilution in 1:1 PBST/Odyssey blocking buffer.
The image was visualized on Odyssey infrared imaging
system. Band intensity was normalized according to
B-tubulin content.'®

Oil-Red O staining

3T3-L1 cells were seeded at 100% confluency, and puri-
fied PP was administered at 0, 1, 2, 4, or 8 ug/ml in the
presence of 5 ng/ml FGF-2 and standard adipogenic
cocktail as previously described.'® After 14 days of differ-
entiation, cells were stained with Oil-Red O following the
standard procedure.'® Briefly, cells were fixed in 4% para-
formaldehyde for 10 min at room temperature, rinsed
with 60% ethanol and stained with 0.2% (w/v) Oil-Red O
in 60% ethanol (Sigma Aldrich) as described previ-
ously.17 Then, cells were destained with 60% ethanol for
5 min and used for microscopic observation. In addition,
stained Oil-Red O was solubilized by 100% ethanol and
used for spectrometry analysis of absorbance at 520 nm.

Cell proliferation

Cell proliferation was measured using the 3-(4,5-Dime-
thylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
method according to the manual instruction of the kit
(Invitrogen, Grand Island, NY). The absorbance was mea-
sured at 570 nm on the Synergy H1 hybrid Reader (Bio-
Tek, Winooski, VT).

Statistical analysis

Data were analyzed as a complete randomized design
using GLM (General Linear Model of Statistical Analysis
System, SAS, 2000). The differences in the mean values
were compared by the Tukey’s multiple comparison, and
mean =+ standard errors of mean (SEM) were reported.
Statistical significance was considered as P < 0.05.
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Results

LOX-PP abolishes the inhibitory effects of FGF-2 on
adipogenesis

FGF-2 (0-5 ng/ml) was added to 3T3-L1 cells together
with the standard adipogenic cocktail to induce adipo-
genesis. FGF-2 at 1 and 5 ng/ml clearly reduced the
expression of PPARy, and the 5 ng/ml dose was used for
the subsequent experiments (Fig. 1A).

To test the role of LOX-PP in adipogenesis, we cloned
and purified LOX-PP. Recombinant LOX-PP was used to
treat 3T3-L1 cells, and the presence of lipid droplets in
differentiated 3T3-L1 cells were analyzed by Oil-Red O
staining. The 3T3-L1 cells were treated with different
doses of purified LOX-PP in the presence of 5 ng/ml
FGF-2. Purified LOX-PP dose dependently increased the
lipid content of differentiated 3T3-L1 cells, with 4 to
8 uM PP completely abolished the inhibitory effect of
FGF-2 on adipogenesis (Fig. 1B).

LOX-PP blocks FGF-2 signaling which promotes
adipogenesis
Purified LOX-PP (0-8 pg/ml) together with 5 ng/ml

FGF-2 was added to confluent 3T3-L1 cells. ERK1/2 and
AKT are crucial signaling mediators downstream of FGF-

2 signaling. Indeed, FGF-2 induced phosphorylation of
ERK1/2 and AKT, and the addition of purified LOX-PP
dose dependently down-regulated AKT and ERK1/2 phos-
phorylation (Fig. 2A). Consistently, the proliferation of
3T3-L1 cells was reduced by LOX-PP (Fig. 2B).

To further test the role of FGF-2 receptor in mediat-
ing the effect of LOX-PP on cell proliferation, we used a
FGF-2 antagonist, canofin. Canofin is a peptide, which
competitively inhibits FGF-2 receptor signaling in neu-
rons.'® Confluent 3T3-L1 cells were treated with 8 ug
LOX-PP or 2.3 uM canofin in the presence of 5 ng/ ml
FGF-2."” Both LOX-PP and canofin blocked FGF-2 sig-
naling as determined by reduction in AKT phosphoryla-
tion, with LOX-PP more potent than canofin (Fig. 3A).
Consistently, both LOX-PP and canofin enhanced
PPARy expression and adipogenesis (Fig. 3B)

Nulling the inhibition of LOX-PP on FGF-2 signaling
abolishes its promontory effect on adipogenesis

A naturally occurring polymorphism (Arg 152 to Glu
152) in LOX-PP promotes breast cancer development,
and this polymorphism was later found to abolish its
inhibitory effect of LOX-PP on FGF-2 receptor and its
downstream signaling."® To further evaluate whether
LOX-PP promotes adipogenesis through inhibition of
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Figure 1. Lysyl oxidase propeptide (LOX-PP) abolished the inhibitory effect of FGF-2 on adipogenesis in 3T3-L1 cells. (A). FGF-2 dose
dependently inhibited adipogenesis of 3T3-L1 cells. FGF-2 was added to confluent 3T3-L1 cells at concentrations between 1 to 5 ng/ml
in the presence of a adipogenic cocktail; (B). LOX-PP dose dependently abolished the inhibitory effects of FGF-2 (5 ng/ml) on adipogene-

sis. (Means & SEM; *P < 0.05; **P < 0.01)
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Figure 2. Lysyl oxidase propeptide (LOX-PP) inhibited phosphorylation of ERK1/2 and AKT, two key mediators of FGF-2 receptor signal-
ing. (A) LOX-PP dose dependently inhibited ERK1/2 phosphorylation; (B) LOX-PP dose dependently inhibited AKT phosphorylation; (C)
LOX-PP inhibited the prolifreative response of 3T3-L1 cells induced by FGF-2 treatment. (Means =+ SEM; *vs. cells without FGF-2 and
LOX-PP treatments, P < 0.05; #vs. cells with 5 ng/ml FGF-2 without LOX-PP, P < 0.05).

FGF-2 signaling, we cloned LOX-PP into a mammalian
expression vector, and induced a point mutation (Arg 152
to Glu 152) to abolish the inhibitory function of LOX-PP
on FGF-2 receptor. 3T3-L1 cells were transfected with
PP-WT, PP-PM, and empty pCMV Vector (V), and cells
were allowed to differentiate for 3 days. Although trans-
fection of the pCMV vector alone dramatically reduced
PPARy and C/EBPu expression, transfection of LOX-PP
restored their signals, while transfected with PP-PM did
not (Fig. 4), demonstrating the necessity of FGF-2 signal-
ing in promotion of adipogenesis by LOX-PP.

Discussion

FGF2 promotes cell proliferation and inhibits
adipogenesis

FGF2 is one of the major molecular triggers for cell pro-
liferation, and appears to mainly target cells with

proliferation capacity including stem cells, fibroblasts
and adipogenic progenitor cells.”>*' FGF2 is critical for
stimulating embryonic development when undifferenti-
ated stem cells and progenitor cells are abundant.***'
During the postnatal stage, however, FGF2 are critical
for wound healing and angiogenesis, where extensive
proliferation of fibroblasts and progenitor cells are
needed.”*** FGF2 stimulates cell proliferation through
enhancing both ERK1/2 and AKT signaling pathways,
which are critical for cell proliferation and protein syn-
thesis respectively.**

Despite extensive studies about the role of FGF2 in
cell proliferation, its role in cell differentiation has been
poorly explored. We speculated that FGF2 inhibits adi-
pogenesis. Indeed, we observed that FGF2 dose depen-
dently inhibits adipogenesis, which is consistent with an
earlier report where FGF2 inhibited adipogenic difteren-
tiation and phenotypic maintenance in TA1 cells.”



16 J.D. GRINER ET AL.

A  Treatment - - PP  Canofin
FGF-2 (5 ng) - + + +
Phospho-AKT | SR S— T
Total-AKT | i SR S— —
B-Tubulin | Sy S T W
0.7 1 P-AKT
0.6 -
G 0.5 o L
3
= 04 -
£
£ 0.3 -
b
< 0.2
b ﬁ
0
Treatment % - Canofin
FGF-2 (5 ng) - + + +

B Treatment = - PP Canofin

FGF-2 (5 ng) - + + +

PPARY Lf -é-l

B-Tubulin |-_ G #l

1.4 - PPARY
* %
1.2 4 1
i 1 4 % %
=
2 0.8 -
-
o 0.6 -
s !
] 0.4
0.2 - **
0
Treatment - - PP Canofin
FGF-2 (5 ng) - - + +

Figure 3. Canofin and Lysyl oxidase propeptide (LOX-PP) similarly inhibited AKT phosphorylation and promoted PPARy expression. (A)
LOX-PP and canofin, a peptide competitive inhibitor of FGF-2 receptor, inhibited AKT signaling; (B) LOX-PP and canofin abolished the
inhibitory effects of FGF-2 on PPARy expression. (Means & SEM; **P < 0.01)

LOX-PP inhibits FGF2 signaling and promotes
adipogenesis

To date, studies with LOX-PP have been focused on its
tumor suppressing properties and anti-proliferative
effects. Initially, the anti-proliferative effects were con-
tributed to LOX, not the LOX-PP, because LOX oxidizes
FGF-2 receptor to inhibit downstream signaling path-
ways stimulating cell proliferation.”® Then, the tumor
inhibiting properties of LOX was mapped to the LOX-
PP domain which inhibited ras-dependent transforma-
tion in NIH 3T3-L1 cells.” LOX-PP reduces tumor
growth in both pancreatic and lung cancers through
inhibition of ERK1/2 and AKT, down-stream effectors of
FGF-2 signaling,”” and was further shown to inhibit
smooth muscle cell proliferation by reducing ERK1/2
signaling.”® In cancer cell lines, accumulating evidence
show that the anti-proliferative effects of LOX-PP is via
blocking FGF-2 signaling at the level of the receptor.®’
Although it is known that LOX-PP inhibits FGF-2 recep-
tor signaling, the physiological effects of this inhibition,
beyond proliferation remains unexplored.

Here we show that LOX-PP inhibits ERK1/2 and AKT
activation by inhibiting FGF-2 receptor signaling in
developing adipocytes. Our data are further supported
with a competitive inhibitor of FGF2 receptor, canofin.
We have shown that LOX-PP is a potent inhibitor of
FGF-2 receptor similar with canofin. Our results indicate

that LOX-PP inhibits ERK1/2 and at the same time pro-
motes adipogenesis, likely by blocking FGF-2 receptor
signaling. This is consistent with the report that ERK1/2
inhibits adipogenesis by directly phosphorylating PPARy
(Rosen et al., 2000). ERK1/2 must be attenuated to pre-
vent PPARy phosphorylation (Hu et al., 1996). Thus,
LOX-PP could promote adipogenesis through inhibition
of ERK1/2.

LOX-PP mutation abolishing its inhibitory effect on
FGF2 signaling promotes adipogenesis

To further establish the role of LOX-PP as an inhibitor of
FGF2 signaling, we conducted a mutation in LOX-PP. In
studies with cancer patients, a single nucleotide polymor-
phism (SNP) (rs1800449) of LOX-PP was identified,
which results in an Argl58GlIn substitution at the allele
(G483A). This mutation occurs at a high frequency in
estrogen receptor-a-negative breast cancer cells'
as in patients with gastric cancer in South Koreans.”
Consistently, the LOX-PP G483A SNP abolishes its
inhibitory role of FGF2 receptor and the anti-prolifer-
ative properties of LOX-PP in breast cancer cells."” How-
ever, this polymorphism has not been studied in
developing adipocytes. Here, we report that the LOX-PP
SNP, which removes its ability to inhibit FGF2 signaling,
attenuates the pro-adipogenic effect of LOX-PP, clearly
showing that LOX-PP promotes adipogenesis via

as well
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Figure 4. Point mutation of lysyl oxidase propeptide (LOX-PP)
abolished its promotion effects on adipogenesis. (A) Over-expres-
sion of wild-type (WT) or mutated (Arg 152 to Glu) LOX-PP on
PPARy expression; (B) Over-expression of wild-type (WT) or
mutated (PM, Arg 152 to Glu) LOX-PP on PPARy expression. 3T3-
L1 cells were transfected with control pCMV vector (V), WT vec-
tor, or PM vector with or without 5 ng/ml FGF-2. (Means + SEM;
P < 0.01)

inhibition of FGF2 signaling. Interesting, it has been
reported that FGF-2 up-regulates LOX expression.”
Thus, LOX-PP production forms a feedback inhibition
on FGF-2 signaling.

Implication of LOX-PP in adipogenic differentiation
and obesity

We have determined that LOX-PP, not LOX, promotes
adipogenesis of 3T3-L1 pre-adipocytes and thus regulates
adipocyte differentiation, which is likely linked to obesity.
Huang et al. (2009) reports that expression of LOX is
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induced by Bone Morphogenic Protein 2 and 4 (BMP2
and BMP4) during the commitment phase of adipogenesis
and knockdown of LOX expression negatively effects adi-
pogenic commitment.>’ Our study further demonstrates
that the effect of LOX on adipogenesis induced by BMP2
and 4 is through LOX-PP; as a part of LOX pre-propep-
tide, its expression contingent on LOX expression. Thus,
LOX-PP is likely a prime candidate for a physiological
link between adipogenic commitment, and adipocyte
hyperplasia during obesity.

It has recently been reported that high glucose triggers
LOX expression in rat retinal endothelial cells similar to the
up-regulation of LOX in diabetic retinas.’® Thus, given that
LOX-PP promotes adipogenesis, it is very likely that the
increased expression of LOX, accompanied by LOX-PP, due
to high glucose conditions seen in diabetic patients, is par-
tially responsible for the high adiposity in multiple tissues.
Adipocytes are embedded inside connective tissue. Similar
to its role in adipogenesis, FGF-2 signaling also inhibit colla-
gen synthesis and fibrosis.”>** Thus LOX-PP may also pro-
mote collagenous protein synthesis, in addition to its effect
on adipogenesis. These data implicate LOX-PP as a bona
fide therapeutic target for regulating adipose and associated
connective tissue development induced due to inflamma-
tion or other pathophysiological changes.

Conclusion

In this study, we observe that FGF-2 inhibited adipogen-
esis, and LOX-PP promoted adipogenesis in 3T3-L1
cells. Site directed mutagenesis of LOX-PP, which abol-
ishes the inhibitory activity of LOX-PP, attenuated the
adipogenic promoting properties of LOX-PP. In sum-
mary, for the first time, our data show that LOX-PP
enhances adipogenesis through inhibition of FGF-2
receptor signaling. Our data suggest that LOX-PP may
serve as a bona fide therapeutic target for regulating adi-
pogenesis and adipose tissue development.

Abbreviations

AKT protein kinase B

C/EBPa CCAAT-enhancer binding protein

ERK1/2 extracellular signal-regulated protein kinases 1
and 2

FGF-2  fibroblast growth factor-2

IPTG Isopropyl g-D-1-thiogalactopyranoside

PP lysyl oxidase propeptide

PM point mutation

PPARy peroxisome proliferator-activated receptor

\% vector only

WT wild-type
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