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Preface

Most people think of human development only in terms of ‘human’ cells and organs. Here, we 

discuss another facet involving human-associated microbial communities. A microbial perspective 

of human development provides opportunities to refine our definitions of healthy pre- and 

postnatal growth and to develop new strategies for disease prevention and treatment. Considering 

the dramatic changes in lifestyles and disease patterns that are occurring with globalization, we 

issue a call for human microbial observatory programs designed to examine microbial community 

development in birth cohorts representing populations with diverse anthropologic characteristics, 

including those undergoing rapid change.

Introduction

A consideration of the biological landscape that encompasses human development should 

consider all facets of what it means to be ‘human’. At least as many of the cells, and the vast 

majority of unique genes, in the human body are microbial1–3. As such, we can view 
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ourselves as holobionts4. The dynamic microbe-microbe and microbe-host interactions that 

allow our microbial communities to assemble and endure are as yet largely uncharacterized. 

Our relationships with microbes begin before birth, represent potentially modifiable features 

of postnatal development, and likely contribute to intra- and interpersonal variations in many 

aspects of our normal human physiology, metabolism, immunity, and neurology, as well as 

to our disease predispositions.

The past ten years have produced a magnificent and still rapidly evolving toolbox of 

experimental and computational techniques for culture-independent identification of the 

microorganisms that comprise our body habitat-associated microbial communities 

(microbiota), as well as their microbial genes (microbiome) and gene products. These tools 

allow a number of hypotheses about microbial contributions to human development to be 

tested. One hypothesis is that maternal microbial ecology impacts pregnancy, fetal 

development, pregnancy outcomes, and the future health of offspring. If true, this hypothesis 

suggests the possibility of prenatal prognostic and diagnostic measurements and therapeutic 

interventions targeting the maternal microbiota that might guide healthy fetal development 

and avoid premature birth or other untoward outcomes. Another hypothesis is that following 

birth, there are microbial taxa whose changing pattern of representation can be used to 

define ‘normal’ programs of development of microbial communities occupying a given body 

habitat in biologically unrelated individuals with healthy growth phenotypes (defined by 

anthropometric indices; http://www.who.int/childgrowth/mgrs/en/). Corollaries to this 

hypothesis are that these developmental programs provide an additional microbial definition 

of healthy growth and that deviations from these normal programs of community assembly 

represent a way to characterize abnormal development, including states of immaturity or 

precocious maturation. Establishing a causal relationship between the state of microbial 

community development and healthy growth would allow deviations from normal 

microbiota development to be employed as a parameter for risk assessment or classification 

of a number of diseases that manifest themselves early or later in life, yield new insights 

about disease pathogenesis, and provide a starting point for developing microbiota-directed 

therapeutic interventions or new approaches for disease prevention.

In this Perspective, we discuss evolving concepts about (i) the relationship between maternal 

microbial ecology (before, during, and after pregnancy) and pregnancy outcomes, (ii) the 

relationship between human breast milk oligosaccharides, the establishment and expressed 

functions of the gut microbiota, and healthy postnatal growth, and (iii) the need for long-

term birth cohort studies to identify shared as well as distinctive features of microbial 

community development, within and across different populations, and delineate how normal 

execution (and perturbations) of this facet of human developmental biology is related to 

health status.

Maternal microbial ecology

The structure and function of maternal microbial communities, and the impact of these 

communities on maternal and infant health outcomes has been considered in several body 

habitats, including the vagina, the distal gut, and the mouth.
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Vaginal microbiota

Culture-based studies have suggested for decades that lactobacilli are the most prevalent 

constituents of the vaginal microbiota in non-pregnant and pregnant women 5. More 

recently, culture-independent studies demonstrating that vaginal communities frequently are 

highly uneven and dominated numerically by a single Lactobacillus species have prompted 

some investigators to assign vaginal communities into a relatively limited number of discrete 

‘community state types’ (CSTs). These state types are classified by either the dominant 

Lactobacillus species or the presence of a relatively diverse, lactobacillus-poor community 

(CST IV)6. The resolution and veracity of the vaginal CST model remains unsettled: some 

investigators have proposed additional stable or transitional states beyond the five CSTs 

described initially7. Others have highlighted potential pitfalls, including the extent to which 

the detection of ‘state types’ is dependent upon the analytic workflow8. Regardless of the 

ultimate usefulness of the CST model, the relatively limited diversity of abundant taxa in 

vaginal communities suggests that a deterministic process of community assembly, such as 

habitat filtering, governs the overall structure of the adult vaginal microbiota.

CST IV is similar to the microbiota structure encountered in bacterial vaginosis, a dysbiosis 

associated with adverse health outcomes, including preterm birth9,10. In non-pregnant North 

American women, CST prevalence varies with self-reported race/ethnicity. CST IV is 

observed in ~40% of African-American and Hispanic women, but in only ~20% of Asian-

Americans and ~10% of Caucasians6. This skewed distribution suggests that a diverse non-

Lactobacillus-dominated community (CST IV) might represent a normal variant in a subset 

of women and argues for an expanded assessment of what comprises a ‘healthy’ vaginal 

microbiota.

Relatively little is known about the development of the vaginal microbiota prior to and 

following puberty, and how different vaginal community ‘fates’ (structural and functional 

states) in adulthood are determined. One area that should be investigated is the relationship 

between the glycan content of the vaginal mucosa and community state (CST), including the 

biogeographical features of each state. In addition, much remains to be learned about the 

effects of bacterial and eukaryotic taxa (and their viruses) on vaginal epithelial cell 

differentiation programs, vaginal mucosal metabolism, and the activities of components of 

the innate and adaptive arms of the immune system represented in this body habitat. The 

development of microarrays composed of purified microbial glycans11 provides one way to 

characterize immunological responses to bacterial antigens represented in a vaginal 

microbiota and thus creates another approach to community state classification. 

Representative preclinical models are needed for testing whether causal relationships exist 

between these and other environmental factors and community states, and for characterizing 

the mechanisms that shape community assembly, determine community responses to various 

perturbations, underlie community resiliency, and mediate the effects of CSTs on host 

biology.

A compelling question is whether there is a discernable ‘program’ of change in the 

properties of the vaginal microbiota before, during, and after pregnancy, and the degree to 

which such changes recapitulate features of the ‘original’ developmental biology of the 

community. A related question is whether and how functional alterations in vaginal 
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microbial community states and the other body site microbiota during pregnancy impact 

intrauterine growth (see Text Box). Recent work has focused on bacterial taxonomic 

composition, rather than on functional features expressed by these microbial communities. 

To date, studies suggest that during pregnancy the bacterial composition of the microbiota is 

more stable than at other times during adulthood12–15. The diverse CST IV of the vagina 

appears to be the least stable during pregnancy, exhibiting a substantially higher rate of 

transition to alternate CSTs on a week-to-week timescale, compared to the four 

Lactobacillus-dominated CSTs14. A cautionary note is that community composition has not 

been defined in time-series studies where individuals are sampled prior to conception, 

following pregnancy, and during subsequent pregnancies. In addition, little is known about 

the non-bacterial membership of the pregnancy-associated microbiota.

Text Box

Concepts and hypotheses about the evolving maternal-fetal landscape and 
microbial ecosystem

• Beneficial activities of maternal microbiota may impact fetal nutrition and 

development

• Altered compositions and expressed activities of maternal microbiota may 

contribute to gestational outcome, including adverse outcomes such as 

premature labor and birth

• Microbes transferred to offspring at, or prior to delivery, reflect prepartum 

environmental exposures of the mother (e.g., diet)

• Persisting post-partum disturbances in vaginal microbiota may pose risk for 

preterm birth in subsequent pregnancies

• Variations in maternal transfer of microbes to infants may affect early 

postnatal development

Some factors that promote vaginal microbiota structural stability during pregnancy are 

recognized, such as lack of menses. However, many factors remain unknown, along with the 

degree to which structural stability is accompanied by functional stability and how this 

relates to the initial transfer of taxa from mothers to infants during the immediate peripartum 

period. From an anthropologic perspective, it is interesting that prescribed diets during 

pregnancy are an important part of the cultural traditions of some human populations16. It is 

unclear how these treatments affect vaginal (and gut) microbial community structure, 

function, and stability during pregnancy and in the immediate peripartum period. The 

answers to these questions may yield new agents for deliberate microbiota manipulation.

In contrast to the structural stability of the vaginal microbiota during pregnancy, studies of 

women in the USA, Europe, Africa, and Asia have shown that upon delivery, the vaginal 

microbiota commonly undergoes an abrupt and striking alteration in its taxonomic 

composition14,17–19. This alteration is characterized by significantly increased alpha-

diversity and is driven by a decrease in the abundance of Lactobacillus spp. and a 
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commensurate increase in diverse anaerobic species. Although many features of altered 

post-partum communities remain to be elucidated (e.g., time to return to ‘baseline’), it 

appears that in many women, they can persist for at least one year14. A short interpregnancy 

interval (<12 mo) is associated with an increased risk of preterm birth; whether a persisting 

altered post-partum vaginal community plays a contributing role warrants further study.

Gut microbiota

Much more information is needed about whether the structural and functional properties of 

the gut microbiota of women change as a function of pregnancy and, if so, whether and how 

such change relates to maternal and fetal health, as well as the subsequent health status of 

infants and children. The relationship of maternal nutritional status at the time of conception 

to the health of the newborn is well-established20. One study of pregnant Finnish women 

reported a significant increase in fecal energy content, as determined by bomb calorimetry, 

between the first and third trimesters despite stable diets and energy intake. This change 

correlated with compositional shifts in the microbiota21. However, studies of women 

residing in the USA14 and in Tanzania17, conducted at higher temporal resolution, found that 

their fecal microbiota manifested compositional stability throughout pregnancy (as measured 

by trends of alpha diversity, week-to-week variation within subjects, and beta diversity 

across gestational time), though the reasons for these divergent findings are unclear. 

Maternal microbiota and diet have the potential to influence both fetal and maternal 

epigenomes as well, although a discussion of this topic is beyond the scope of this 

Perspective.

Oral microbiota

Mothers harbor complex microbial communities in their mouths whose compositional 

states22 and transcriptional activities23 are altered in the setting of periodontitis, a condition 

associated with adverse health outcomes, including intra-uterine growth restriction, preterm 

birth, and low birth weight24. A study of the taxonomic composition of the oral microbiota 

of women living in the USA and Africa indicated that it remains stable during 

pregnancy14,17. However, comparisons with pre-conception data obtained from the same 

women were lacking. Microbial taxa that likely originate from the mouth have been detected 

in amniotic fluid25–28 and in the placenta29, particularly in association with unhealthy states 

and/or adverse outcomes such as preterm labor with intact fetal (chorioamniotic) membranes 

and with premature rupture of these membranes. Disentangling adverse effects on pregnancy 

originating from the oral microbiota is challenging, especially if disease results from a 

perturbation among relatively minor constituents30.

Development of the oral microbiota has not been comprehensively defined through time 

series studies of healthy infants and children. Therefore, the effects of maternal prenatal 

history, gestational age, route of delivery, and milk feeding history remain to be 

characterized. One approach to defining ‘normal’ is illustrated by a recent report of 50 

children who were studied from 4 to 6 years of age31. The authors observed a strong effect 

of chronological age on the taxonomic composition of the oral microbiota. This effect was 

more pronounced for the composition of supragingival plaque bacterial communities than it 

was for those in saliva, which suggests habitat site-specific differences in community 

Charbonneau et al. Page 5

Nature. Author manuscript; available in PMC 2017 March 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



assembly programs. In this study, deviations from early, normal community compositions 

were predictive of subsequent development of dental caries31.

Fetal microbial exposure and preterm delivery

The sterility of the fetal environment has been pondered from the ‘birth’ of microbiology32. 

Early studies suggested universal sterility of the amniotic cavity prior to labor33, though 

subsequent indirect evidence challenged that assumption34. More recent PCR-based studies 

indicate that microbial invasion of the amniotic cavity (MIAC) occurs more frequently and 

involves a greater diversity of microbes than presumed historically25,26. Endometrial 

sampling of the intra-uterine cavity in non-pregnant women has yielded widely varying rates 

of microbial recovery across culture-based studies (0–89%)35. Recent molecular-based 

studies suggest that the uterus of most women harbors microbes, with Lactobacillus, 

Prevotella, and Bacteroides among the genera encountered most commonly35,36. However, 

data obtained during pregnancy are lacking.

The placental basal plate contains intracellular bacteria in a minority of women (~27%), but 

in about half of those who deliver spontaneously before 28 weeks37. More recently, the 

placenta has been reported to harbor a complex set of microbes based on detection of 

bacterial DNA sequences38. However, unlike densely colonized body sites such as the gut 

and mouth, samples of placenta are overwhelmingly culture-negative39. Assessments of 

potential microbes in the placenta, and other low microbial biomass sites, are particularly 

prone to confounding findings from ‘background’ DNA40,41 and should be interpreted with 

caution in the absence of appropriate controls. The degree to which the fetal-placental 

environment has evolved to serve as a venue for programmed engagement of diverse 

microbes, as opposed to a site that simply tolerates stochastic low-level microbial exposures, 

remains unclear and merits further study.

A recent report suggested that among women with spontaneous preterm birth, those with 

histologic evidence of severe chorioamnionitis had fewer bacterial species in the placental 

membrane (adjacent to the fetal side) than did those without severe chorioamnionitis42. This 

difference may have been driven largely by a high abundance of a limited number of clonal 

pathogens (as is typical of many clinical infections) in women with severe chorioamnionitis. 

Additional studies with appropriate negative controls are needed to corroborate these 

findings and to resolve unanswered questions, such as the primary provenance (i.e., body 

site of origin) of detected microbes, as well as the directionality and timing of microbial 

translocation across adjacent tissues43.

Microbes have been detected in first-pass meconium samples from approximately two-thirds 

of healthy, vaginally delivered, breastfed term infants but at very low levels44. Detection is 

more common in meconium from neonates born before 33 gestational weeks, with 

considerable taxonomic overlap with microbes reported in amniotic fluid25,45. Molecular 

evidence of MIAC has provided associations (space, time, and ‘dose’) that support a causal 

relationship with preterm birth25. Microbial taxa associated with preterm birth most 

frequently originate from the mother and exploit one of three natural routes for invading the 

amniotic cavity46: ascending from the vagina and cervix, transfer via the fallopian tubes, or 
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translocation from more distant colonized body sites, presumably via the bloodstream27. The 

majority of invading microbes appear to be derived from the vagina25,28,46, though microbes 

from other body habitats, most notably the oral cavity27,47 and gut26, likely play a role in 

some cases. In particular, taxa associated with CST IV communities, such as Ureaplasma 
and Prevotella species, are among the more common invaders. By contrast, Lactobacillus 
species are very rarely encountered in amniotic fluid, even after membrane rupture26, despite 

the relatively high prevalence and abundance of lactobacilli in vaginal communities. This 

suggests that features of specific microbial taxa, or groups of co-occurring taxa, found in 

CST IV communities underpin factors that promote amniotic cavity invasion (e.g., virulence 

genes and divergent host immune responses48). Whether particular vaginal CSTs, or the 

presence/abundance of individual taxa, are associated with preterm birth is an unresolved 

question of great interest. Studies have produced conflicting results12,14. If vaginal CST IV 

communities are indeed associated with preterm birth in some women, this would be broadly 

consistent with epidemiologic evidence linking bacterial vaginosis, which shares taxonomic 

similarity with CST IV communities, to an increased risk of preterm birth9.

The impact of preterm delivery on the development of microbial communities in premature 

infants has been examined principally from the perspective of the infant. Characterizing 

development of their microbial communities versus those in full term infants could amend 

current, and yield new, definitions of biological immaturity, although such definitions are 

confounded by the frequent practice of preemptive antibiotic administration to prematurely-

born individuals. On the other hand, maternal microbial communities also exert significant 

influence. A recent study demonstrated that transient microbial colonization of pregnant 

germ-free mice is sufficient to modulate the function of small intestinal innate immune cell 

populations in their germ-free offspring49. Microbial products were detectable in both the 

dam’s milk and the placenta, suggesting that ‘indirect’ exposure through the mother is 

sufficient to shape neonatal development. Findings of this type suggest that systematically 

characterizing multiple body habitat-associated microbial communities in mothers with 

preterm versus full term pregnancies creates opportunities to examine whether there are 

identifiable programs of change in maternal microbial ecology during pregnancy, and to 

determine how disruption of these programs impact initial transfer of microbes to their 

offspring (and subsequent development of their microbiota). This knowledge could change 

clinical practice so that more attention is placed on careful stewardship of maternal 

microbial resources in those at risk for preterm delivery50 and so that deliberate efforts are 

made to transfer these microbes to their offspring (with potential supplementation of key 

taxa that are not present).

Breast milk and the infant gut microbiota

Recent work has begun to uncover the how breast milk changes over time from parturition 

and how it shapes the structural and functional maturation of infant-associated microbial 

communities.
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Breast milk-associated microbiota

While neonates acquire bacteria from various sources (the delivery process, physical 

interactions with mother and siblings, etc.), a relatively ignored and poorly understood 

source is breast milk. Studies of milk-associated microbiota reveal highly individualized 

assemblages51. These assemblages are routinely dominated by skin-associated bacteria, such 

as staphylococci and streptococci, which generally do not persist in the infant gut in 

significant numbers beyond a few weeks52. Some anaerobic species, such as 

Bifidobacterium, have been isolated from breast milk, suggesting a route for transit of 

specific strains that eventually colonize the infant colon. However, the factors that contribute 

to the strain specific composition in breast milk are not yet clear and are the subject of 

debate.

Human milk oligosaccharides (HMOs)

From a molecular perspective, breast milk is the best characterized food we consume. The 

most abundant dry component of milk is lactose, which provides nutrition for the infant, 

though many bacterial taxa can also digest this disaccharide. Lactose is made available 

specifically to bacterial colonizers of the infant gut by extending it with 3 to 20 

monosaccharide units to yield oligosaccharide structures, known collectively as human milk 

oligosaccharides (HMOs)53,54. HMOs are all constructed on a lactose core together with 

combinations of glucose, galactose, N-acetyl galactosamine, fucose, and sialic acid (N-

acetylneuraminic acid or Neu5Ac)55 residues. HMOs are often terminated by fucose or 

sialic acid (Figure 1A). The fraction of fucosylated HMO structures out of the total HMO 

pool is approximately 60%, while sialylated structures range from 5 to 20%56,57.

The role of HMOs has become more apparent with the application of nanoflow liquid 

chromatography mass spectrometry (nanoLC-MS). This method has detected >300 

structures in breast milk samples pooled from several mothers, with concentrations spanning 

four orders of magnitude. For a given mother, the number of HMO structures is often >100, 

while the profile of HMO structures varies between mothers53,54. Some HMOs contain the 

Lewis blood group antigens Lea, Leb, Lex, and Ley.58 Individuals who produce Leb epitopes 

[α(1,2)-fucosylated structures] in their secretions, due to the presence of an active 

fucosyltransferase 2 (FUT2) gene, are known as secretors59. Secretors tend to have higher 

amounts of HMOs compared to non-secretors (as much as 20% more). They also contain 

higher levels of fucosylated structures (nearly two-fold more). However, non-secretors often 

contain higher levels of sialylated HMO structures57 (Figure 1A). The percentage of non-

secretors varies geographically: they comprise about 20% of the population in Europe and 

up to 40% in West Africa60.

A key question is how the HMO profiles of breast milk change as a function of time after 

delivery, and how compositional differences relate to the development of the microbiota and 

healthy growth of the infant. Because of the relatively recent application of nanoLC-MS for 

HMO profiling and constraints imposed by assay throughput, there is limited information 

regarding the temporal patterns of change in specific HMO structures in healthy mothers, 

and whether consistent differences exist across groups of women representing different ages, 

parity, geographic locales, nutritional states, culinary traditions, and socioeconomic status. 
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The general trend over the lactation period is a decrease in total HMO from colostrum 

through mature milk, with the largest drop occurring in the first month postpartum61. 

However, the total amount of milk delivered as colostrum is quite small compared to mature 

milk (matching the size of the infant stomach and intestine). Thus, throughout lactation, the 

relative abundances of each class and even each compound remain relatively constant61–63.

Premature birth can significantly affect the structural profile of the mother’s HMOs64. 

HMOs in these mothers are as yet unpredictable. Many mothers delivering preterm have 

fucosylated HMOs that are as low as 20–40% of total HMOs while other mothers have 

levels greater than 60%. This discrepancy is not corrected over time.

A recent study revealed that HMO content in Malawian mothers correlates with infant 

growth outcomes65. Breast milk samples collected from Malawian mothers at 6 months 

postpartum were divided into two groups: samples from mothers whose infants exhibited 

healthy growth at the time of collection (as defined by anthropometry), and those from 

mothers whose offspring exhibited severe stunting. Liquid chromatography-time-of-flight 

mass spectrometry (LC-TOF MS) revealed that mothers of stunted infants had significantly 

lower concentrations of total, sialylated, and fucosylated HMOs, with the most growth 

discriminatory sialylated HMO being sialyllacto-N-tetraose b (LSTb), and most 

discriminatory fucosylated HMOs being 2′-fucosyllactose (2′FL) and lacto-N-fucopentaose 

I (LNFP I).

Sialic acids constitute a group of nine-carbon monosaccharides, derived from neuraminic 

acid, and include N-acetylneuraminic acid (Neu5Ac). UDP-N-acetylglucosamine-2-

epimerase, the rate-limiting enzyme in sialic acid biosynthesis is produced at low levels in 

the livers of infants66. Thus, breast milk represents an important source of this sugar. The 

availability of sialic acid impacts many organs, including the brain, where Neu5Ac is a 

component of gangliosides and is covalently linked to neural cell adhesion molecules 

(NCAMs) that mediate cell-cell interactions involved in synaptogenesis and memory67,68. 

Dietary supplementation with sialylated glycoproteins and sialyllactose increases 

polysialylation of NCAM and sialyated gangliosides, with some reports showing improved 

memory in animal models69. In addition, a preclinical model has shown that 6′-sialyllactose 

increases muscle mass and contractility70.

Several HMO structures have been produced chemically and enzymatically71. However, 

producing the wide array of structures encountered in human milk is not yet commercially 

feasible. There is a ~25% overlap between bovine milk oligosaccharide (BMO) and HMO 

structures. Sialylated milk oligosaccharides are present in mature human milk at 

concentrations up to 20-fold greater than in mature bovine milk72,73. Therefore, bovine 

milk-derived infant formulas and complementary or therapeutic foods used to treat children 

with undernutrition are deficient in these compounds. However, BMOs with structural 

similarity to HMOs are present in the by-products of dairy processing, presenting an 

opportunity to purify them at a scale sufficient for preclinical and clinical studies, and 

potentially for wider spread distribution should such studies show safety, efficacy, and yield 

an understanding of their mechanism of action.
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Preclinical studies have provided direct evidence that sialylated milk oligosaccharides are 

causally related to growth65. Young germ-free mice and newborn germ-free piglets were 

colonized with members of the gut microbiota of a stunted Malawian infant. Recipient 

animals were fed a Malawian diet representative of foods consumed after weaning by this 

human population, with or without supplementation with sialylated BMOs (S-BMO) 

purified from a whey waste stream generated during the manufacture of cheese. Feeding 

these animals this Malawian diet, or an isocaloric Malawian diet supplemented with S-BMO 

revealed that S-BMO promoted lean body mass gain and impacted metabolism in ways 

indicative of improved metabolic flexibility (the capacity to rapidly shift from anabolism in 

the fed state to lipid oxidation in the fasted state)74. Bone growth was also positively 

impacted in gnotobiotic mice. These effects were not ascribable to differences in food 

consumption and were microbiota-dependent, as they were not observed in germ-free 

animals. Moreover, when animals were provided an isocaloric Malawian diet supplemented 

with a mixture of fructo-oligosaccharides, a component of some infant formulas, growth 

promotion was not observed.

Development of a Milk Oriented Microbiota (MOM)

The initial microbiota of nursing infants is an assemblage of microbes derived from mother’s 

fecal, vaginal, and skin microbiota52. Within weeks, pro- and antimicrobial agents in breast 

milk guide development of a MOM. A common enrichment involves members of the 

Actinobacteria, chiefly Bifidobacterium species that frequently dominate the gut microbiota 

of breastfed infants, in some cases representing 70–90% of the fecal community75. 

Intriguingly, this enrichment is less pronounced in more industrialized countries75–78. 

Bifidobacterial enrichment is linked to maternal genotype; secretor mothers’ milk appear to 

enrich bifidobacteria more rapidly76.

Several beneficial functions have been attributed to a bifidobacteria-dominated MOM. For 

example, lactate and acetate, the primary end products of bifidobacterial fermentation, are 

known to be an important energy source for colonocytes, to lower intestinal pH, and to 

contribute to gut barrier function79. Robust colonization by a single bifidobacterial 

subspecies, Bifidobacterium longum subsp. infantis, correlates with improved vaccine 

responses during the first year of life77. Moreover, intestinal bifidobacteria produce essential 

nutrients, including folate and riboflavin80.

Two dominant bifidobacterial species, Bifidobacterium longum and B. breve, routinely 

colonize breastfed infants throughout the world, although other species, including B. 
bifidum, B. catenulatum, and B. pseudocatenulatum are also commonly observed. In 

general, bifidobacterial species are prolific consumers of HMOs and possess an array of 

glycoside hydrolases (notably fucosidases and sialidases81) that catalyze cleavage of key 

glycosidic linkages, permitting metabolism of some or all of the sugar monomers embedded 

in HMOs. The mechanisms for consumption of HMOs by these organisms illustrate two 

different strategies82. B. longum subsp. infantis (and to a lesser extent B. longum subsp. 
longum, B. breve, and B. pseudocatenulatum) transport HMOs directly into the cell via ATP 

binding cassette (ABC) transporters and cleave these oligosaccharides with intracellular 

glycoside hydrolases (Figure 1B)83. In contrast, B. bifidum deploys some glycoside 
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hydrolases to the cell wall for extracellular cleavage of HMOs prior to importing select 

degradation products. Similarly, Bacteroides species, another important set of HMO 

consumers (and frequent MOM-associated species), also deploy external glycoside 

hydrolases to degrade these structures prior to their internalization (Figure 1C)83.

The “internalize, then degrade” approach for HMO consumption adopted by the majority of 

infant-borne bifidobacteria can be viewed as an ingenious strategy for protecting the 

neonate. These bacteria prevent growth of competitor strains by simple sequestration of 

available sugar substrates in the colon, a concept consistent with the inverse correlation 

observed between fecal HMO concentrations and the level of bifidobacterial 

colonization76,84. An important consideration is whether there are deleterious consequences 

associated with harboring a MOM dominated by bacteria that degrade HMO externally. An 

antibiotic-treated mouse model was used to show that mucin, a glycan that contains 

structures similar to HMOs, can be externally degraded by Bacteroides spp. to release fucose 

and sialic acid monomers that ‘cross-feed’ various pathogens85. Could external degradation 

of HMOs lead to growth of pathogens or pathobionts in the low diversity neonatal gut 

microbiota? Three recent studies point to this potential risk. In gnotobiotic mice that 

harbored a stunted Malawian infant’s microbiota, external degradation of S-BMO by 

Bacteroides fragilis released its constituent monosaccharides, including sialic acid, that 

cross-fed Escherichia coli populations65. Others have observed Bacteroides cross-feeding 

Enterobacteriaceae in mice fed sialyllactose (an oligosaccharide common to mammalian 

milks) and in nursing piglets86,87. Enterobacteriaceae are considered by some to be 

harbinger of dysbiosis88.

Together, these findings suggest that the potential for bacterial cross-feeding on HMOs may 

be a risk factor for neonates. They also illustrate the extreme caution that should be afforded 

when composing diets for neonates that harbor low diversity gut microbiota during early 

stages of community development. In cases where a single oligosaccharide prebiotic is being 

considered, such as the use of fucosyllactose or sialyllactose for infant formula, it would 

help to know the composition of the infant MOM to avoid potential cross-feeding of 

problematic bacterial clades and/or enteropathogens. Alternatively, this problem may be 

alleviated by use of synbiotic applications (combinations of pre- and probiotics) where the 

probiotic component is known to readily consume the oligosaccharides provided and/or 

derived monomers.

Several challenging questions need to be addressed. First, we know very little about the 

functions of various HMO structures. Why has mammalian evolution produced such a 

diverse consortium of structures? Even more diversity is possible given the number of 

possible glycosidic linkages, suggesting that observed HMOs structures were selected by 

evolution. Second, we need to better characterize the interactions and relative effect sizes of 

the ‘anti-microbial’ and ‘pro-microbial’ components of milk on MOM development. One 

approach for addressing these questions is to use gnotobiotic animals colonized with MOMs 

from infants representing different gestational ages, milk feeding histories, and growth 

phenotypes. Alternatively, these animals can be colonized with defined collections of 

cultured bacterial strains, generated from a given donor’s microbiota; these clonally arrayed 

collections can be manipulated so that all members, or subsets, are added, with or without 

Charbonneau et al. Page 11

Nature. Author manuscript; available in PMC 2017 March 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pathogens/pathobionts, to recipient animals (Figure 3). Gnotobiotic animals colonized with 

these communities can be fed breast milk or infant formula supplemented with defined milk 

oligosaccharide structures (many of the antimicrobial elements of breast milk, including 

antibodies, lactoferrin, and lysozyme, are absent from these formulas). These models 

represent one way for determining the “rules” that govern early phases of human gut 

microbiota development.

Moving from MOM to a weaning-oriented microbiota and beyond

Recent work provides an approach for identifying a program of gut microbial community 

development that is executed during the first 2–3 years of postnatal life as infants move from 

a diet dominated by milk through a period of complementary feeding to a fully weaned state. 

Monthly collection of fecal samples from members of a Bangladeshi birth cohort with 

healthy growth phenotypes (defined by anthropometry) allowed bacterial 16S rRNA-

sequence based datasets to be generated that described the bacterial composition of their 

developing gut communities78. Random Forests-based regression identified a group of 24 of 

the most age-discriminatory bacterial strains; their relative abundances in these biologically 

unrelated individuals were used as a microbial signature to describe the state of development 

(‘age’) of their microbiota. This approach allows the age or state of maturation of any child’s 

microbiota in the population to be computed using the Random Forests-derived model and 

compared to the reference healthy cohort (whose microbiota age and chronologic age are 

highly correlated). Deviations from normal are expressed in the form of a Microbiota for 

Age Z-score (MAZ). A similar approach was used to characterize normal gut microbiota 

development in Malawian birth cohorts. Remarkably, the resulting Malawian Random 

Forests-generated model shared many of the age-discriminatory strains that were represented 

in the Bangladeshi-derived model89.

Calculating MAZ scores disclosed that microbiota development was impaired in Malawian 

and Bangladeshi children presenting with moderate acute malnutrition (MAM) or severe 

acute malnutrition (SAM)78,89. Their microbiota appeared “younger” than would be 

expected based on their chronologic age, with the severity of immaturity being greater in 

those with SAM. Moreover, studies of children with SAM indicated that their microbiota 

immaturity was not durably repaired after treatment with either of two ready-to-use 

therapeutic foods. In other words, these children had a persistent defect affecting their gut 

microbial communities78,89. Transplanting immature microbiota from stunted/underweight 

Malawian children, or microbiota from chronologically age-matched donors with healthy 

growth phenotypes, to young germ-free mice fed a diet resembling that consumed by the 

microbiota donors disclosed that immature microbiota transmitted impaired growth 

phenotypes89.

These and other studies provide preclinical proof-of-concept that gut microbiota 

development is causally related to healthy growth89,90. They also provide a microbial 

measure of normal as well as perturbed postnatal development. Knowledge of a subset of 

age-discriminatory bacterial strains that promote growth in these gnotobiotic animal 

models89 allows attention to be focused on factors that may support their establishment, 

adequate representation, and/or expressed functions. These factors include gestational age, 
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delivery mode, milk feeding history, exposures to antibiotics, and enteropathogen burden 

(Figure 3).

A related question is how microbiota development affects development of the immune 

system. This issue can be addressed in part by defining (gut) mucosal IgA responses to 

members of the microbiota91,92, using fecal samples serially collected from members of 

birth cohort studies. This approach provides one way to identify interrelationships between 

community development, development of the immune system, breast milk HMO content, 

and host growth phenotypes.

A call for human microbial community observatories

Characterizing normal gut microbiota development and the development of other body 

habitat-associated microbial communities in members of birth cohorts provides a framework 

for exploring the degree to which these processes vary across populations of infants and 

children with healthy growth phenotypes, as well as whether and how perturbations of these 

programs are related to growth faltering and the risk for and pathogenesis of various 

diseases. These studies should include an examination of the host ecological landscape that 

gives rise to the newborn child (i.e., the mother and her microbial communities starting at 

the time of conception). The results could yield insights about as yet unappreciated 

microbial contributions to a wide range of disorders that are overtly manifest, or 

foreshadowed, by changes microbial community structure and function in infancy or 

childhood (e.g., obesity93–95, immunologic disorders that include atopic states96, and 

neurodevelopmental disorders97).

Given the dramatic, myriad, and rapid changes wrought by globalization in our lifestyles, 

and the vast differences in sanitation and hygiene experienced by different populations, we 

propose that a series of ‘human microbial observatories’ be established whose purpose is to 

characterize the evolution of microbial communities in mothers before, during, and 

following their pregnancies and the development of microbial communities in their offspring 

(and perhaps in the future, the subsequent pregnancies and offspring of these children). We 

propose that the populations selected for study should not only illustrate currently distinct 

lifestyles and geographies, but also contain segments that are likely to undergo lifestyle 

changes within a generation. Entities, both private and public, that are committed to 

addressing global health challenges have already made investments that have established 

durable, trusting relationships between health care providers and such populations, and the 

infrastructure required to obtain informed consent and apply validated procedures for 

collecting and archiving biospecimens and associated metadata [e.g., the Global Enteric 

Multicenter Study (GEMS)98, the MAL-ED network99, and WASH100]. These investments 

should be leveraged for the proposed human microbial observatory programs, which will 

require sustained support given the duration of the required period of observation. 

Developing effective and innovative strategies for achieving such durable support is a 

subject that requires expertise from multiple disciplines, and in our opinion, is a compelling 

challenge whose solution(s) have broad implications for obtaining answers to this biological 

question as well as myriad others related to the promotion of human flourishing 

(eudaimonia) in the broadest sense.
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Wise and effective stewardship of our human microbial resources is a responsibility that 

extends across generations and national boundaries. Knowledge of how our microbial 

communities evolve in health and how their development is jeopardized or overtly disrupted 

provides an opportunity to discover strategies and tools for timely repair. However, 

understanding how such repair can be achieved brings great responsibility. The immediate as 

well as long term consequences of such interventions applied early in the course of a human 

life need to be determined. Rigorous preclinical tests of safety and efficacy have to be 

designed and applied in representative animal models when available. Very thoughtful 

consideration must be given to the ethical, regulatory, and societal issues and consequences 

that could arise from early interventions that shape the composition and function of our 

microbial communities. This is a time for inspiration and awe as we gain insights about how 

we function as holobionts, and a time for mindfulness and sobriety as we consider how to 

deliberately shape facets of our own developmental biology to improve wellness during our 

human lifecycle.
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Figure 1. Representation of abundant HMOs present in milk and strategies employed by infant 
gut microbiota for their degradation
(A) Secretor status and HMO composition. HMO structures that are most abundant in 

secretors are indicated by the blue arrow, while those that are most abundant in the breast 

milk of non-secretors are indicated by the red arrow. Structures at the intersection are found 

in both secretor and non-secretor mothers in similar abundances. The structures of these 

HMOs, along with their glycosidic linkages, are described by the inset key. (B) Most strains 

of Bifidobacterium use an ‘internalize, then degrade’ strategy where HMO structures are 

first imported using ABC transporters and degraded by intracellular glycoside hydrolases 

(GH). (C) Strains of Bacteroides typically employ an ‘external degradation’ strategy for 

HMO structures that involves cell surface associated carbohydrate binding proteins and 

secreted glycoside hydrolases encoded by polysaccharide utilization loci (PULs) that have 

features similar the prototypic starch utilization system (Sus) of Bacteroides 
thetaiotaomicron. This external degradation can result in ‘cross-feeding’ of secondary 

consumers in the infant gut microbiota.
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Figure 2. Discovery pipeline for characterizing the functional properties of developing human 
microbial communities
Gnotobiotic animals can be employed as preclinical models for determining the effects of 

various states of microbial community development on host developmental biology.
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