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Abstract

Palliative surgery for congenital heart disease has allowed patients with previously lethal heart 

malformations to survive and, in most cases, to thrive. However, these procedures often place 

pressure and volume loads on the heart, and over time these chronic loads can cause heart failure. 

Current therapeutic options for initial surgery and chronic heart failure that results from failed 

palliation are limited, in part, by the mammalian heart’s low inherent capacity to form new 

cardiomyocytes (CMs). Surmounting the heart regeneration barrier would transform the treatment 

of congenital, as well as acquired, heart disease, and likewise would enable development of 

personalized, in vitro cardiac disease models. Although these remain distant goals, studies of heart 

development are illuminating the path forward and suggest unique opportunities for heart 

regeneration, particularly in fetal and neonatal periods. Here we review major lessons from heart 

development that inform current and future studies directed at enhancing cardiac regeneration.
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Introduction

Since Robert Gross inaugurated pediatric cardiac surgery in 1938 and since the advent of 

open heart surgery on cardiopulmonary bypass in the 1950s, mortality from congenital heart 

disease has plummeted. However, many of the more complex forms of congenital heart 

disease still cannot be physiologically corrected; rather, patients are surgically palliated, 

permitting survival but leaving significant residual cardiac pressure and volume loads. Over 

time, these patients are at risk for heart failure and some ultimately require heart 

transplantation.

A major biological factor that constrains treatment options for congenital heart disease 

patients, as well as adults with acquired heart disease, is the limited ability of mature 

mammalian cardiomyocytes (CMs) to proliferate. The low innate regenerative capacity of 

the heart narrows initial treatment strategies as well as the therapeutic options for 

maximizing the longevity of pressure- or volume-loaded hearts. Overcoming this barrier by 

developing methods to engineer new myocardium or to regenerate injured myocardium 

would transform the management of congenital heart disease patients who are confronted 

primarily by declining pump function.

Not long ago, this vision of cardiac regeneration was confined to science fiction; however, 

expanding mechanistic understanding of heart formation and development achieved over the 

past decades has enabled cardiac biologists to make significant inroads into the challenge of 

therapeutic heart regeneration. In this Compendium article, we review the key signaling 

pathways and transcriptional regulators that govern cardiogenesis from gastrulation through 

the formation of cardiac mesoderm to the specification of CMs. We go on to review 

mechanisms that control CM proliferation and maturation. We highlight recent studies that 

exemplify redeployment of developmental signaling pathways to further the goals of cardiac 

regeneration and discuss further challenges that must be overcome for achieving success in 

myocardial regeneration. This review is focused on myocardial regeneration. Due to space 

limitations, we do not address valve and pulmonary vascular disease, additional important 

problems faced by some palliated congenital heart disease patients that will need to be 

corrected to make regenerative approaches viable for the full spectrum of congenital heart 

disease.

Development of the cardiac mesoderm

Mesodermal Commitment from Epiblast

During gastrulation, the developing embryo reorganizes itself into three primary germ 

layers: the ectoderm, mesoderm, and endoderm. CMs are derived from the mesoderm that 

forms during early development. Besides the heart, the mesoderm also gives rise to skeletal 

muscle, bones, blood and other tissues1. It has been recognized that molecular signaling and 
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cell-to-cell interactions between germ layers play significant roles in mesoderm induction 

and cardiac differentiation.

At embryonic day 5 (E5) in the mouse, the embryo exhibits an elongated cylinder shape that 

is divided into two portions—the proximal and distal regions. A combination of signaling 

events leads to initial patterning and separation of the embryo into embryonic and 

extraembryonic layers. Along the distal region of the extraembryonic visceral endoderm 

(EVE), NODAL is expressed and forms a concentration gradient along the proximal-distal 

axis1, 2. Through a positive feedback loop, NODAL activates its expression throughout the 

epiblast and induces an organizing center in the distal EVE that later becomes known as the 

anterior visceral endoderm3. As the embryo further develops, the anterior visceral endoderm 

migrates towards the anterior of the embryo and expresses NODAL antagonists such as 

Cerberus-like (CER1) and LEFTY1 proteins4. These antagonists prevent NODAL signaling 

from taking place in the anterior but not the posterior of the epiblast (Figure 1). Along with 

NODAL5, fibroblast growth factor (FGF)6, bone morphogenic protein (BMP)7–9, and 

wingless-type MMTV integration site family member 3 (WNT3A)10 are expressed in the 

posterior of the embryo11, 12. Together, NODAL, FGF, BMP, and WNT signaling induce 

early mesoderm that is marked by the primitive streak (PS)/pan-mesoderm marker, 

Brachyury.

The PS marks the site where epiblast cells begin to ingress into the embryo and differentiate 

into the three embryonic germ layers. Several NODAL signaling gradients pattern epiblast 

cells along the streak. High concentrations of NODAL at the anterior PS specify definitive 

endoderm precursors, while lower levels of NODAL in concert with BMP and WNT 

signaling specify mesodermal precursors in the intermediate and posterior PS1, 13. Cardiac 

mesoderm precursors form anterior and lateral to the PS as a result of this morphogen 

patterning2. The T-box transcription factor eomesodermin (EOMES), expressed at the 

anterior PS, is important for both definitive endoderm and cardiac mesoderm development14. 

EOMES+ cells activate the basic-helix-loop-helix transcription factor, mesoderm posterior-1 

(MESP1)14, which subsequently regulates the activation of several cardiac and mesodermal 

genes and plays a vital role in allowing mesodermal precursor cells to migrate through the 

PS15. While MESP1 is broadly expressed throughout mesoderm precursors16, a 

subpopulation of MESP1+ cells anterior to the PS become specified to cardiac lineages as 

they ingress through the PS17 (Figure 1).

Migration from Primitive Streak to Cardiogenic Mesoderm

With the patterning of the primitive streak and the activation of MESP1, mesoderm cells 

begin to migrate away from the PS. A subpopulation of these MESP1+ cells marches 

anteriorly and laterally away from the mid- and posterior aspect of the mesoderm to become 

the anterior lateral plate mesoderm17. The migration of these early cardiac precursors away 

from the WNT/β-catenin rich PS, mediated by WNT chemorepulsion18, marks a significant 

step in the commitment of early mesoderm cells towards a cardiac fate. At E7.5 in the 

mouse/week 3 of human development, these migratory cells make two pools of cardiac 

progenitors known as the first and second heart fields (FHF and SHF)19.
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Canonical WNT signaling, mediated by β-catenin, plays a crucial role in the differentiation 

of these cardiac progenitors. First, as noted above, WNT3A from the posterior of the embryo 

induces early mesoderm. Subsequently, WNT signaling from the overlying ectoderm inhibits 

cardiac induction in the region posterior to the cardiac crescent, limiting the cardiogenic 

region to the anterior lateral plate mesoderm20, 21. Canonical WNT signaling thus has a 

biphasic effect on cardiac differentiation by enhancing mesoderm formation followed by 

repression of cardiac fates in mesoderm-specified cell populations21–24. This biphasic role of 

WNT is evolutionarily conserved. In chick embryos, canonical WNT inhibition by Dickkopf 

WNT signaling pathway inhibitor 1 (DKK1) and Crescent secreted from the anterior 

endoderm is necessary for cardiac differentiation, while ectopic expression of canonical 

WNT ligands WNT3A and WNT8C induces erythroid cell formation in cardiac precursor 

regions21. Other chemotactic and inductive signals are likely involved in mesoderm 

migration and differentiation into the cardiac fate; however, their identities remain to be 

determined.

This understanding of the major signaling pathways that govern mesoderm formation has 

permitted the development of robust protocols to differentiate pluripotent stem cells into 

cardiomyocytes (CMs)25, 26. These protocols rely on activation of canonical WNT signaling 

to induce mesoderm formation, followed by WNT inhibition to stimulate CM differentiation. 

These protocols are remarkably efficient, often yielding 100 CMs per input pluripotent stem 

cells, and at purities of over 90%25, 26. Efficient pluripotent stem cell to CM differentiation 

protocols are fundamental to using pluripotent cell differentiation systems to study cardiac 

differentiation27, model human heart disease28, and produce CMs as replacement therapy for 

heart failure29.

Cardiomyogenesis In The First and Second Heart Fields

Signals regulating commitment to cardiac progenitor cells from mesodermal precursors

While the early signals regulating mesoderm induction have been well characterized, the 

molecular signaling and genetic regulation driving MESP1+ mesoderm precursors to FHF 

and SHF cardiac progenitors have only been uncovered in recent years. The FHF gives rise 

to the left ventricular free wall, part of the septum, and a portion of the atria, while the 

second heart field gives rise to the right ventricle, a portion of the septum, the outflow tracts, 

and a portion of the atria30. Identifying the signals and molecular markers that regulate the 

segregation of early mesodermal progenitors to either of these fields is an important step 

towards understanding cardiac development in vivo as well as developing novel 

differentiation protocols that can give rise to specific subpopulations within the heart.

During mesodermal cell migration, the earliest cells to reach the anterolateral plate form the 

FHF while later cells form the SHF17. Recent work from the Mummery lab has shown that 

modulating FGF and BMP signaling in vitro can direct pluripotent stem cell-derived cardiac 

progenitors into either FHF- or SHF-like cells, suggesting that differential signaling 

underlies the differentiation of precursor cells into SHF or FHF lineages31. At E7.5 in mouse 

development, FHF cells are spatially organized in a crescent-shaped structure, the cardiac 

crescent. SHF cells lie more medial and dorsal to these FHF cells (Figure 2A). These FHF 

progenitors receive BMP232, FGF833, and non-canonical WNT34 signals from the 
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underlying endoderm to promote their differentiation. Meanwhile, the SHF progenitors 

receive FGFs35, sonic hedgehog36, and canonical WNT/β-catenin37 signals to promote their 

proliferation and multilineage differentiation (Figure 2B). While the signaling pathways 

described above are important for the multipotency of their respective heart fields, the 

question remains as to how the MESP1+ mesodermal progenitors are appropriately allocated 

into FHF or SHF populations, and what factors regulate the size of each heart field.

Despite the incomplete understanding of FHF and SHF progenitor cell regulation from their 

mesodermal precursors, there has been enthusiasm for the generation of renewable cardiac 

progenitor cells from the application of these signaling pathways for cardiac regeneration. 

Aside from deriving FHF/SHF cardiac progenitor cells from pluripotent stem cells,31 

investigators have recently generated cardiac progenitor cells by direct reprogramming of 

fibroblasts using cardiac transcription factors and small molecules that activate WNT3A, 

JAK/STAT, BMP, and TGF-β signaling to regulate the formation and renewal of induced, 

expandable cardiac progenitor cells.38, 39 Remarkably, when transplanted in vivo into an 

infarcted heart, these cells differentiated into CMs and improved cardiac function. Further 

studies will be necessary to reproduce and validate the findings from these studies. 

Nevertheless, these studies illustrate the potential importance of harnessing early 

developmental signaling to generate cardiac progenitor cells for therapeutic benefit.

Signaling Pathways Regulating Cardiomyogenesis from First and Second Heart Field 
Progenitors

The regulation of cardiomyogenesis from multipotent cardiovascular progenitors remains a 

major focus of ongoing research due to a combination of interest in understanding the 

mechanisms of cardiac disease as well as an ever-growing interest in generating CM 

subtypes (e.g. atrial, ventricular, nodal) for therapeutic purposes. BMP2 and BMP4, secreted 

by underlying endoderm, induce cardiomyogenesis of the overlying lateral plate mesoderm, 

and exogenous BMP2 and BMP4 induced ectopic cardiac differentiation in chick embryos.32 

SHF progenitors switch from a proliferative state toward cardiac differentiation in the setting 

of increased BMP expression as they migrate to the outflow tract.40, 41 Notably, inhibition of 

BMP signaling via Noggin resulted in complete lack of cardiac differentiation in chick 

embryos, highlighting the critical importance of this pathway in heart development.32 The 

central role of BMP signaling in promoting cardiomyogenesis is in part mediated by the 

induction of Gata4, Mef2c, Srf and Nkx2-5 expression42, 43. Within SHF, BMP is also 

required for up-regulation of T-Box2 (Tbx2) and T-Box3 (Tbx3), which are required for 

maintaining the slow conduction velocity and reduced proliferation of myocardium within 

the outflow tract, atrioventricular canal, and sinus horns44, 45. Compared to FHF cells, SHF 

cells have delayed commitment to the CM lineage. Canonical WNT/β-catenin signaling is 

critical for maintaining SHF progenitors in a proliferative state while inhibiting 

differentiation towards terminal lineages.46–48 In developing mouse hearts, as SHF 

progenitors migrate into the developing outflow tract, canonical Wnt signaling is 

significantly downregulated, coinciding with activation of CM specific gene expression.41, 49

Non-canonical WNT signaling, through calcium-dependent pathways involving protein 

kinase C and calmodulin-dependent kinase, or through so-called planar cell polarity 
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pathways involving Rho-associated kinase 2 (ROCK2) and Jun amino-terminal kinase, is 

crucial for normal CM specification.50 Two non-canonical WNT ligands, WNT5A and 

WNT11, are essential for heart development across multiple species. WNT11 was necessary 

for expression of cardiac genes and induced ectopic heart formation in both chick and frog 

embryos34, 51. Developing mouse embryos lacking both Wnt5a and Wnt11 showed a 

dramatic reduction in SHF progenitors. These roles of Wnt5a and Wnt11 are thought to be 

due in part to the suppressive effect of non-canonical WNT signaling on the canonical 

WNT/β-catenin pathway.52

Recent work has identified HOPX, a homeodomain-containing transcriptional repressor, as a 

key link between canonical WNT/β-catenin and BMP signaling pathways during heart 

development.41 HOPX expression initiates in FHF and SHF derivatives that are exclusively 

committed to the CM lineage. Notably, Hopx expression in FHF occurs earlier than its 

expression in the SHF, consistent FHF preceding SHF differentiation. Using an embryoid 

body directed differentiation system, it was further shown that Hopx promotes CM 

differentiation via inhibition of WNT signaling (Figure 2C). This inhibition is mediated by 

direct interaction between HOPX and SMAD4, a transcription factor that is essential for 

transducing BMP signals. These data suggest that as SHF cells migrate into the outflow 

tract, they are exposed to increased BMP4 signaling, which cooperates with newly expressed 

HOPX to diminish canonical WNT/β-catenin signaling and thereby promote CM 

differentiation.41

Transcriptional Events During Cardiomyogenic Commitment

The signaling pathways described above act in a coordinated fashion with a complex 

network of cardiac transcription factors to regulate cardiomyogenesis. The cardiac genetic 

program is initiated during the MESP1+ pre-cardiac mesoderm stage15. As MESP1+ pre-

cardiac progenitors march toward the anterolateral plate mesoderm, a subunit of the 

SWI/SNF chromatin remodeling complex, SMARCD3, is expressed after MESP1 is 

downregulated and before upregulation of cardiac progenitor markers NKX2-5 and ISL 

homeobox 1 (ISL1)53. SMARCD3 allows the zinc-finger transcription factor GATA4 to bind 

the enhancer regions of several transcription factors that initiate the cardiac gene program54 

including GATA4, NKX2-5, ISL1, T-box 5 (TBX5), and myocyte enhancer factor 2c 

(MEF2C)53, 55. Along with GATA4, yin yang 1 (YY1) has been shown to bind directly to a 

cardiac enhancer region of NKX2-5 and plays a vital role in its early cardiac transcriptional 

activation56. The central roles of GATA4 and NKX2-5 in early cardiac development are 

highlighted by the observations that GATA4/6 double mutants lack hearts entirely, and 

NKX2-5 is the most frequently mutated gene in congenital heart disease patients57, 58.

FHF progenitors are the earliest cells to express NKX2-5 and constitute the earliest wave of 

developing cardiac progenitors. Early FHF progenitors quickly activate TBX5, which 

interacts with GATA4 and NKX2-5 to drive cardiac muscle development and specification of 

the left ventricle through induction of many cardiac genes, including natriuretic peptide A 

(Nppa) and the gap junction protein connexin 40 (Gja5)59, 60. TBX5 misexpression can lead 

to the improper positioning of the interventricular septum or the complete absence of the 

septum60. GATA4 and NKX2-5 repress the hemangiogenic gene program, through 
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suppression of the hematopoietic transcription factor GATA1, and upregulate cardiac 

specific genes including Hand1, Mef2c, myosin light chain-2v (Myl2, also known as 

Mlc2v), and other genes necessary for cardiomyocyte structure and function61–63. Study of 

FHF progenitors has been complicated by their transience and by a paucity of well-

established markers. One of the few markers for FHF progenitors is hyperpolarization-

activated cyclic nucleotide gated potassium channel 4 (HCN4)64, 65, which is initially 

expressed in the cardiac crescent and gradually becomes confined to the cardiac conduction 

system.

SHF progenitors persist after the formation of the heart tube66. These cells, located at the 

tube’s arterial and venous poles, migrate and differentiate into CMs, endothelial cells, and 

smooth muscle cells67, 68, thereby contributing to the growth of the heart tube, and 

formation of the inflow and outflow tracts. SHF progenitor cells are marked by sustained 

expression of ISL166, 67, although the FHF also transiently expresses this transcription 

factor69. ISL1 knockout mice exhibit severe defects in the looping of the heart, and the 

development of the right ventricle and outflow tract. ISL1 activates FGF and BMP genes, 

which play important roles in cardiac progenitor proliferation and differentiation as 

discussed above66. Moreover, ISL1 cooperates with GATA4 to activate Mef2c, which 

activates the expression of the basic-helix-loop-helix transcription factor HAND270–72. 

HAND2 is an essential transcription factor that regulates right ventricular development, as 

seen by Hand2 knockouts that display varying degrees of right ventricular hypoplasia73. 

Moreover, Hand2 is required for the survival and proliferation of SHF progenitors73. As 

SHF progenitors differentiate, Nkx2-5 is activated and directly represses ISL1 to limit 

progenitor proliferation and promote progenitor differentiation74. Interestingly, a recent 

study has shown that the direct repression of Isl1 by NKX2-5 is required for the proper 

development of ventricular cardiomyocytes75. In contrast, this same study showed that 

overexpression of ISL1 in mouse ESCs enhanced specification of cardiac progenitors and 

led to increased nodal type cardiomyocytes relative to ventricular subtypes, thus 

demonstrating complex regulatory feedback between Isl1 and Nkx2-5 in cardiac progenitor 

specification and differentiation. The role of these transcription factors in regulating cardiac 

progenitor proliferation and differentiation continues to be a point of investigation. 

Understanding the complex interactions that regulate cardiac progenitor proliferation and 

differentiation is vital for understanding the etiology of congenital heart defects and for 

applications of cardiac regeneration to congenital and acquired heart disease.

Role of Micro RNAs in Cardiac Differentiation

Micro-RNAs (miRNAs) are single-stranded, non-coding RNA molecules that negatively 

affect gene expression at the post-transcriptional level, either by guiding mRNA degradation 

or by preventing protein translation.76, 77 DICER is an RNase that is critical for cytoplasmic 

processing of pre-miRNAs into mature miRNAs, which will subsequently be incorporated 

into the RNA-induced silencing complex. Selective knock-out of Dicer in murine cardiac 

precursors using Nkx2-5Cre resulted in embryonic lethality due to dilated cardiomyopathy, 

ventricular hypoplasia, and heart failure by E12.578. However, when Dicer was knocked out 

in CMs via myosin heavy chain 6 (Myh6)-Cre, which initiates recombination later in heart 

development, the phenotype was milder, as mice survived to birth but died soon after from 
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dilated cardiomyopathy and heart failure.79 These studies demonstrate the critical 

importance of miRNAs in cardiac differentiation and morphogenesis.

Several specific miRNAs have been shown to play key roles in cardiac development. The 

miR-1 and miR-133 families are co-transcribed as miR-1-1/miR-133a-2 and miR-1-2/

miR-133a-1, and are expressed in the developing heart as well as skeletal muscle.76, 80 In the 

developing heart, miR-1 and miR-133 family members are regulated by serum response 

factor (SRF) and MEF2 transcription factors, which are intricately involved in myocyte 

differentiation.81, 82 Homozygous deletion of miR-1-2 resulted in a wide range of severe 

cardiac defects that lead to embryonic or perinatal lethality, including ventricular septal 

defect, heart failure, and dysrhythmias.78 Notably, driving over-expression of miR-1 from 

the myosin heavy chain 7 (Myh7) promoter, active in fetal CMs, resulted in thinning of the 

ventricular wall and heart failure.78 Intriguingly, double miR-1-1 and miR-1-2 knockout 

caused predominantly postnatal lethality prior to weaning as a result of severe cardiac 

dysfunction.83 While the milder phenotype in these double knockout mice compare with 

miR-1-2 single knockout requires further clarification, it appears that miR-1 plays a key role 

in modulating the relative proliferation and differentiation of cardiac precursors. Similar to 

miR-1-2 deletion, mice lacking both miR-133a-1 and miR-133a-2 developed severe heart 

failure due to ventricular septal defects and dilated cardiomyopathy.84 Interestingly, these 

mutants also showed ectopic expression of smooth muscle genes, pointing to a role for 

miR-133a in mediating the lineage decision between cardiac and smooth muscle. Deletion of 

individual miR-1-1/miR-133a-2 or miR-1-2/miR-133a-1 gene clusters did not affect survival 

to birth, cardiac morphogenesis, or function, suggesting functional redundancy85. However, 

double knock-out of both miR-1-1/miR-133a-2 and miR-1-2/miR-133a-1 caused embryonic 

lethality at E11.5 with marked thinning of the compact ventricular myocardium and 

impaired cardiomyocyte maturation and proliferation. This effect is, in part, mediated 

through loss of suppression of the transcription factor Myocardin, leading to persistent 

expression of smooth muscle genes and incomplete cardiomyocyte maturation.

Fibroblast to CM reprogramming

One exciting application of our knowledge of the factors that govern CM specification and 

differentiation is direct reprogramming of non-myocytes such as fibroblasts to CM-like cells 

(induced CMs or iCMs). This can be achieved by transduction of non-myocytes with a 

cocktail of transcriptional regulators that promote myocardial transdifferentiation. While this 

strategy is still in its infancy, results have been promising. Multiple groups have reported 

direct reprograming via transduction of fibroblasts with retrovirus expressing transcription 

factor cocktails.86–89 The most commonly used cocktails have used GATA4, MEF2C, and 

TBX587, with some reports indicating that HAND2 enhances reprogramming90. The 

combination of MESP1 and ETS2 has also been reported to successfully reprogram human 

fibroblasts to cardiac progenitors91. An additional recent study utilizing a cocktail of four 

miRNAs also reported direct reprogramming of cardiac fibroblasts to CMs92. A range of 

phenotypes were observed in iCMs, with some cells demonstrating contractile and calcium 

handling characteristics of CMs. However, the robustness of reprogramming in vitro, and the 

extent to which in vitro iCMs express complex physiological phenotypes characteristic of 

bona fide CMs requires further improvement93. The efficiency of non-myocyte to iCM 
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reprogramming, and the extent to which iCMs can be induced to attain functional properties 

of mature bona fide CMs (see sections on CM maturation, below) will determine whether 

this exciting concept ultimately will bear fruit.

Regulation of CM proliferation

CM proliferation during embryonic heart development

After cardiac progenitor cells differentiate into CMs, new CMs are generated through 

division of existing CMs, and this expansion of CM number primarily accounts for 

embryonic heart growth. Early events of CM proliferation have been studied through lineage 

tracing experiments and clonal analyses. One of the earliest CM clonal analyses was 

performed in chicken embryos94, using a low dose of retrovirus to genetically label a small 

fraction of CMs and cardiac progenitor cells. Later on, these labeled cells were observed to 

form clusters and the number of cells per cluster increased during heart development. This 

result suggested a coherent expansion of CMs through their local proliferation. More precise 

labeling and tracing experiments done in mouse embryos showed that coherent CM colonies 

derived from single CMs could be found at E8.5, when heart tube looping initiates95. This 

clonal expansion of CMs during heart growth was further demonstrated in zebrafish. In 

elegant studies that took advantage of the ease with which the developing zebrafish heart can 

be visualized, stochastic CM labeling by combinations of multiple fluorescent proteins 

permitted detailed clonal analysis of heart growth96. Proliferation and expansion of as little 

as ~55 CMs during early development was sufficient to generate all of the CMs of the 

ventricular myocardium96.

A number of signaling pathways precisely control CM proliferation to regulate heart growth 

and morphogenesis. Among the best characterized is the Hippo/YAP signaling pathway, 

which controls the size of several organs during development97, 98. Elevated cell density 

signals through incompletely understood upstream pathways to activate Hippo pathway 

kinases (MST1/2 and LATS1/2), which put the brakes on CM proliferation by 

phosphorylating and inactivating the transcriptional co-activators YAP and TAZ (formally 

known as WWTR1), partially redundant drivers of cell proliferation99, 100. Hippo/YAP 

regulation of CM proliferation and heart growth has been well characterized using genetic 

mouse models to manipulate pathway components. Inactivation of Salvador (Sav1), 

encoding a scaffold protein required for Hippo kinase activity, in CMs increased CM 

proliferation, resulting in overgrowth of the fetal ventricular walls and trabeculae101. Forced 

expression of constitutively active YAP in CMs also strongly stimulated their proliferation, 

while YAP/TAZ loss-of-function in CMs reduced their proliferation, causing embryonic 

lethal cardiac hypoplasia and hypotrabeculation102–104. YAP functions by interacting with 

transcription factor TEAD1105, 106, which activates downstream mitogenic pathways, 

including the PI3K-AKT pathway107, 108. YAP could also interact with β-catenin and 

directly modify WNT signaling to upregulate CM proliferation101. Thus the Hippo/YAP 

pathway is an essential regulator of CM proliferation that matches cardiac growth to 

physiological needs of the fetus.

Proper spatiotemporal control of CM proliferation is required for normal cardiac 

morphogenesis. CMs in the compact myocardium proliferate more rapidly than trabecular 
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CMs. Differences in Hippo/YAP signaling may contribute to this regional difference in CM 

proliferation, since relieving Hippo inhibition or increasing YAP activity abrogates the 

difference and causes dramatic trabecular myocardial hyperplasia101, 103. Gradients of 

mitogenic factors may also contribute to more rapid proliferation of CMs in the compact 

myocardium. The epicardium, an epithelial sheet that covers the outer surface of the heart, is 

essential for growth of the compact myocardium, as disrupting epicardium perturbs the 

proliferation of underlying myocardium109. Recent studies showed that epicardium secretes 

IGF2, which activates IGF1R and subsequently ERK in CMs to induce proliferation110, 111. 

Follistatin-like 1 (FSTL1) is another epicardially-secreted cardiac mitogen112, although the 

importance of FSTL1 for cardiac development remains to be determined. Gradients of 

environmental stimuli, such as oxygen or blood flow, also regulate regional CM proliferation 

rates. Nuclear localization of hypoxia inducible factor 1 alpha (HIF1A), which is governed 

by oxygen tension, was enriched in CMs within the outer compact myocardium and 

interventricular septum, where it was required for robust CM proliferation113.

Another heart morphogenic process that is tightly linked to CM proliferation is trabeculation 

(Figure 3). Trabeculae are ridge-shaped myocardial protrusions that are derived from the 

sub-endocardial myocardium. Although the key mechanistic events are still being 

elucidated, in mouse the process of trabeculation is thought to be initiated when a subset of 

sub-endocardial CMs alter their polarity from parallel to perpendicular relative to the 

chamber wall114. These CMs then proliferate and expand to form the trabeculae115, 116, 117. 

Rodent models show that CM proliferation during trabeculation is tightly controlled by 

communication between myocardium and trabecular endocardium, which involves a 

complex signaling pathway composed of NOTCH1, BMP10, ephrin B2 (EFNB2), HAND2, 

and Neuregulin-1 (NRG1)115–118. Zebrafish based studies of trabecular development support 

crucial roles for Notch and Neuregulin signaling, however, the expression profiles and 

presumed functions of individual pathway components appears to be markedly different 

from rodent models96, 119, 120;Han, 2016 #139}. Furthermore, trabeculation in zebrafish 

initiates through depolarization and delamination of a subset of CMs rather than altered 

polar orientation as is thought to occur in mouse121.

CM cell cycle exit during postnatal development

While CM proliferation is responsible for fetal heart growth, shortly after birth mammalian 

CMs largely exit the cell cycle. In adult hearts, there is measurable albeit very limited CM 

turnover122–125. By taking advantage of the spike in atmospheric C14 that accompanied 

above ground nuclear bomb tests, Bergmann et al. showed that human CM turnover rate is 

about 1% per year at 20 years-of-age and gradually decreases with advancing age122, 125. 

This estimate is similar to the 0.76% annual turnover rate measured in adult mouse heart by 

stable isotope labeling coupled with imaging mass spectrometry and genetic fate 

mapping123. CM proliferation extends into the first postnatal week in mice126, 127. In 

humans, this postnatal proliferative window may last for several years128, suggesting a 

potential window in infancy for therapeutic regenerative approaches in congenital heart 

disease. Several factors that trigger and enforce adult CM cell cycle exit have been 

identified. Mitogenic signaling pathways that drive fetal CM proliferation are attenuated 

postnatally. For example, expression of ERBB2 quickly decreases in CMs after birth, which 
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reduces the mitogenic potency of NRG1129. The mitogenic activity of YAP is likewise 

restrained by multiple mechanisms, including activity of Hippo pathway kinases101, 

downregulation of YAP and TEAD1, and TEAD1 sequestration by the protein VGLL4105. In 

addition to loss of pro-mitotic signals, several mechanisms actively inhibit expression and 

function of the cell cycle machinery in adult CMs. Transcriptional regulators such as MEIS 

homeobox 1 (MEIS1)130 and retinoblastoma protein (RB)131, 132, epigenetic modifiers such 

as polycomb repressive complex 2 (PRC2)133, and microRNAs such as the miR-15 

family134 actively repress core cell-cycle activators and/or activate cell-cycle inhibitors. P38 

MAP kinase signaling also inhibits CM proliferation135, 136. Increased oxidative stress in 

post-mitotic CMs has been implicated in causing DNA damage response-mediated cell-cycle 

arrest137. Downregulation of telomerase activity has been shown to block proliferation in a 

p21-dependent manner138, 139. Disassembly of centrosomes, a hub of mitogenic signaling140 

as well as the organizing center for mitotic spindle assembly141, 142, in postnatal CMs may 

add another layer of negative regulation of CM proliferation143.

Heart regeneration through CM proliferation

Heart injury such as myocardial infarction causes massive CM death. In response, the rate of 

CM proliferation increases in the peri-infarct region by about 5-fold above its very low basal 

rate123. However, this level of innate cardiac regeneration is far too limited to effectively 

replace the lost CMs. As a result, the remaining CMs become overburdened and experience 

chronically elevated biomechanical stress that induces further CM loss, precipitating a 

vicious cycle that ultimately leads to heart failure and pathological heart remodeling144, 145. 

Interrupting or reversing this process requires replacing or regenerating the lost CMs.

To gain insights into how heart regeneration could be therapeutically enhanced, cardiac 

biologists have studied models competent in effective heart regeneration. Several species 

including fish and amphibians retain heart regenerative capacity throughout life144, 146–148. 

A key finding from the zebrafish system is that CMs lost in heart injury models are replaced 

by proliferation of pre-existing CMs, rather than by generation of CMs from non-

myocytes149, 150. Enhanced CM proliferation rate is observed in zebrafish hearts following 

several different types of injuries such as resection and genetic ablation149–151, indicating a 

robust injury response mechanism is present in zebrafish that promotes CM proliferation. 

Regenerating CMs had unique morphological and molecular signatures consistent with 

sarcomere disassembly, which has been described as CM “dedifferentiation” (Figure 4). 

Sarcomere disassembly has been inferred to be a pre-requisite for productive mitosis and 

cytokinesis149, 150. Thus CM proliferation provides the basis of heart regeneration in 

zebrafish.

CM proliferation also compensates for the damage or loss of CMs in fetal and neonatal 

mice. At fetal stages, CM-specific mosaic knockout of Hccs, an X-linked gene that is 

essential for mitochondrial function, damages ~50% CMs in E10.5 heterozygous females 

due to random X chromosome inactivation. However, this perturbation does not cause 

embryonic lethality because the healthy CMs proliferate to compensate for the injury. 

Consequently, only ~10% CMs are Hccs deficient at birth and over 85% of these animals 

develop and survive normally152. Similarly, we used diphtheria toxin A to ablate various 
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fractions of CMs in embryonic hearts. We found that embryos tolerated loss of up to 60% of 

CMs and maintain normal heart development by upregulating the proliferation of remaining 

unablated CMs153.

Murine cardiac regeneration capacity remains robust into the first postnatal week of life, as 

hearts injured by apical resection on postnatal day 1 efficiently replenish the lost CMs, 

resulting in hearts with minimal residual scar and with normal heart morphology and 

function by 1 month of life127, 134. Although multiple groups have reproduced this result154, 

confirmation has not been uniform155, possibly because the extent of scarring and 

regeneration depends on surgical technique and the extent of myocardial resection.156 

Interestingly, macrophages are essential for robust neonatal cardiac regeneration157. Lineage 

tracing showed that the proliferation of preexisting CMs also underlies murine heart 

regeneration123, 127. CM “dedifferentiation”, characterized by sarcomere disassembly, has 

also been implicated in mammalian CM proliferation129, 134, 158–160 (Figure 4), although it 

has not yet been observed directly during in vivo mammalian CM proliferation. Thus 

induction of CM proliferation is a conserved mechanism of heart regeneration from 

zebrafish to mammals.

Enhancing cardiac regeneration by driving CM proliferation

The induction of CM proliferation as the major mechanism for heart regeneration in lower 

vertebrates and fetal and neonatal mice provides a rational foundation for current efforts to 

augment CM proliferation in mature mammalian hearts to achieve therapeutic cardiac 

regeneration after heart injury. Developmental CM cell cycle exit is accompanied by the 

silencing of fetal pathways that drive proliferation; thus reactivating and augmenting these 

fetal pathways is an attractive strategy to stimulate the adult CM proliferation. Although 

many strategies are currently being pursued, due to space constraints here we will focus on 

NRG1 and Hippo/YAP. We refer readers to other excellent reviews that cover other efforts to 

stimulate CM proliferation161–164.

Several studies have shown that activating NRG1/ERBB signaling boosts proliferation of 

adult CMs and improves heart repair upon injury. In zebrafish, overexpressing NRG1 in 

CMs was sufficient to stimulate CM proliferation, resulting in accelerated myocardial 

expansion after injury165, 166. NRG1 treatment stimulated proliferation of in vitro cultured 

neonatal and adult murine CMs159, 167, as well as CMs from myocardium removed from 

pediatric patients at the time of heart surgery167. NRG1 delivery to mice, or over-expression 

of a constitutive active form of ErbB2, improved heart structure and function after 

myocardium infarction129, 159. In patients with stable chronic heart failure, NRG1 infusion 

has been shown to be safe and to have beneficial haemodynamic effects168. Although several 

studies have suggested that NRG1’s therapeutic effect is due in part to stimulation of adult 

CM proliferation, other studies have demonstrated that NRG1’s CM mitogenic activity 

quickly diminishes after birth129, 167. Indeed, one group could not detect a mitogenic effect 

of NRG1 on adult CMs and assigned its salutary effects to other mechanisms169.

Because YAP has robust CM mitogenic activity during fetal heart development, elevating 

YAP activity in CMs is another potential approach to stimulate CM proliferation and heart 

regeneration. Forced expression of constitutively active YAP in CMs stimulated CM 
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proliferation in both neonatal and adult hearts102, 104. In the neonatal murine heart 

regeneration model, abolishing YAP activity disrupted the regenerative capacity of the 

neonatal murine heart, whereas YAP overexpression enhanced it163. A study that used 

adeno-associated virus, a promising gene therapy vector, to selectively overexpress activated 

YAP in adult CMs, provided proof-of-concept that this treatment can improve myocardial 

function and survival after myocardial infarction102. Importantly, YAP activation did not 

have deleterious effects on the heart. Thus YAP activation has therapeutic potential to 

stimulate heart repair and regeneration.

It is worth noting that NRG1 and YAP both play additional biological functions other than 

regulating CM proliferation, including CM survival170, migration119, 171 and calcium 

handling172. NRG1 also acts on non-myocytes to promote neo-vascularization after heart 

injury165. YAP regulates CM survival107, 173 and transcriptional responses to mechanical 

stress174, 175. In CMs, YAP promotes actin cytoskeleton remodeling and the formation of 

CM protrusions at heart injury sites176. Recently, YAP was also implicated in controlling 

CM oxidative stress177. Thus the beneficial effects of NRG1 and YAP activation in injured 

hearts are likely to be multifactorial.

Although stimulating CM proliferation is a promising strategy to boost myocardial 

regeneration in adult hearts, multiple obstacles need to be surmounted before this strategy 

can be used in clinical applications. First, induction of CM proliferation remains inefficient 

in adult hearts, likely due to multiple layers of negative regulation that block mature CM cell 

cycle activity. Thus, a critical task in future research is to precisely define the signals that 

trigger and maintain cell-cycle withdrawal in adult CMs and design methods to remove or 

circumvent these obstacles. A second challenge is the potential for increased cancer risk due 

to cell cycle activation in non-CMs. For example, both NRG1 and Yap signals have 

oncogenic potentials and are known to be involved in cancers178, 179. Precise targeting of 

mitogenic stimuli to CMs is necessary to minimize oncogenic risk.

The “dedifferentiation” of regenerating CMs has been observed in both zebrafish and mouse. 

This process, marked by sarcomere disassembly, occurs during regeneration in response to 

heart injury127, 134, 149 as well as during NRG1-stimulated myocardial regeneration129, 165. 

These data imply the reversing CM differentiation state might stimulate CM proliferation, a 

strategy which could potentially be more efficient and less risky than direct manipulation of 

cell cycle regulators. However, the merits of this strategy are unknown and depend upon 

better understanding the “dedifferentiation” process. Although sarcomere disassembly has 

been suggested as a prerequisite for completion of CM mitosis158, 180, it is unclear whether 

the “dedifferentiation” observed during regeneration is a true reversal of differentiation state 

or simply a change of cytoskeletal architecture of CMs undergoing mitosis. Second, whether 

dedifferentiation will necessarily enhance proliferation is also unclear. Although correlation 

between dedifferentiation and the increase of CM proliferation has been well 

documented127, 129, 134, 149, 165, the causal relationship between these two processes has not 

been established.

How newly regenerated CMs re-establish the morphology of myocardium damaged by 

injury is also an open question. During heart regeneration in adult zebrafish and fetal and 
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neonatal mice, regenerated heart walls largely retain the morphology of the original 

structures96, 127, 153. Given that CM proliferation plays an essential role in morphogenesis 

during development, it is hoped that the proliferation of regenerative CMs follows similar 

rules to rebuild the adult myocardium. Understanding these rules and their underlying 

molecular mechanisms will be important to properly enhance heart regeneration by CM 

proliferation, or to properly sculpt myocardium regenerated by other means (e.g. by delivery 

of stem cell-derived CMs).

CM maturation

Hallmarks of CM maturation

The dynamic process of heart development includes dramatic alterations in CM metabolism, 

form, and function, particularly in the neonatal period (Figure 5; Table 1). Fetal CMs 

actively proliferate, and the resulting increase in CM number largely accounts for fetal heart 

growth. These cells are adapted to the hypoxic intrauterine environment, as they rely 

primarily on glycolytic metabolism. At birth, CMs undergo dramatic changes linked to 

greater demand for left ventricular pump function and greater availability of oxygen. 

Postnatal CMs become highly specialized for efficient contraction: they shift to oxidative 

phosphorylation as their primary energy source, increase in volume by 30-40-fold between 

birth and adulthood, and develop accompanying ultrastructural specializations and changes 

in gene expression that enable efficient and coordinated CM contraction. Perhaps intimately 

linked with specialization for efficient contraction, postnatal CMs largely exit the cell cycle 

and become predominantly polyploid (a single polyploid nucleus in humans, or two diploid 

nuclei in rodents).

While much has been learned about the fetal specification of CMs, much less is known 

about how CM maturation is coordinately regulated. Understanding CM maturation is 

critical to advance the field of cardiac regeneration, since any new source of CMs must be 

sufficiently mature to effectively contribute to cardiac function and to seamlessly electrically 

couple with pre-existing myocardium. Indeed, a recent landmark study demonstrated that 

while significant numbers of human pluripotent stem cell derived CMs (PSC-CMs) could be 

engrafted in infarcted primate hearts, all treated hearts exhibited ventricular arrhythmias that 

were attributed to insufficient maturity of donor CMs29. Immaturity of stem-cell derived 

CMs is also a major barrier to their use for in vitro modeling of human heart disease.181–183 

Thus discovering ways to induce CM maturation has become a major goal in the field. 

Progress will require developing a detailed understanding of the normal processes that drive 

developmental CM maturation. Here we review key aspects of postnatal CM maturation, 

survey current strategies to mature PSC-CMs, and recommend directions for future study.

Structural remodeling during postnatal physiological maturation is extensive and affects 

virtually all aspects of CM cytoarchitecture. However, three prominent hallmarks stand out: 

an increase in CM size leading to formation of large rod shaped cells with high length:width 

aspect ratio, a higher myofibrillar density with increased sarcomere prominence, and 

formation of T-tubules. The molecular mechanisms that control these morphological and 

structural changes are incompletely understood. The length and diameter of CMs appear to 

be regulated by distinct types of mechanical loads, with CM elongation occurring through 
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addition of new sarcomere units at the cell poles in response to diastolic strain, and CM girth 

increasing through parallel addition of filaments in response to systolic strain.184, 185 In the 

disease state this process is mediated by ERK1/2 signaling, which likely also plays 

important roles in maturation-related remodeling.186 These mechanisms are influenced by 

substrate stiffness, which together with additional cues make the ECM an important 

determinant of CM shape.187–189

Myofibrillar density and organization directly correlate with CM maturation status, with 

fully mature CMs having superbly organized sarcomeres. Sarcomere organization is 

intimately linked to cell shape, as patterning CMs with micro-contact printing to induce the 

formation of different cell geometries directly impacts sarcomere alignment, with 

rectangular shape and higher length to width ratios driving increased organization.190 This 

increase in sarcomeric organization and prominence corresponds to alterations in the 

expression ratio of many crucial sarcomere protein isoforms. In mouse, this transition 

includes shifts in gene transcription from fetal to adult isoforms (e.g. troponin I1 (TNNI1) to 

troponin I3 (TNNI3); Myh7 to Myh6) and altered gene splicing (e.g. titin (TTN)-N2BA to 

TTN-N2B; myomesin 1 embryonic isoform (EH-MYOM1) to mature isoform; troponin T2 

(TNNT2) exon 5 inclusion to exclusion).191–195 T-tubules, invaginations of the plasma 

membrane that allow membrane depolarization to quickly penetrate to the CM interior, are a 

hallmark of mature CMs. Development of the murine T-tubule network initiates at 

approximately two weeks after birth, and similar to sarcomere development gradually 

becomes better defined and organized as the CMs mature to adulthood.196, 197 Currently, 

besides junctophilin 2 and Bin 1 (Table 1), few proteins involved in T-tubule formation have 

been identified, and the process is poorly understood.198, 199

In addition to structural remodeling during maturation, neonatal CMs undergo dramatic 

alterations in metabolism, shifting from predominantly non-oxidative to oxidative 

metabolism in the neonatal period.200 This metabolic transition coincides with an increase in 

mitochondrial density, as well as a mitochondrial shift in shape from small and round to 

large and ovoid.201, 202 Positional differences are also observed, with mitochondria of 

mature CMs being located in closer proximity with myofibrils and the sarcoplasmic 

reticulum.203 While distinguishing cause and effect relationships from associations has been 

difficult, there is mounting evidence that metabolic remodeling is a key driver of cytoskeletal 

and sarcomeric maturation.204–207

Many aspects of the structural and metabolic remodeling that takes place during CM 

maturation have been appreciated for some time. However, understanding the regulatory 

networks driving these changes has been more challenging. External signals influencing 

maturation include neurohormonal factors and mechanical stimuli related to hemodynamic 

load, force generation, and ECM composition. These external signals activate internal cell 

signaling pathways, which in turn activate transcriptional regulators to orchestrate global 

changes in gene expression. One recent study that analyzed hundreds of micro-array datasets 

identified stage specific gene regulatory networks,205 and future studies will determine if 

major nodes within these networks act as regulators of maturation. One strong theme of the 

analysis was the presence of multiple networks related to metabolism, with PPAR signaling 

pathways constituting central components. Indeed, PPAR signaling acts as an activator of 
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fatty acid oxidation, and pathway activation increases as maturation proceeds.208 While this 

study succeeded in describing how the CM gene expression profile changes during 

maturation, proposed transcriptional regulators have not been functionally validated in vivo. 

This is a very difficult task, as global CM specific overexpression or ablation of important 

transcriptional regulators inevitably results in cardiac stress or failure, which confounds 

efforts to gauge the effect on maturation. Indeed, due to this complication many maturation 

investigations have been limited to the study of neonatal rat CMs or PSC-CMs in an artificial 

culture environment. While this line of study has yielded some notable advances, such as the 

identification of Let-7 miRNA family members as positive regulators of maturation,209 the 

field continues to be hampered by insufficient knowledge of maturational regulation in vivo. 

Our recent study of the postnatal roles of transcription factors GATA4 and GATA6 offers 

clues as to how regulation of CM maturation can be dissected in vivo.210 Mosaic gene 

knockout, achieved by administering a low dose of Cre-expressing adeno-associated virus 

serotype 9 that only transduced a fraction of CMs, enabled the study of mutant CMs in 

functionally healthy hearts. In this context, GATA4/6 double knockout CMs were 

dramatically smaller and less mature than control CMs, indicating that GATA4 and GATA6 

are crucial cell autonomous regulators of postnatal cardiomyocyte growth and maturation. 

Combining this mosaic gene manipulation strategy with single cell RNA-seq and emerging 

technologies such as somatic CRISPR/Cas9 mutagenesis211, 212 offers an experimental 

strategy to dissect the regulatory networks that govern CM maturation.

Enhancing maturation of CMs differentiated from non-myocytes or pluripotent stem cells

Despite limitations in our understanding of the mechanisms driving CM maturation, many 

approaches to improving PSC-CM maturity have capitalized on knowledge of 

developmental paradigms. Approaches such as three dimensional tissue engineering, 

mechanical loading, modulation of substrate stiffness, and electric stimulation have all had 

varying degrees of success by more closely mimicking the in vivo environment.213–217 

Indeed, just as tension-sensing mechanisms are currently generating considerable interest as 

determinants of how the heart remodels in response to disease,218 similar mechano-sensing 

signaling pathways have been shown to play important roles in maturation related 

remodeling.219, 220 In addition, treatment with hormonal factors has also been shown to 

modulate CM maturation, with thyroid hormone being a major stimulant of fetal CM 

maturation.221 Finally, long term culture of PSC-CMs has been shown to induce more 

complete maturation.222 While expression profile analyses of CMs cultured for up to one 

month show arrest at or before a stage equivalent to the late fetal period,205 reportedly 

culture for approximately one year results in PSC-CMs with expression profiles similar to 

adult CMs.209 Although these results are impressive, the inconvenience and cost of the long 

term culture approach makes it unsuitable as an experimental model system or as a 

regenerative therapeutic approach. However, combinations of the above strategies are 

currently being examined, and better understanding of the mechanisms that govern normal 

CM maturation promises to enable further progress.

Interestingly, CMs differentiated from non-myocytes appear to undergo enhanced 

maturation within the native milieu of the beating heart. For example, when human PSC-

CMs were injected into a non-human primate model of myocardial infarction29. The injected 
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PSC-CMs engrafted and over three months they were observed to have increased myofibril 

alignment and sarcomere registration. The engrafted PSC-CMs attained a diameter 

comparable to the size of normal adult money cardiomyocytes. On the other hand, transient 

ventricular arrhythmias were common early in the engraftment process and spontaneously 

resolved. The pro-arrhythmic effect may have resulted from the immaturity and 

heterogeneous electrical coupling of the engrafting PSC-CMs. Generalizing from this 

experience, pro-arrhythmia may be a consequence of many regenerative strategies that yield 

immature CMs, and cardiac regeneration experiments need to be designed to detect these 

adverse events. A second example is the maturation of iCMs reprogrammed from fibroblasts 

by viral delivery of cardiac transcription factors (see non-CM to CM reprogramming, 

above). iCMs created by reprogramming in vitro often are highly immature in size, 

morphology, and functional parameters such as calcium handling93. When reprogramming 

was performed in an in vivo context, a significant fraction iCMs properly localized structural 

maturation markers and had mature electrophysiological and calcium handling 

phenotypes87, 90. Indeed, while the overall number of in vivo reprogrammed CMs is still 

limited, recent reprogramming studies showed a surprisingly potent salutary effect on heart 

function and myocardial outcome in an experimental murine MI model87, 90. It is possible 

that in vivo reprogramming has additional benefits beyond cell autonomous gains in 

contractile ability. Translating this exciting work towards clinical applications will require 

further improvements in reprogramming efficiency and iCM maturation, development of 

reprogramming platforms that do not require viral integration, evaluation of this strategy’s 

efficacy in large animal models, and improving efficiency of reprogramming human 

fibroblasts, which have been more refractory to reprogramming compared to murine 

cells88, 223. The enhanced maturity achieved by in vivo CM differentiation likely reflects 

limitations of current in vitro culture conditions and the overall importance of the cell’s 

environment on CM differentiation and maturation.

Conclusions

By following the lessons of normal development, cardiac biologists have made rapid inroads 

towards generating cardiomyocytes to make human disease models and to enhance 

myocardial outcomes in heart injury models. The conceptual focus of most work in 

therapeutic cardiac regeneration has been ischemic heart disease. However, myocardial 

failure in congenital heart disease typically results from chronic volume and pressure loads 

produced by palliated circulations. Greater appreciation of the need for therapeutic cardiac 

regeneration in congenital heart disease and its specific biology will allow advances to be 

applied to this rapidly growing patient population. The spectrum of therapeutic options for 

congenital heart disease could expand through creative uses of regenerative and stem cell 

biology to engineer heart tissue. Although this review has focused of myocardial 

regeneration, parallel efforts in engineering valves and vessels are also needed to address the 

panoply of difficulties faced by patients with palliated congenital heart disease. It is our hope 

that the ongoing efforts of investigators in developmental and regenerative biology will one 

day lead to groundbreaking advances in the diagnosis, prevention, and treatment of 

congenital and acquired heart disease in children and adults.

Galdos et al. Page 17

Circ Res. Author manuscript; available in PMC 2018 March 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Funding Sources

WTP was supported by grants from NIH (HL098166 and HL116461) and by a charitable contribution from Dr. and 
Mrs. Edwin A. Boger. SMW was supported by the NIH Office of Director’s Pioneer Award LM012179, NIH/
NHLBI U01 0099776, the Cardiovascular Institute, the Division of Cardiology, Department of Medicine, the 
Institute for Stem Cell Biology and Regenerative Medicine, and an endowed faculty scholar award from the Child 
Health Research Institute/Lucile Packard Foundation for Children at Stanford (S.M.W). SLP was supported by the 
Department of Pediatrics at Stanford, and FXG was supported by the Stanford Medical Scientist Training Program 
NIH T32 GM007365. NVD was supported by F32HL13423501.

Non-standard abbreviations and acronyms

CM Cardiomyocyte

E Embryonic day (days of gestation)

P Postnatal day (days after birth)

FHF First heart field

SHF Second heart field

BMP Bone morphogenic protein

WNT wingless-type MMTV integration site family member

FGF Fibroblast growth factor

miRNA Micro-RNA

PSC-CM pluripotent stem cell-derived cardiomyocyte
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Figure 1. Specification of mesodermal precursors
Schematic representing the signaling events leading to mesodermal specification during 

early development. NODAL is first expressed proximally at E5.0. Through an autoregulatory 

loop, NODAL activates its own expression throughout the epiblast (shown in light purple) 

and goes on to induce the expression of NODAL antagonists, LEFTY1 and CER1 in the 

distal visceral endoderm at E5.5 (DVE). The DVE migrates anteriorly where it specifies the 

anterior portion of the embryo as shown in the yellow hues at E6.5-7.5. The anterior visceral 

endoderm (AVE, yellow) limits NODAL signaling to the posterior of the embryo. Along 

with WNT3 and BMP signaling, NODAL specifies early primitive streak progenitors to the 

mesoderm fate.
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Figure 2. Regulation of cardiac progenitor proliferation and differentiation
A. Schematic showing the anterolateral position of first heart field (FHF) progenitors and 

dorsomedial position of second heart field (SHF) progenitors at E7.5. Canonical WNTs, 

Sonic Hedgehog (SHH), and fibroblast growth factors (FGFs) are expressed dorsally in the 

region encompassed by the SHF, while non-canonical WNTs, BMP2, and FGF8 are 

expressed ventrally, where the FHF is present. FHF progenitors make up the cardiac crescent 

and differentiate prior to the SHF in order to form the developing heart tube at E8.0. SHF 

maintain their proliferative state and elongate the heart tube by migrating and differentiating 

at the inflow and outflow poles of the heart. B. Non-canonical WNTs, BMP2/4, and FGF8 

signaling drives FHF progenitors to differentiates towards the myocyte lineage. Meanwhile, 

Canonical WNT/β-catenin, SHH, and FGFs maintain SHF progenitor proliferation. SHF 

progenitor migration to the outflow and inflow poles of the heart tube exposes them to 

BMP2/4 and non-canonical WNTs which drives SHF progenitors to exit their proliferative 

state and differentiate. C) Canonical WNT/ β-catenin signaling inhibits the differentiation of 

cardiac progenitors to the myocytes. BMP signaling activates SMAD4 which binds to the 

transcription factor HOPX to directly inhibit Canonical WNT/β-catenin. Moreover, non-
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canonical WNTs such as WNT5a and WNT11 also inhibit Canonical WNT/β-catenin to 

drive cardiac progenitor differentiation. (Illustration credit: Ben Smith)
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Figure 3. Model of the trabeculation process
During trabeulation, a small fraction of CMs in the compact myocardium (pink) are first 

specified as trabeculating CMs (brown). These cells delaminate from the compact 

myocardium and migrate inward to form the first trabecular CMs. CMs in both compacted 

and trabecular myocardium further proliferate. This proliferation, together with CM 

migration and rearrangement, results in protrusion and expansion of the trabecular 

myocardium. (Illustration Credit: Ben Smith)
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Figure 4. Model of cardiomyocyte regeneration
During heart regeneration, myocardial injury and CM loss induce the dedifferentiation of a 

fraction of CMs (pink). These CMs reenter the cell cycle, produce new CMs, and replenish 

the lost CMs. CMs that are generated from cell division re-differentiate to a fully mature 

state to improve heart contraction.
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Figure 5. Representative cellular events during CM maturation
During CM maturation, transcriptional changes occur throughout both embryonic and 

postnatal development. CMs stop hyperplastic growth at the perinatal stage and transition to 

hypertrophic growth, in which sarcomere number increases and sarcomere alignment 

improves. Altered expression of critical sarcomere isoforms modifies the contractile 

properties of CMs. Mitochondria increase in number and size and become well organized 

with respect to sarcomeres. After birth, CMs switch from deriving most of their energy from 

glycolysis to depending upon oxidative phosphorylation. The maturation of 

electrophysiologic properties is characterized by proper expression and localization of ion 

channels characteristic of adult CMs. T-tubules form at a late stage of postnatal 

development, perhaps to permit rapid AP penetration with rapidly enlarging CMs. 

Maturation is also characterized by the postnatal establishment of intercalated discs and 

proper formation of cell-cell contacts.
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