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ABSTRACT Infection with Helicobacter pylori is a major risk factor for development
of gastric disease, including gastric cancer. Patients infected with H. pylori strains
that express CagA are at even greater risk of gastric carcinoma. Given the impor-
tance of CagA, this report describes a new molecular mechanism by which the cagA
copy number dynamically expands and contracts in H. pylori. Analysis of strain
PMSS1 revealed a heterogeneous population in terms of numbers of cagA copies;
strains carried from zero to four copies of cagA that were arranged as direct repeats
within the chromosome. Each of the multiple copies of cagA was expressed and en-
coded functional CagA; strains with more cagA repeats exhibited higher levels of
CagA expression and increased levels of delivery and phosphorylation of CagA
within host cells. This concomitantly resulted in more virulent phenotypes as mea-
sured by cell elongation and interleukin-8 (IL-8) induction. Sequence analysis of the
repeat region revealed three cagA homologous areas (CHAs) within the cagA re-
peats. Of these, CHA-ud flanked each of the cagA copies and is likely important for
the dynamic variation of cagA copy numbers. Analysis of a large panel of clinical iso-
lates showed that 7.5% of H. pylori strains isolated in the United States harbored
multiple cagA repeats, while none of the tested Korean isolates carried more than
one copy of cagA. Finally, H. pylori strains carrying multiple cagA copies were differ-
entially associated with gastric disease. Thus, the dynamic expansion and contraction
of cagA copy numbers may serve as a novel mechanism by which H. pylori modu-
lates gastric disease development.

IMPORTANCE Severity of H. pylori-associated disease is directly associated with car-
riage of the CagA toxin. Though the sequences of the CagA protein can differ across
strains, previous analyses showed that virtually all H. pylori strains carry one or no
copies of cagA. This study showed that H. pylori can carry multiple tandem copies of
cagA that can change dynamically. Isolates harboring more cagA copies produced
more CagA, thus enhancing toxicity to host cells. Analysis of 314 H. pylori clinical
strains isolated from patients in South Korea and the United States showed that
7.5% of clinical strains in the United States carried multiple cagA copies whereas
none of the South Korean strains did. This study demonstrated a novel molecular
mechanism by which H. pylori dynamically modulates cagA copy number, which af-
fects CagA expression and activity and may impact downstream development of
gastric disease.

Received 26 September 2016 Accepted 29
November 2016 Published 21 February 2017

Citation Jang S, Su H, Blum FC, Bae S, Choi YH,
Kim A, Hong YA, Kim J, Kim J-H, Gunawardhana
N, Jeon Y-E, Yoo Y-J, Merrell DS, Ge L, Cha J-H.
2017. Dynamic expansion and contraction of
cagA copy number in Helicobacter pylori
impact development of gastric disease. mBio
8:e01779-16. https://doi.org/10.1128/
mBio.01779-16.

Editor Martin J. Blaser, New York University

Copyright © 2017 Jang et al. This is an open-
access article distributed under the terms of
the Creative Commons Attribution 4.0
International license.

Address correspondence to Linhu Ge,
gelinhu@yeah.net, or Jeong-Heon Cha,
jcha@yuhs.ac.

* Present address: Jinmoon Kim, ATGen Ltd.,
Seongnam, Republic of Korea; Niluka
Gunawardhana, OMFS Unit, District General
Hospital, Nuwara Eliya, Sri Lanka.

S.J. and H.S. contributed equally to this article.

For a companion article on this topic, see
https://doi.org/10.1128/mBio.02321-16.

RESEARCH ARTICLE

crossm

January/February 2017 Volume 8 Issue 1 e01779-16 ® mbio.asm.org 1

http://orcid.org/0000-0001-6144-6899
https://doi.org/10.1128/mBio.01779-16
https://doi.org/10.1128/mBio.01779-16
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:gelinhu@yeah.net
mailto:jcha@yuhs.ac
https://doi.org/10.1128/mBio.02321-16
http://crossmark.crossref.org/dialog/?doi=10.1128/mBio.01779-16&domain=pdf&date_stamp=2017-2-21
http://mbio.asm.org


Helicobacter pylori is a Gram-negative microaerophilic bacterium that colonizes the
human stomach and infects more than half of the world’s population (1–3).

H. pylori infection is associated with various gastric diseases, ranging from gastritis to
gastric adenocarcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma (4,
5); the latter associations led the International Agency for Research on Cancer to classify
H. pylori as a group I carcinogen (6). The high infection rates seen with this bacterium
are believed to be responsible for making gastric cancer the third most common cause
of cancer-related death worldwide (7).

H. pylori produces many virulence factors that contribute to pathogenesis (8, 9). Of
these factors, cytotoxin-associated gene A (CagA) is one of the most widely studied
proteins because of its association with increased risk of development of severe gastric
diseases (10, 11). The cagA gene is carried on the cag pathogenicity island (PAI), which
encodes a type IV secretion system (T4SS) that directly injects CagA into host cells (12).
Once inside the host cell, CagA is phosphorylated by host cell kinases, forms a complex
with SHP-2 (Src homology region 2-containing phosphatase 2) (13), and alters multiple
host signaling pathways (13–17). Phosphorylation of CagA occurs in the carboxyl
terminus on the conserved tyrosine residue within a repeated five-amino-acid se-
quence, Glu-Pro-Ile-Tyr-Ala, referred to as the EPIYA motif (13, 15). Both phosphorylated
and nonphosphorylated forms of CagA modulate host cellular signaling pathways
(18–20). The numbers of EPIYA motifs and the flanking regions surrounding these
motifs differ dramatically across strains, making CagA highly polymorphic. On the basis
of surrounding amino acid sequences, four distinct EPIYA motifs have been identified:
EPIYA-A, EPIYA-B, EPIYA-C, and EPIYA-D. Interestingly, the distributions of EPIYA motif
combinations differ geographically (15, 21); East Asian strains contain EPIYA-ABD,
whereas Western strains contain EPIYA-ABC, and the EPIYA-C motif may be repeated up
to five times (13, 15, 22). These different EPIYA combinations have been shown to have
an impact on disease progression (21, 23). Indeed, our prior study showed a significant
association between infection with H. pylori strains carrying the EPIYA-ABD cagA
genotype and the development of gastric cancer (23). Similarly, other studies have
shown that CagA variants containing an increased number of EPIYA-C motifs correlate
to more virulent disease characteristics (15, 24, 25).

In addition to toxin amino acid variation, the cagA promoter region has also been
shown to be genetically heterogeneous; an AATAAGATA motif located �59 bp up-
stream of the transcription start site is associated with higher levels of CagA expression
in H. pylori isolates from Colombia (26, 27) and Portugal (28). These increased levels of
CagA result in higher levels of interleukin-8 (IL-8) secretion by gastric cells in vitro. In
populations at high risk for gastric carcinoma, strains containing the �59 motif are
associated with more advanced precancerous lesions (27) and intestinal metaplasia
(28). Thus, the amount of CagA expressed by H. pylori appears to be linked to
downstream pathogenesis.

The host signaling pathways that are modified by CagA upon translocation into host
cells stimulate cytoskeletal rearrangement, increased cellular mobility, and elongated
cell shape, referred to as the “hummingbird phenotype” (14, 29). Additionally, H. pylori
induces secretion of the proinflammatory cytokine IL-8 from gastric epithelial cells by
a T4SS-dependent mechanism (30–33). The T4SS apparatus itself induces IL-8 secretion
during the early phase of infection, and CagA augments IL-8 secretion in later phases
(34).

As a bacterial species, H. pylori shows exceptionally high rates of genetic variability
and intraspecies diversity (35–39). It is believed that these genetic differences likely
influence the overall virulence potential of individual strains. Among the variable
factors, the members of the outer membrane protein (OMP) families, such as adherence-
associated lipoprotein A and B (AlpA and AlpB), blood group antigen binding adhesin
(BabA), Helicobacter outer membrane B (HomB), Helicobacter outer membrane protein
Z (HopZ), outer membrane inflammatory protein A (OipA), and sialic acid binding
adhesin (SabA), show high genetic variability on the basis of the presence or absence
of different closely related paralogs (40–46). For example, the bab family is made up of
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three paralogs (babA, babB, and babC) that can be located at three different chromo-
somal loci, referred to as locus A, locus B, and locus C (47–49). The notable exception
is oipA, because duplicated oipA genes, not paralogs, may be located at two different
loci (50). This DNA duplication event is thought to be mechanistically associated with
DNA inversion (51).

Here, we describe a novel molecular mechanism by which H. pylori alters cagA copy
number by dynamic expansion and contraction of cagA at the PAI locus. These changes
in cagA copy number affect CagA expression; strains carrying multiple copies produce
more toxin, which results in increased host cell elongation and IL-8 secretion. Thus, this
mechanism of cagA variation promotes adaptation and pathogenesis of H. pylori.

RESULTS
H. pylori strain PMSS1 carries multiple cagA copies. The PMSS1 strain of H. pylori

is capable of persistently colonizing mice and is thus a useful strain for the study of
H. pylori infection in this animal model (52). Our attempts to construct a PMSS1
derivative containing a clean deletion of cagA were repeatedly unsuccessful; PCR
analysis of transformants yielded unexpected banding patterns that led us to postulate
that PMSS1 may contain two tandem cagA genes, an observation that has not been
made in any other strain of H. pylori. To test this theory, we designed two sets of PCR
primers that would allow us to detect the presence of the cagA gene as well as the
presence of multiple adjacent cagA genes (Fig. 1). First, primers F and R (Fig. 1A and B,
panel a) were used to confirm the presence of the cagA gene in the common H. pylori
strains PMSS1, G27 (53), 26695 (54), J99 (55), and 7.13 (56) (Fig. 1B). Next, the possibility
of the presence of multiple cagA copies was examined. PCR performed using primer dF

FIG 1 Analysis of cagA copy number by PCR and real-time PCR. (A) A scheme for the PCR-based method designed to detect multiple
cagA genes and to identify the gene orientation. Primer annealing sites are shown. (B) H. pylori strains PMSS1, G27, 26695, J99, and
7.13 were analyzed for the presence of multiple copies of cagA using the four PCR sets. (C) A 12,374-bp region of PMSS1 was mapped
on the basis of the DNA sequence of the cagA genes and their flanking regions. Primer annealing sites used for PCR (filled triangles)
and for DNA sequencing (empty triangles) are indicated. Three repeated cagA homologous areas (CHAs) were designated CHA-ud
(red), CHA-u (yellow), and CHA-d (green). (D) The cagA copy numbers of PMSS1, G27, 26695, J99, and 7.13 were analyzed by real-time
PCR using the 2�ΔΔCT method. ureA was used as a reference gene, and G27 was used as a calibrator. The bar graphs indicate the
average cagA copy number of each strain, and error bars represent standard deviations, derived from results of 4 independent
experiments.
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only (Fig. 1A and B, panel b) and primer dR only (Fig. 1A and B, panel c) would detect
copies of cagA that were arranged as inverted repeats; this PCR was negative for all
strains (Fig. 1B). Finally, PCR using primers dF and dR (Fig. 1A and B, panel d) would
detect copies of cagA that were arranged as either inverted or tandem repeats; lack of
a band in PCR using only primer dF or dR would imply that the cagA genes were carried
in tandem. The PCR with primers dF and dR generated a strong amplicon from strain
PMSS1 and a weaker amplicon from strain 7.13. These data suggest that H. pylori strains
PMSS1 and 7.13 carry multiple copies of cagA that are arranged as tandem repeats.

To further investigate the presence of tandem cagA genes in PMSS1, a 12.4-kbp
region encompassing cagA was sequenced; the strategy was designed with the as-
sumption that two copies of cagA were present. As illustrated in Fig. 1C, the sequenced
region began 2,162 bp upstream of the cagA initiation codon and ended 1,600 bp
downstream of the cagA termination codon; the sequence ended in the middle of the
glutamate racemase gene (glr) open reading frame (ORF). To encompass the entire
area, three separate PCR amplicons were generated and sequenced (illustrated in
Fig. 1C; primers are listed in Table S1 in the supplemental material, and the sequence
is available in GenBank under accession KX673184). In order to confirm the sequence
of the cagA ORF, the ORF was amplified with primers seqF2 and seqR10 and was
sequenced as illustrated in Fig. 1C. The sequence of the cagA ORF was identical to the
sequences obtained from the three overlapping PCR amplicons. Analysis confirmed
that CagA from PMSS1 contained the EPIYA-ABC motif (52), as is characteristic of
Western strains of H. pylori. Interestingly, sequencing also revealed three cagA homol-
ogous areas (CHAs): a CHA located both upstream and downstream of cagA (CHA-ud,
red, 462 bp); a CHA located only upstream of cagA (CHA-u, yellow, 592 bp); and a CHA
located only downstream of cagA (CHA-d, green, 478 bp). The sequences of CHA-ud,
CHA-u, and CHA-d were identical to those of the same CHAs found at other positions
within the tandem repeats. However, they did not share homology with the other
CHAs. In total, PMSS1 contained two copies of cagA, CHA-u, and CHA-d and three
copies of CHA-ud (Fig. 1C). We note, however, that the sequencing strategy was not
able to distinguish between more than two copies of cagA; interior copies would not
have been amplified during the initial PCR, as the primers anneal outside the repeat
region. Further, amplification using primers that anneal within the cagA ORF would
result in indistinguishable copies of cagA. Thus, this PCR and sequencing method would
identify identical cagA genes carried as direct tandem repeats. For the remainder of this
article, “cagA repeat” is used to refer to the following DNA sequence arrangement:
CHA-ud, CHA u, cagA ORF, and CHA-d.

As mentioned, the designed PCR and sequencing strategies were unable to deter-
mine the absolute cagA copy number in PMSS1. Therefore, real-time PCR was utilized
to tentatively quantify the copy number of cagA relative to that of the urease A gene
(ureA). The same panel of H. pylori strains was analyzed using chromosomal DNA as a
template (Fig. 1D). The amplification efficiencies of cagA and ureA were almost equal
across strains (see Fig. S1 in the supplemental material). As expected on the basis of the
earlier PCR results (Fig. 1B), the relative cagA copy numbers in G27, 26695, and J99 were
close to 1 (means � standard deviations [SD], 1.0 � 0.0, 1.1 � 0.1, and 1.3 � 0.1,
respectively) but were increased in strains 7.13 and PMSS1; approximately 1.4 (� 0.1)
copies of cagA were detected in strain 7.13, and 3.7 (� 0.1) copies were detected in
strain PMSS1. These data suggest that strain 7.13 may contain a mixed population of
single-copy and multiple-copy cagA carriers and that PMSS1 might contain more than
three cagA copies.

Generation of PMSS1 H. pylori mutant strains containing different copy num-
bers of cagA. Increasing the copy number of a gene may serve as a mechanism to
increase protein expression. To determine whether carriage of multiple copies of cagA
results in increased CagA expression, we generated PMSS1 isogenic mutant strains that
contained no, single, or multiple copies of cagA. Three constructs were designed to
replace the first, last, or all copies of cagA with a chloramphenicol resistance (cat)
cassette (Fig. 2A). Homologous recombination with construct F, which contained CHA-d
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and a unique 3= region, would replace all but the first copy of cagA with the cat
cassette. Strains recovered from this transformation were designated PMSS1/cagA-SF.
Homologous recombination with construct L, which contained a unique 5= region and
CHA-u, would replace all but the last cagA. Such strains were designated PMSS1/cagA-
SL. Finally, homologous recombination with construct FL, which contained a unique 5=
region and a unique 3= region, would replace all copies of cagA, generating
PMSS1ΔcagAFL (Fig. 2B). Because a DNA region flanked by direct repeats can be
duplicated or deleted by recombination (57), the three constructs were designed to
remove any repeated CHAs flanking cagA or cat. Thus, the resulting PMSS1/cagA-SF,
PMSS1/cagA-SL, and PMSS1ΔcagAFL strains cannot undergo further recombination at
this region.

Given that CHA-d and CHA-u are present at more than one location in PMSS1, the
homologous recombination of constructs F and L may occur at any of the different
CHA-d or CHA-u locations; the number of possible recombination sites is increased due
to the carriage of multiple cagA repeats in PMSS1. Thus, chloramphenicol-resistant
transformants may be generated by removing no cagA repeat or fewer cagA repeats
than expected, depending on the site of recombination; such strains were recovered
and were designated PMSS1/cagA-MF and PMSS1/cagA-ML, on the basis of the con-
struct used for transformation. Notably, the resulting PMSS1/cagA-MF and PMSS1/
cagA-ML strains can still undergo further recombination due to the remaining direct
repeats of CHA-u, CHA-ud, CHA-d, and the cagA ORF. Transformants obtained with the

FIG 2 Generation and screening of PMSS1 isogenic mutant strains and determination of cagA copy number. (A) PMSS1 isogenic mutant
strains were generated by transformation of PMSS1 with three different mutagenesis constructs: F, L, and FL. Putative homologous
recombination events to generate cagA-SF, cagA-SL, and ΔcagAFL are illustrated. The three cagA homologous areas (CHAs) are indicated:
CHA-ud (red), CHA-u (yellow), and CHA-d (green). A single cagA repeat is indicated with brackets. A subscript n indicates that the number
of repeats is undetermined. (B) A PCR-based method was used to screen for the mutant strains cagA-SF, cagA-MF, cagA-SL, cagA-ML, and
ΔcagAFL. Seven different PCRs (named a to g) were used for the screen; results from PCR f, which identified multiple cagA repeats, are
denoted in panel A. The alignment sites of the primers are indicated with arrows, and the primers are listed in Table S1 in the
supplemental material. (C) The cagA copy number was determined by real-time PCR using the 2�ΔΔCT method. ureA was used as a
reference gene, and SF-1 was used as a calibrator. The bar graphs indicate the average cagA copy number of each strain, and error bars
represent standard deviations, derived from results of 5 independent experiments.
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three constructs were screened using seven PCRs, PCR a to PCR g (Fig. 2A and B; see
also Fig. S2): PCR a was used to identify the first 5= cagA; PCR b to identify a cat gene
inserted at the first 5= cagA location; PCR c to identify the cat gene inserted at the last
3= cagA location; PCR d to identify the last 3= cagA; PCR e to identify the deletion of all
cagA genes; PCR f to identify multiple copies of cagA; and PCR g to detect the presence
of any copies of cagA and thus to confirm total deletion of cagA. After screening, two
transformants of PMSS1/cagA-SF (SF-1 and SF-2), four of PMSS1/cagA-MF (MF-1 to MF-4),
four of PMSS1/cagA-SL (SL-1 to SL-4), two of PMSS1/cagA-ML (ML-1 and ML-2), and three
of PMSS1ΔcagAFL (ΔcagAFL-1 to ΔcagAFL-3) were recovered (see Fig. S2). To confirm the
results of the PCR screen, real-time PCR was performed to determine the cagA copy
numbers (Fig. 2C). SF-1, SF-2, SL-1, SL-2, SL-3, and SL-4 contained approximately one
copy of cagA (1.1 � 0.1, 1.1 � 0.1, 1.0 � 0.1, 1.0 � 0.2, 1.0 � 0.1, and 1.0 � 0.3,
respectively). MF-1, MF-2, MF-3, and MF-4 contained 3.1 (� 0.3), 4.2 (� 0.2), 3.9 (� 0.1),
and 1.9 (� 0.2) copies, and ML-1 and ML-2 contained 3.3 (� 0.1) and 3.4 (� 0.4) copies,
respectively, indicating the presence of multiple copies of cagA. Strains SF-1, SL-2, MF-3,
ML-1, and ΔcagAFL-2 were chosen for further characterization; the cag region was
sequenced to confirm the expected recombination events.

More copies of cagA increase CagA expression and CagA phosphorylation and
virulence phenotypes. We hypothesized that increased numbers of copies of cagA
would result in increased expression of CagA. Therefore, expression of CagA by PMSS1
and the SF-1, SL-2, MF-3, ML-1, and ΔcagAFL-2 transformants was measured, first within
the bacterial cell and subsequently in a cell culture infection model. The levels of CagA
and UreA were measured by Western blotting (Fig. 3), and strain SF-1 was used as a
reference strain because the insertion of cat downstream of cagA resulted in a strain
that carried a single copy of cagA (Fig. 2B). Thus, the CagA/UreA ratio of SF-1 was set
as 1 and used for normalization of the other samples. Using this strategy, the relative
expression level of CagA in strain SL-2 was 0.7 (� 0.1), which may indicate a slight polar
effect due to the presence of the cat cassette upstream of cagA. In contrast, the relative
expression levels of CagA in PMSS1, MF-3, and ML-1 were 3.1 (� 0.2), 2.2 (� 0.0), and
2.1 (� 0.1), respectively (Fig. 3A and B). These data suggest that strains of H. pylori that
contain multiple copies of cagA express and produce more CagA than strains that
contain only a single copy of the gene.

To measure CagA expression in a cell culture infection model, the gastric adeno-
carcinoma cell line AGS was infected with strains PMSS1, SF-1, SL-2, MF-3, ML-1, and
ΔcagAFL-2, and the levels of total and phosphorylated CagA were measured by Western
blotting (Fig. 3C). As expected, and consistent with the deletion of all copies of cagA
from this strain, no CagA or phosphorylated CagA was detected with the ΔcagAFL-2
strain. In contrast, for strains MF-3, ML-1, and PMSS1, which each contained multiple
copies of cagA, more phosphorylated and more total CagA was detected than was seen
with strains SF-1 and SL-2. Importantly, CagA is phosphorylated only by mammalian
host cell kinases; thus, more CagA is produced and successfully translocated by H. pylori
strains carrying multiple copies of cagA.

After translocation into mammalian cells, CagA causes host cell elongation and
induces expression and secretion of IL-8. To assess the effect of cagA copy number on
these virulence phenotypes, AGS cells were again infected with strains PMSS1, SF-1,
SL-2, MF-3, ML-1, and ΔcagAFL-2 (Fig. 4). Cell elongation was measured by assessing the
length/breadth ratio of 100 random AGS cells on micrographs. Significantly different
levels of cell elongation were found among the groups (F[6, 693] � 38.44, P � 0.001,
where we report degrees of freedom as F[between-groups, within-groups]). Strain
PMSS1 significantly induced cell elongation compared with noninfected control cells
(Mock, Fig. 4A). The average length/breadth ratio (� SD) of the mock control was 2.29
(� 0.70), while the ratio calculated for PMSS1 was 5.01 (� 2.88) (Fig. 4B). Similarly to the
mock infection, strain PMSS1ΔcagAFL-2 exhibited a ratio of 2.40 (� 0.67). Thus, deletion
of cagA resulted in loss of cell elongation. SF-1 and SL-2, which each contained a single
copy of cagA, induced cell elongation ratios of 3.39 (� 2.04) and 3.26 (� 1.45),
respectively. These ratios were statistically significantly different from those determined
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for the mock infection and strain ΔcagAFL-2 groups. Strains PMSS1, MF-3, and ML-1,
which each contained multiple copies of cagA, induced significantly higher levels of cell
elongation (5.01 [� 2.88], 4.92 [� 2.37], and 5.09 [� 2.52], respectively) than all other
strains. Thus, H. pylori strains containing multiple copies of cagA are able to induce
higher levels of cell elongation.

Next, the levels of secreted IL-8 were measured in AGS cells infected with strain
PMSS1, SF-1, SL-2, MF-3, ML-1, or ΔcagAFL-2 (Fig. 4C). Infections were carried out for 5 h
and 30 h. Due to the presence of the T4SS, all strains, including strain ΔcagAFL-2,
significantly induced IL-8 expression compared to the mock-infected control. As ex-
pected, since CagA-dependent effects on IL-8 secretion occur at later time points (34),
there were no significant differences among any of the six infected groups at 5 h (F[6,
14] � 127.86, P � 0.001). In contrast, at 30 h, CagA-dependent effects were more
evident (F[6, 14] � 266.75, P � 0.001) (Fig. 4C). While strains cagA-SF-1 and cagA-SL-2
induced higher levels of IL-8 than strain ΔcagAFL-2, the difference did not reach
statistical significance. However, each of the strains that contained multiple copies of
cagA (strains PMSS1, MF-3, and ML-1) induced significantly larger amounts of IL-8 than
strains ΔcagAFL-2, SF-1, and SL-2. Therefore, strains of H. pylori containing multiple
copies of cagA are able to induce significantly higher levels of IL-8 expression. En masse,
these data suggest that carriage of multiple copies of cagA leads to increased expres-
sion and translocation of the CagA toxin, which subsequently results in more pro-
nounced virulence phenotypes.

Dynamic variation of cagA repeat numbers in PMSS1 H. pylori. To begin to
address the mechanism by which the PMSS1 strain came to carry multiple copies of

FIG 3 Relative levels of CagA protein and CagA phosphorylation. (A) The protein levels of CagA and UreA in lysates of H. pylori strains
PMSS1, SF-1, SL-2, MF-3, and ML-1 were measured by Western blotting (upper panel). For each lysate, 0.5, 1, 1.5, and 2 �g of total
protein were used to determine standard curves for CagA and UreA. The immunoblot images were analyzed using ImageJ software,
and the values were plotted on a graph (lower panel). (B) Ratios of CagA to UreA were calculated, and each value was normalized to
the value calculated for cagA-SF-1 to determine relative CagA protein levels. The bar graphs indicate average levels of CagA expression
of each strain, and error bars represent standard deviations, derived from results of 2 independent experiments. (C) Lysates of AGS
cells that were infected with H. pylori strains PMSS1, ΔcagAFL-2, SF-1, SL-2, MF-3, and ML-1 were immunoblotted for phosphorylated
CagA (p-CagA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), CagA, and UreA. GAPDH and UreA were used as controls.
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cagA, we next sought to determine whether the PMSS1 population is homogeneous or
heterogeneous in terms of cagA copy number. To this end, several hundred single
colonies of PMSS1 were isolated and the cagA copy number for each was determined
using colony PCR (Table 1; see also Fig. S3). This method was chosen to eliminate the
additional culture time required for traditional genomic DNA isolation, as we antici-
pated that the number of cagA repeats could change temporally during culture. As
shown in Fig. S3, five colonies that had a single cagA gene, as determined by real-time
PCR, also generated a faint amplicon using PCR h; this suggests the presence of
multiple cagA repeats (see Fig. S3). Furthermore, colonies that contained a single cagA
gene or multiple cagA repeats, as determined by real-time PCR, also generated a strong
amplicon using PCR i; this indicates the presence of cagA. However, these colonies also

FIG 4 Cell elongation and IL-8 secretion in AGS cells infected by H. pylori. (A) AGS cells were infected with H. pylori
strain PMSS1, ΔcagAFL-2, SF-1, SL-2, MF-3, or ML-1 at a MOI of 100 for 8 h. Micrographs were obtained under �200
magnification. Cell elongation was calculated as the ratio of length to breadth of a cell. An example of these
measurements is depicted in the figure (lower right image). (B) The cell elongation induced by each H. pylori strain
was graphed using box plots. Thick center lines represent medians; box limits indicate the 25th and 75th
percentiles; whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles; and outliers are
represented by open-circle dots. n � 100 for each group. *, P � 0.05 (compared to the results of both the
mock-infected and ΔcagAFL-2 groups); #, P � 0.05 (compared to the results obtained for both the cagA-SF-1 and
cagA-SL-2 groups). (C) AGS cells were infected with H. pylori strain PMSS1, ΔcagAFL-2, SF-1, SL-2, MF-3, or ML-1 at a
MOI of 10 for 5 h or 30 h. Secretion of IL-8 was measured at 5 h and 30 h postinfection. The bar graphs indicate
average levels of IL-8 secretion of AGS cells infected with each strain, and error bars represent standard deviations,
derived from results of 3 independent experiments. *, P � 0.05 (compared to the results from the mock-infected
group); #, P � 0.05 (compared to the results obtained with both cagA-SF-1 and cagA-SL-2 groups).

TABLE 1 Copy number of cagA in single colonies isolated from PMSS1, 1-107 (cagA-S),
and 1-100 (cagA-M4)

Original strain

No. (%) of isolates in indicated cagA copy number category

Multiple Single None

PMSS1 333 (85.6) 54 (13.8) 2 (0.5)
1-107 (cagA-S) 1 (0.5) 190 (99.5) 0 (0.0)
1-100 (cagA-M4) 185 (98.4) 3 (1.6) 0 (0.0)
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showed a faint amplicon using PCR j, which detected the ΔcagA deletion (Fig. S3). These
results suggest that even during single-colony growth, the members of a minor
population of H. pylori undergo a change in cagA copy number, forming a heteroge-
neous population. For downstream analysis of these colonies, the major population was
used to assign the cagA gene number of the colony. Overall, among 389 first-passage
colonies, 333 (85.6%) colonies carried multiple copies of cagA, 54 (13.8%) colonies
carried a single cagA gene, and 2 (0.5%) colonies carried no cagA. Thus, the PMSS1
population was heterogeneous.

As mentioned previously (Fig. 1A), the PCR method used to type the strains was
unable to differentiate between two copies of cagA and more copies. Thus, a subset of
the colonies were also analyzed by real-time PCR and categorized into strains carrying
no (strain ΔcagA), one (strain cagA-S), two (strain cagA-M2), three (strain cagA-M3), and
four (strain cagA-M4) copies of cagA (data not shown). On the basis of this categori-
zation, strains 1-89 (ΔcagA), 1-107 (cagA-S), 1-14 (cagA-M2), 1-77 (cagA-M3), and 1-100
(cagA-M4) were each selected for further analysis. First, the cagA region of each strain
was sequenced. As expected, strains 1-89 (accession no. KX673186) and 1-107 (acces-
sion no. KX673185) were shown to carry no and one copy of cagA, respectively. The
cagA repeats of strains 1-14, 1-77, 1-100, and PMSS1 were identical to each other and
could not be distinguished by PCR and sequencing. Next, the PMSS1 strain and these
other strains were used for Southern blot analysis performed with a probe that was
specific for CHA-ud (Fig. 5A and C). As expected on the basis of predicted restriction
patterns (Fig. 5C), bands were detected at 0.7 kbp for strain 1-89 (ΔcagA) and 5.8 kbp
for strain 1-107 (cagA-S). Similarly, bands were detected at 10.8, 15.9, and 21.0 kbp for
strains 1-14, 1-77, and 1-100, respectively. Of note, the PMSS1 strain showed detectable
bands at 21.0 kbp, 15.9 kbp, and (faintly) 10.8 kbp, which correspond to the sizes
expected for carriage of 4, 3, and 2 copies of cagA, respectively (indicated as cagA-M4,
cagA-M3, and cagA-M2 in Fig. 5C). Thus, the Southern blot data further support the idea
that the PMSS1 population is heterogeneous.

We next investigated whether the cagA copy number could dynamically change
from a single copy to multiple copies and vice versa. To this end, strains 1-107 (cagA-S)
and 1-100 (cagA-M4) were each passaged a second time, and the second-passage
colonies were screened by PCR to detect any change in cagA copy number (Table 1; see
also Fig. 5B). A total of 191 second-passage colonies from parental strain 1-107 (cagA-S)
were screened. Of these colonies, one (0.5%, colony 2-107-51) changed from a single
copy to multiple copies of cagA, while 190 (99.5%) colonies retained a single copy of
cagA. On the other hand, of 188 second-passage colonies from parental strain 1-100
(cagA-M4), three colonies (1.6%) (for example, colony 2-100-188) changed to a single
copy of cagA, while 185 colonies (98.4%) (for example, colony 2-100-18) retained
multiple copies of cagA. Southern blot analysis revealed that strain 2-107-51 carried two
copies of cagA, while strains 2-100-188 and 2-100-18 carried four copies and one copy
of cagA, respectively. Thus, the cagA gene in PMSS1 is capable of dynamically changing
copy number. We note that among the 379 second-passage colonies that we analyzed
from both 1-107 (cagA-S) and 1-100 (cagA-M4) parental colonies, we did not identify
any H. pylori isolates without any copies of the cagA gene. This may indicate that the
recombination events required to generate this complete-loss genotype occur at a low
frequency.

Clinical isolates possess multiple copies of cagA. To validate that the novel
finding of multiple copies of cagA in PMSS1 was relevant to other H. pylori strains, we
next screened a large collection of clinical isolates that originated from South Korea and
the United States (23, 41, 58–60). The presence of multiple copies of cagA was assessed
by PCR as described for Fig. 1A, and the distribution of the results is shown in Table 2
(see also Table S2). Of 234 South Korean H. pylori isolates previously shown to contain
cagA (23), 219 strains were positive for cagA using the F and R primers. All 219 isolates
carried a single copy of the gene. In contrast, of the 80 cagA-containing United States
H. pylori isolates, six (7.5%) strains harbored multiple copies of cagA. The differences in
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the associations between multiple copies of cagA and the geographical origin of the
H. pylori isolates were significant (Fisher exact test, P � 0.001). The cagA repeats from
these six H. pylori strains and from the 7.13 strain, which our previous data indicated
might contain multiple copies of cagA (Fig. 1B and D), were sequenced next (GenBank

FIG 5 Identification of cagA copy number using Southern blot analysis. (A) Southern blot (upper panel) and real-time PCR (lower panel) analysis
of PMSS1 and of single-colony derivatives 1-89, 1-107, 1-14, 1-77, and 1-100 at first passage from PMSS1. Control DNA used in the Southern blot
was a mixture of a 3.5-kbp fragment that was linearized by SphI digestion of a pGEM clone of the hybridization probe and a 0.5-kbp fragment
liberated by digestion of the same clone with EcoRI. Strain cagA-SF-1 was used for normalization of real-time PCR. The bar graphs indicate average
cagA copy numbers, and error bars represent standard deviations, derived from results of 3 independent experiments. (B) Southern blot (upper
panel) and real-time PCR (lower panel) analysis of the 1-107 and 1-100 colonies at first passage and of the single-colony derivatives 2-107-69 and
2-107-51 and single-colony derivatives 2-100-18 and 2-100-188 at second passage. (C) Schematic representation of the cagA repeats of PMSS1
derivatives cagA-M4, cagA-M3, cagA-M2, cagA-S, and ΔcagA. Three CHAs (CHA-ud, CHA-u, and CHA-d), SspI cleavage sites, and probe binding sites
are indicated.
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accession no. KX673187 to KX673193); the results are schematized in Fig. 6A. For
comparison, the previously published genome sequences of H. pylori strains G27,
26695, and J99 (GenBank accession no. CP001173, AE000511, and AE001439, respec-
tively) were used for sequence analysis and are depicted in Fig. 6B. As expected, strain
7.13 contained multiple cagA repeats. Additionally, the number of examples and
organization of CHA-u, CHA-ud, and CHA-d in five of the six H. pylori clinical strains
(B128, B140, J166, B130A, and B125A) and in strain 7.13 were the same as in PMSS1;
moreover, CHA-u, CHA-ud, and CHA-d were highly homologous to those found in
PMSS1 (see Fig. S4). The finding of conservation suggests that this is a general pattern
for the presence of multiple cagA repeats. Unfortunately, the sequence upstream of
cagA could not be obtained for the sixth clinical isolate, B147. This may have been due
to gene rearrangement of the 5= cagA region. Of note, all three CHAs were present in
G27, 26695, and J99 (Fig. 6B); however, while CHA-ud was highly homologous to the
CHA-ud from PMSS1, it was not found in duplicate in these strains and existed only
downstream of cagA. In addition, CHA-u and CHA-d showed a decreased level of
homology to the CHAs found in PMSS1 (see Fig. S4). Thus, our overall analysis reveals
that carriage of multiple copies of cagA is a phenomenon that is generalizable across
a subset of laboratory strains and clinical isolates of H. pylori.

Association between cagA copy number, genotype, and gastric disease. The
collection of H. pylori clinical isolates from the United States was previously character-
ized for several genotypic variations: cagA EPIYA polymorphism, vacA s/i/m polymor-
phism, homA/B genotype, and babA/B/C genotype (see Table S2 in the supplemental
material) (59). Given our data that suggested that increased cagA copy numbers lead to

TABLE 2 Association between geographical origin of H. pylori strains and presence of
multiple cagA repeats

Geographical origin

No. (%) of isolates in indicated
cagA repeat category (n � 299)

P valueMultiple Single

South Korea 0 (0) 219 (100) �0.001
United States 6 (7.5) 74 (92.5)

FIG 6 Comparison of multiple copies of cagA in clinical isolates. (A) Schematic representation of the cagA
repeats in PMSS1 and 7.13 and in six clinical isolates containing multiple cagA repeats. In strain B147, the
region upstream of cagA could not be sequenced. Color categorization was made according to sequence
similarity to PMSS1. The three repeating cagA homologous areas (CHAs), CHA-ud (red), CHA-u (yellow),
and CHA-d (green), are shown. (B) Schematic representation of the cagA repeats in G27, 26695, and J99.
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increased pathogenesis (Fig. 4), we next assessed whether there were any epidemio-
logical associations between the multiple cagA copies and the available strain and
patient data (Table 3; see also Table S3). Despite the fact that all six isolates harboring
multiple copies of cagA were from white patients, there was no significant association
between copies of cagA and the patient’s ethnic group. However, there was a signifi-
cant association of multiple cagA repeats with occupancy of bab locus C; this was true
both when the locus was measured as simply occupied or empty and when it was
measured as occupied by babA, babB, or babC or was empty. Of the six multicopy cagA
isolates, three (50%) strains carried a bab paralog at locus C. In comparison, locus C was
occupied in only 5 (7%) of the 74 single-copy isolates. This may suggest that there is a
functional association between the presence of a bab paralog at locus C and the
presence of multiple cagA repeats.

Particular cagA polymorphisms are known to be associated with more severe
disease outcomes (23, 60, 61). Furthermore, we found a significant association between
multiple copies of cagA and EPIYA motif polymorphism (Table 3). Among the six
isolates that contained multiple copies of cagA, two isolates carried EPIYA-AB and four
isolates carried EPIYA-ABC. Notably, while two of the three isolates containing EPIYA-AB
had multiple copies of cagA, none of the 27 strains carrying EPIYA-ABCC carried more
than one copy of cagA.

Finally, the association between multiple copies of cagA and disease state was
assessed (Table 3). The six isolates containing multiple cagA repeats were from patients
diagnosed with gastric ulcer (n � 3), duodenal ulcer (n � 1), and esophagitis (n � 2).
Despite the small number of strains carrying multiple copies of cagA, the distribution
of single or multiple copies analyzed on the basis of individual disease state was
significant (Table 3). Significant associations were also seen when various disease states
were grouped on the basis of combinations of diseases that reflect differences in
severity and/or anatomical location (Table 3). Three of the 6 multiple-copy cagA strains
were from patients with gastric ulcers, of which there were only 10 in total within the
entire collection. Furthermore, the fact that no strains harboring multiple copies of cagA
were found among the large number of gastritis patients likely influences the observed
statistical associations. En masse, these data suggest that the presence of multiple
copies of cagA may impact the development of gastric disease.

DISCUSSION

Despite the presence of 84 completely sequenced and assembled H. pylori genomes
in the NCBI database, no strains of H. pylori have been shown to carry identical copies
of cagA, which encodes what is arguably the most-studied virulence factor of this
pathogen. However, here we describe the novel finding that some strains of H. pylori
harbor multiple tandem copies of cagA. Among the strains that carry multiple cagA
copies, PMSS1 was originally isolated from a patient with a duodenal ulcer and has
recently been widely studied since it can persistently colonize mice; this provides an
invaluable tool to study gastric disease development in an animal model (52). Our data
indicate that the PMSS1 strain represents a heterogeneous population where individual

TABLE 3 Significant associations of multiple cagA copies with genotypic variations and
disease state

Parameter compared with cagA repeat genotypea (n � 80) P value

EPIYA-AB or EPIYA-ABC or EPIYA-ABCC or other 0.013
Empty or babA or babB or babC at bab locus C 0.005
Empty or occupied at bab locus C 0.012
Cancer or Barrett’s esophagus or gastric ulcer or duodenal ulcer or gastritis

or esophagitis
0.036

Cancer, Barrett’s esophagus, and gastric ulcer or duodenal ulcer and gastritis
or esophagitis

0.024

Cancer and gastric ulcer or duodenal ulcer and gastritis or Barrett’s esophagus
and esophagitis

0.016

aThe cagA repeat genotype was categorized as single or multiple cagA repeats.
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bacterial cells carry between zero and four copies of cagA (Fig. 5A). At the population
level, real-time PCR analysis indicated that PMSS1 contained an average of 3.7 copies
of cagA (Fig. 1D). Characterization of individual isolates that were engineered to contain
various numbers of cagA repeats (PMSS1/cagA-SF and PMSS1/cagA-SL) showed that
both the 5= and 3= cagA genes functionally expressed CagA (Fig. 3A). Furthermore, DNA
sequence analysis showed that in strains containing multiple copies of cagA, these
genes existed as identical tandem direct repeats that also contained three CHA types
(CHA-u, CHA-ud, and CHA-d) (Fig. 1C). Remarkably, the cagA repeats in PMSS1 were
able to expand and contract during culture in rich media (Fig. 5B); thus, even in vitro,
cagA copy number can undergo dynamic change.

The existence of multiple copies of cagA led us to hypothesize that these strains
would express more CagA, deliver more CagA to host cells, and, therefore, show
increased levels of CagA-dependent virulence. Indeed, when the amount of CagA
produced by PMSS1/cagA-SF-1, which contained a single copy of cagA, was set to 1, the
relative CagA expression levels of strains harboring increasing copies of cagA were
proportional, though not one to one. Specifically, the level of CagA expressed by strain
PMSS1, with 3.7 copies of cagA, was 3.1; that expressed by strain PMSS1/cagA-MF-3,
with 3.9 copies, was 2.2; and that expressed by strain PMSS1/cagA-ML-1, with 3.3 copies,
was 2.1 (Fig. 3A). Furthermore, the cagA copy number was proportional to the levels of
the CagA-dependent virulence phenotypes that were induced: cell elongation and late
induction of IL-8. In sum, increased copies of cagA led to more CagA expression and,
subsequently, to increased virulence.

Though the exact mechanism for expansion and contraction of the cagA repeats is
not yet clear, an analysis of the DNA sequences of strains PMSS1ΔcagA and PMSS1/
cagA-S allows us to hypothesize a potential mechanism by which this could occur.
Previous studies showed that when a gene is flanked by direct repeats, the copy
number of the gene can increase or decrease due to recombination between the
repeats (57, 62–65). Therefore, it is likely that CHA-ud plays a critical and unique role in
the generation of multiple cagA repeats from a homogeneous population containing
only a single cagA repeat. This assertion is based on the fact that only CHA-ud exists as
two copies in strain PMSS1/cagA-S; this type of repetition is necessary for standard
homologous recombination to duplicate a gene. Additionally, CHA-ud is the only CHA
that remained in the PMSS1ΔcagA strain. It is worth noting that a change from the
PMSS1ΔcagA population to a PMSS1/cagA-S or PMSS1/cagA-M population could not
happen if the PMSS1ΔcagA population were homogeneous. Given that CHA-ud is
highly conserved among H. pylori strains (see Fig. S4) and that coinfection with multiple
strains of H. pylori occurs clinically (66–69), this raises the intriguing issue of whether
interstrain recombination at the cagA region occurs; this issue remains to be addressed.

Moreover, expansion to multiple repeats was not detected in the PMSS1/cagA-SF-1
and -SL-2 mutant strains. This is likely because generation of these strains left only a
single copy each of CHA-ud, CHA-u, cagA, and CHA-d. We do note that, despite our
hypothesis that CHA-ud is the central player in cagA change, in H. pylori cagA-M, all of
the CHAs (CHA-u, CHA-d, and CHA-ud) and cagA are present at least in duplicate; thus,
any of these could formally be involved in duplication or deletion of the cagA repeats.
The frequency of recombination between repeats is proportional to the number (70, 71)
and length (72) of the repeats. Our data indicated that approximately 1.6% of the
PMSS1/cagA-M4 population recombined into the PMSS1/cagA-S population during one
passage. However, only 0.5% of the PMSS1/cagA-S population recombined to form the
PMSS1/cagA-M population, suggesting that this event is rarer. In PMSS1/cagA-S, only
CHA-ud is present as a tandem repeat in a manner that could facilitate the recombi-
nation process. In contrast, PMSS1/cagA-M4 possesses four copies of cagA, four of
CHA-u, four of CHA-d, and five of CHA-ud, all of which could possibly be involved in the
recombination event. If this were the case, this would explain why the recombination
rate in the PMSS1/cagA-M4 population was higher than that that seen in the PMSS1/
cagA-S population. It is worth noting that the recombination frequency was measured
in rich media and thus that the frequency may be different in in vitro cell culture or
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under in vivo conditions. Clearly, the exact mechanism of change for cagA copy
numbers remains to be elucidated.

We analyzed the 84 complete H. pylori genomes but were not able to identify any
strains that were shown to carry tandem repeats of cagA. We did note that two genome
sequences, Shi470 and v225d (GenBank accession numbers CP001072 and CP001582,
respectively), did show carriage of two cagA genes at two distant loci. However, the
CagA copies in Shi470 shared only 85% homology and one of the cagA sequences in
v225d was predicted to be a truncated pseudogene (73). Thus, our work is the first to
suggest the presence of multiple functional copies of CagA in H. pylori. We do note that
since we were able to readily identify numerous strains containing multiple repeats of
cagA, it is highly likely that their occurrence had been previously missed in standard
genome sequencing projects; this is due to the average length obtained by most
high-throughput sequencing technologies combined with assembly programs that are
designed to obtain a single “best fit” contig. This issue could be overcome either by
technological advancements that allow greater read lengths or by significantly increas-
ing the sequencing depth of the genome. The latter option would then require analysis
of the data to identify areas showing increased sequencing coverage, which could
indicate gene duplication. Indeed, this sequencing based strategy has concurrently
been used to identify multiple copies of cagA in recently sequenced H. pylori strains
(86). It will be of interest to see if new genome sequences generated by future DNA
sequencing applications will be able to identify strains carrying multiple cagA repeats.

Among the relatively small number (n � 80) of United States clinical isolates that we
analyzed, 7.5% were shown to contain multiple copies of cagA. In contrast, none of the
219 South Korean H. pylori isolates that we analyzed carried more than one copy of
cagA. Numerous previous studies have shown that there are distinct genetic differences
between H. pylori strains isolated in Western countries, including the United States, and
those isolated in East Asian countries, including South Korea (23, 41, 58–60, 74, 75).
Thus, this difference in cagA copy numbers between the South Korean and United
States H. pylori isolates may not be surprising. The strains containing multiple cagA
copies within this collection possessed various virulence factor polymorphisms and
genotypes: cagA EPIYA polymorphism, vacA s/i/m polymorphism, and homA/B and bab
genotypes (see Table S2). This indicates that these strains are not closely related to each
other. Thus, to identify the origin of the multiple cagA copies, further future genomic
analyses will be necessary. Perhaps harboring multiple copies of cagA may be a strategy
by which H. pylori adapts to more diverse hosts within the population. Within this
realm, it is worth mentioning that the two laboratory strains of H. pylori (PMSS1 and
7.13) that we showed to carry multiple copies of cagA are both animal-colonizing
strains (52, 56). Thus, the ability to change the number of cagA copies may also be
important for adaptation to new host environments. Clearly, the ability of H. pylori
strains to affect genetic diversity plays a critical role in this adaptation process.

Since the cagA EPIYA polymorphism, vacA s/i/m polymorphism, homA/B genotype,
and babA/B/C genotype of the 80 H. pylori clinical isolates from the United States were
previously identified (see Table S2) (59), we were able to easily investigate whether the
presence of multiple copies of cagA had any association with other virulence factors. To
this end, we found a positive association with occupancy of bab locus C. Interestingly,
Hennig et al. (48) previously reported an association of babA carried at any bab locus
with the presence of cagA in United States H. pylori isolates. Furthermore, Kim et al. (59)
described an association between the genotype of the presence of the bab gene at
locus A and the cagA EPIYA-ABD genotype in H. pylori isolates from Korean and
American populations. En masse, these studies suggest that there is a close relationship
between the bab and cagA genotypes. The molecular basis for this relationship remains
to be elucidated.

The other genotype which was shown to be associated with the presence of
multiple cagA copies was the CagA EPIYA type. Multiple copies of cagA appeared only
in strains carrying no or single EPIYA-C motifs. Since CagA variants containing an
increased number of EPIYA-C motifs are known to correlate with more virulent disease
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characteristics (15, 24, 25), carriage of multiple copies of cagA in strains containing the
AB or ABC motifs might provide a mechanism to compensate for the decreased
virulence abilities of those CagA variants. Thus, the dynamic expansion and contraction
of cagA copy number may serve as a novel mechanism by which H. pylori modulates
gastric disease development.

MATERIALS AND METHODS
Bacterial strains and cultures. H. pylori strains PMSS1, G27, 26695, J99, and 7.13 and the 15 PMSS1

isogenic mutant strains containing different numbers of cagA repeats were cultured and stored as
previously described (76). Briefly, all H. pylori strains were grown on horse blood agar plates supple-
mented with antibiotics and stored at �80°C until use. Chloramphenicol was added to the horse blood
agar plates or liquid culture medium at a concentration of 8 �g/ml for cultures of PMSS1 derivatives that
contained the cat cassette. For infection of mammalian cells to measure cell elongation and IL-8
induction and for immunoblot assays, H. pylori strains were prepared as previously described (23), with
minor modifications. H. pylori strains were initially cultured in brucella broth (BD, Franklin Lakes, NJ)
containing 10% fetal bovine serum (FBS) (Gibco, Grand Island, NY, USA) and 10 �g/ml vancomycin
(Duchefa, Haarlem, Netherlands) for 24 h and were then inoculated into new media to obtain an optical
density of 0.05 at 600 nm. These cultures were grown for 18 h with shaking at 110 rpm. All H. pylori strains
were cultured at 37°C under microaerophilic conditions generated by an Anaeropack-Microaero gas-
generating system (Mitsubishi Gas Chemical, Tokyo, Japan).

AGS cell culture. AGS (ATCC CRL-1739), a human gastric adenocarcinoma epithelial cell line, was
maintained in RPMI 1640 (Gibco) media supplemented with 10% FBS, 100 U/ml penicillin, and 100 �g/ml
streptomycin (Gibco). Cells were cultured at 37°C in a water-saturated 5% CO2 air atmosphere.

Clinical H. pylori isolates. A total of 314 clinical H. pylori isolates obtained from South Korea and the
United States were used in this study. The 234 South Korean H. pylori clinical isolates were a subset of
a collection of South Korean strains used in previous studies (23, 41, 58, 60), and the 80 isolates from the
United States were the population described in a previous study (59).

cagA repeat genotyping. A PCR-based method was designed to identify the presence of multiple
cagA repeats and the orientation of multiple cagA genes in H. pylori (Fig. 1A). The primers used for the
genotyping of the cagA repeats are listed in Table S1 in the supplemental material. Chromosomal DNA
was extracted from H. pylori strains as previously described (77) and was used as a template for PCR.
Amplification with primer set F and R was used to determine the presence of the cagA gene (Fig. 1A,
panel a). Primers F and R were designed to match a conserved cagA region in H. pylori strains PMSS1, G27,
26695, J99, and 7.13 on the basis of genome sequences available in GenBank. The dF and dR primers are
complementary to the R and F primers, respectively. Amplification with just the dF or dR primer was used
to determine tail-to-tail or head-to-head orientation of multiple cagA inverted repeats (Fig. 1A, panels b
and c), respectively. Amplification with the primer set of dF and dR was used to identify adjacent multiple
cagA repeats (Fig. 1A, panel d).

Real-time PCR. Real-time PCR was conducted to determine numbers of cagA copies in the H. pylori
strains. ureA was used as a reference gene to quantify the relative number of repeats of cagA. Specific
primers for cagA (RTcagAF and RTcagAR) and ureA (RTureAF and RTureAR) were designed to yield 145-bp
and 142-bp amplicons, respectively. Primers used for the real-time PCR are listed in Table S1. The
relative numbers of cagA copies were quantified using the 2�ΔΔCT method (78, 79), where �ΔΔCT �
ΔCT of target � ΔCT of calibrator; ΔCT � CT of cagA � CT of ureA; and CT � threshold cycle. G27 was
used as the calibrator for cagA copy number determinations for the other wild-type strains, and strain
cagA-SF-1 was used as the calibrator for the copy number determinations for PMSS1-derived mutant
strains and single-colony isolates. The real-time PCR analysis was performed using SYBR Premix Ex Taq
(TaKaRa, Kusatsu, Japan) on a 7300 real-time PCR system (Applied Biosystems, Foster City, CA) according
to the instructions of the manufacturers. Briefly, samples were initially denatured for 30 s at 95°C and
then amplified for 40 cycles of 5 s at 95°C and 31 s at 60°C. The data for the fluorescence signal were
collected at the end of the 60°C step in each cycle. Melting curves of amplicons from cagA and ureA were
analyzed to exclude amplification of nonspecific products. The amplification efficiencies of cagA and ureA
for each strain were determined with a standard curve. The standard curve was generated by applying
a 10-fold serial dilution of chromosomal DNA to real-time PCR quantification. The data were analyzed
using 7300 System SDS software version 1.4 (Applied Biosystems) and are presented as means � SD of
the results from the indicated replicate.

Generation of PMSS1 cagA isogenic mutant strains. Three constructs targeting the PMSS1 cagA
gene at different positions were generated (Fig. 2). Construct F, which replaces the cagA gene at the last
3= position with a cat cassette, was made as follows. Amplicons generated from PCRs using a primer set
of cagAF-5=F and cagAF-5=RXS and a primer set of cagAF-3=FXS and cagAdownR were fused by splicing
by overlap extension (SOE) PCR (80, 81). The fused amplicon contained XhoI and SmaI sites in the
overlap-joining region. The fused amplicon was inserted into a pGEM-T Easy vector system (Promega,
Madison, WI) by TA cloning. A cat cassette, liberated from plasmid pKJMSH (82) by double digestion with
XhoI and SmaI, was ligated with the XhoI-SmaI doubly digested plasmid that contained the fused
amplicon. The other two constructs were made with the same process except they used different primers
for the SOE PCR. Construct L, which replaces the cagA gene at the first 5= position with a cat cassette,
was made using the primer set of cagAupF and cagAL-5=RXS and the primer set of cagAL-3=FXS and
cagAL-3=R. Construct FL, which replaces all cagA genes with a cat cassette, was made using the primer
set of cagAupF and cagAL-5=RXS and the primer set of cagAF-3=FXS and cagAdownR. The three
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constructs were then introduced into PMSS1 by natural transformation (83). Transformants were selected
on horse blood agar plates supplemented with 8 �g/ml chloramphenicol, and the double homologous
recombination of the construct into single-colony isolates of chloramphenicol-resistant H. pylori was
verified by seven PCRs (Fig. 2A and B; see also Fig. S2 in the supplemental material) and DNA sequencing.
The primers used to generate and verify the constructs are listed in Table S1. PCR a with primers seqF1
and dR was used to identify the first 5= cagA, PCR b with primers seqF1 and catR was used to identify the
cat gene inserted at the first 5= cagA location, PCR c with primers catF and seqR12 was used to identify
the cat gene inserted at the last 3= cagA location, PCR d with primers dF and seqR12 was used to identify
the last 3= cagA, PCR e with primers seqF1 and seqR12 was used to identify the deletion of all cagA genes,
and PCR f with primers dF and dR was used to identify multiple cagA repeats. Finally, PCR g with primers
F and R was used to identify the presence of the cagA gene. The number of cagA genes in each colony
was determined by real-time PCR.

Cell elongation assay. AGS cells were seeded onto 6-well cell culture plates at a density of 4 � 105

cells per well and were then incubated for 1 day at 37°C. At 2 h prior to infection, cells were washed with
phosphate-buffered saline (PBS) and the medium was changed to 2 ml of RPMI 1640 containing 2% FBS
and no antibiotics. Liquid cultures of H. pylori were resuspended in RPMI 1640 containing 2% FBS, and
AGS cells were infected at a multiplicity of infection (MOI) of 100. At 8 h postinfection, cells were fixed
with 4% paraformaldehyde. Images of the cells were taken using a CKX41 inverted microscope and a
DP20 microscope camera (Olympus, Tokyo, Japan) under �200 magnification. One hundred cells were
randomly selected from each well, and cell elongation was calculated by dividing the length of the
longest protrusion of a cell by the breadth of the cell, as previously described (84). The length of the
longest protrusion was defined as the length of the line that connects the end of the protrusion and
the farthest border of the nucleus of a cell, and the breadth was defined as the diameter of the nucleus
perpendicular to the line used to measure the length of the cell (Fig. 4A). The length and the breadth
were measured using ImageJ software version 1.47 (National Institutes of Health, Bethesda, MD), and
then averaged ratios in each group were statistically analyzed. Values corresponding to the elongation
of cells induced by each H. pylori mutant strain are presented as box plots generated using the BoxPlotR
website (http://boxplot.tyerslab.com), which utilizes R software to analyze data and generate plots.

IL-8 secretion assay. AGS cells were seeded onto 6-well cell culture plates at a density of 4 � 105

cells per well and were then incubated for 2 days at 37°C. At 2 h prior to infection, cells were washed
with PBS and the medium was changed to 2 ml of RPMI 1640 containing 2% FBS and no antibiotics.
Liquid cultures of H. pylori were resuspended in RPMI 1640 containing 2% FBS, and AGS cells were
infected at a MOI of 10; the lower MOI, compared to that used for the cell elongation assays, was used
to prevent significant levels of cell death during the longer incubation required in the IL-8 assay. The
infection was allowed to proceed for 5 h as a means to measure cag PAI-dependent immediate IL-8
secretion and for 30 h as a means to measure CagA-dependent late IL-8 secretion (34). At 5 and 30 h
postinfection, 1 ml of cell culture medium was taken and centrifuged at 12,000 � g for 10 min at 4°C,
and the supernatant was used for IL-8 enzyme-linked immunosorbent assay (ELISA). Assays were
performed using human IL-8 ELISA Max Deluxe (BioLegend, San Diego, CA) following the manufacturer’s
instructions, and absorbance was measured using an Epoch microplate spectrophotometer (BioTek,
Winooski, VT). Data were presented as means � SD of results from 3 independent replicates.

Immunoblot assay. To prepare H. pylori bacterial lysates, 1.5 ml of overnight liquid culture of the
various H. pylori strains was pelleted and then lysed with 100 �l of cell lysis buffer (Cell Signaling, Inc.,
Danvers, MA) supplemented with protease inhibitor cocktail (Roche, Basel, Switzerland). To prepare
lysates of infected cells, AGS cells were seeded onto 6-well cell culture plates at a density of 4 � 105 cells
per well and were then incubated for 2 days at 37°C. At 2 h prior to infection, cells were washed with
PBS and the medium was changed to 2 ml of RPMI 1640 containing 2% FBS and no antibiotics. Liquid
cultures of H. pylori were resuspended in RPMI 1640 containing 2% FBS, and AGS cells were infected at
a MOI of 100. At 5 h postinfection, cells were washed with PBS and then lysed with 100 �l of cell lysis
buffer supplemented with protease inhibitor cocktail. Protein concentrations of bacterial lysates and
infected cell lysates were measured using Pierce bicinchoninic acid (BCA) protein assay reagent (Thermo
Fisher Scientific, Waltham, MA). The indicated amount of each sample was separated by sodium dodecyl
sulfate-polyacrylamide gel electrophoresis and then transferred to a polyvinylidene fluoride membrane
(Merck Millipore, Darmstadt, Germany). To detect CagA, phosphorylated CagA, UreA, and GAPDH
(glyceraldehyde-3-phosphate dehydrogenase), membranes were probed by the use of rabbit polyclonal
anti-CagA antibody b-300 (Santa Cruz Biotechnology, Dallas, TX), mouse monoclonal anti-phosphotyrosine
antibody pY99 (Santa Cruz Biotechnology), rabbit polyclonal anti-UreA antibody b-234 (Santa Cruz
Biotechnology), and rabbit polyclonal anti-GAPDH antibody (Koma Biotech, Seoul, South Korea), respec-
tively. These membranes were further probed with goat anti-mouse IgG-horseradish peroxidase (IgG-
HRP) (Santa Cruz Biotechnology) or goat anti-rabbit IgG-HRP (Santa Cruz Biotechnology). Antibodies
against CagA, phosphorylated CagA, UreA, and GAPDH were diluted to 1:10,000 in 3% bovine serum
albumin dissolved in Tris-buffered saline with 0.1% Tween 20 (TBST), and HRP-conjugated antibodies
were diluted to 1:10,000 in 3% skim milk dissolved in TBST. Probed membranes were then developed
using WesternBright enhanced chemiluminescence-HRP (ECL-HRP) substrate (Advansta, Menlo Park, CA,
USA) on X-ray film (Agfa, Mortsel, Belgium). Relative expression levels of CagA were measured as
previously described (85). Briefly, developed films were scanned to image files, intensities of blots on the
images were measured using ImageJ software version 1.47, and the values were plotted on a graph. A
ratio of CagA to UreA was calculated, and each value was normalized to the value of cagA-SF-1 to
determine relative CagA protein levels.
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DNA sequencing. Sanger dideoxy DNA sequencing was performed at Cosmo Genetech Co., Ltd.
(Seoul, South Korea). The DNA sequencing primers are listed in Table S1. The resulting DNA sequences
were analyzed using Vector NTI version 9.1 (Invitrogen, Carlsbad, CA) and Sequencher 5.1 (Gene Codes,
Ann Arbor, MI).

Genotyping of H. pylori single colonies by colony PCR. A culture of PMSS1 and its derivatives was
diluted in brucella broth and was plated onto horse blood agar plates. Plates were incubated for 4 days
under microaerobic conditions until single colonies appeared, which was considered to represent one
passage. Single colonies were picked up and streaked onto a new blood agar plate for further culture.
The cultures were used for isolation of genomic DNA and frozen stocks.

Colonies were transferred into 20 �l of Tris-EDTA (TE) buffer (pH 8.0) and then were heated at 99°C
for 3 min. The supernatant of the TE buffer after centrifugation was used as the template for both PCR
and real-time PCR to analyze cagA copy numbers in single colonies of PMSS1 and its derivatives.

A colony PCR was designed to identify the absence of or the presence of single or multiple cagA
genes in colonies. Primers specific to PMSS1 were designed for more efficient and more accurate PCR
(Table S1). The primer alignment sites are indicated in Fig. S3A. Three sets of colony PCRs were performed
in parallel: PCR h with primers dF2 and dR2 was used to detect the presence of multiple cagA genes; PCR
i with primers F2 and R2 was used to detect the presence or absence of cagA; and PCR j with primers
cagAupF2 and cagAdownR2 was used to confirm the absence of cagA. PCR h was carried out as follows:
a cycle at 94°C for 3 min; 35 cycles of 94°C for 15 s, 54°C for 15 s, and 72°C for 90 s; a final elongation
step at 72°C for 10 min. For PCRs i and j, the same PCR parameters were used except a 60-s extension
time was used instead of 90 s; this change decreased amplification of the larger (�5.5-kbp) PCR product
generated from genomes containing cagA with PCR j. Thus, PCRs i and j generated a 540-bp amplicon
to detect cagA and an 851-bp amplicon from a cagA deletion, respectively. A colony real-time PCR was
performed to determine cagA copy numbers in the single colonies. The colony-boiled TE buffer
supernatant was used as a template. The colony real-time PCR was conducted as described for the
real-time PCR.

Southern blot assay. A total of 0.5 �g of chromosomal DNA from each sample was digested with
restriction enzyme SspI (Thermo Fisher Scientific) and resolved on a 0.8% agarose gel for 12 h at 25 V.
SspI was used because the SspI site is not found within the cagA repeat region (Fig. 5C). The DNA
fragments were transferred from the gel to a positively charged nylon membrane (Roche) via downward
capillary action using alkaline transfer. A probe was generated using a PCR digoxigenin (DIG) Probe
synthesis kit (Roche) according to the manufacturer’s instructions. Briefly, chromosomal DNA of PMSS1
was used as a template to amplify CHA-ud by PCR using the primer set of probe-F and probe-R (Table S1)
and the 462-bp amplicon was cloned into a pGEM-T Easy vector system, resulting in the pGEM probe. The
pGEM probe containing the amplicon was purified and used as a DNA template to synthesize the
DIG-labeled probe. The probe was designed to target the CHA-ud sequence (Fig. 5C). Prehybridization
and hybridization were performed at 45°C for 30 min and overnight in DIG Easy Hyb solution (Roche),
respectively. Washing and blocking steps were done using a Wash buffer set and a Block buffer set
(Roche), respectively, and the detection step was accomplished using anti-digoxigenin-alkaline phos-
phatase (AP)/Fab fragments and CSPD chemiluminescence substrate (Roche).

Statistical analysis. Statistical analyses were performed using the IBM SPSS statistics 23 program
(IBM, Armonk, NY). The results of the cell elongation assay and IL-8 induction assay were analyzed by
one-way analysis of variance followed by Tukey’s post hoc test. P values were presented with F values and
degrees of freedom (for between-group and within-group comparisons). The Fisher exact test was used
to analyze the association between the geographical origin of H. pylori clinical isolates and the presence
of multiple cagA repeats and between cagA copy number, genotype, and gastric disease. A P value of less
than 0.05 was considered to be statistically significant.

Accession number(s). The sequences for the cagA gene(s) and their flanking regions from 10 strains
have been deposited in GenBank under accession no. KX673184 to KX673193.
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