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Abstract

Identifying the cells that can be infected with HIV in vivo, and thus potentially persist as latent 

reservoirs is of high priority. Here, we report the major infected cells in a chronically-SIV infected 

macaque that developed AIDS and encephalitis. Majority of the infected cells were detected as 

non-proliferating resting cells. SIV infected non-proliferating resting cells were found to be 

playing an important role in viral pathogenesis, persistence or reservoir formation.
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CASE REPORT

Eradication of human immunodeficiency virus (HIV) in infected patients remains a major 

obstacle due to the establishment of a pool of either long-lived, productively-infected cells, 

or latently infected cells that harbor proviral DNA. It is currently believed that we may be 

able to cure HIV-1 infection if viral reservoirs are eliminated. The simian immunodeficiency 

virus (SIV) infected rhesus macaque (RM) model is a well-accepted model of AIDS and has 

been extremely useful in exploring viral reservoir where SIV infection causes escalating 

immune dysfunction by rapid and persistent depletion of both central and effector memory 

CD4+ T-cells, and perpetual immune activation and inflammation [1–7]. Here, we report an 

interesting case where SIV infected cells were in majority are nonproliferating cells that 

include T-cells, macrophages, and dendritic cells. These nonproliferating SIV+ cells may 

play a key role in the formation of viral persistence or establishment of reservoirs.

An 11.8-year-old, male Chinese rhesus macaque (RM, Macaca mulatta) was intravenously 

inoculated with 1 ml of plasma (194,981 viral RNA copies) from a SIVMAC239 infected 

macaque. The animal was euthanized on day 316 after inoculation due to the end of the 

study. The macaque maintained a high plasma viral load (log10 6.6 RNA copies/ml of 

plasma using bDNA assay from Siemens with detection limit of 125 copies/ml of plasma) 
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and low peripheral blood CD4 counts (below 200 cells/µl of blood) at the end of the study. 

Fresh and formalin-fixed tissues were collected at necropsy. All experiments were approved 

by the Tulane Institutional Animal Care and Use Committee.

Grossly and microscopically, this macaque had typical SIV lesions, like emaciation, 

lymphoid depletion in peripheral lymph nodes (LN), lymphoid follicular hyperplasia, 

lymphoplasmic and multinucleated giant cell enterocolitis. Consistent with neurological 

symptoms, this animal also had SIV giant cell meningoencephalitis characterized by 

lymphoplasmacytic perivascular cuffing mixed with many foamy histiocytes and 

multinucleate giant cells. Cytomegaly, karyomegaly and occasionally intranuclear inclusion 

bodies were noted in multiple organs that indicated this animal had opportunistic CMV 

infection due to SIV induced immunodeficiency. It is one of the most common opportunistic 

viral infections in both SIV infected macaques and HIV infected patients [8].

Quantification of SIV RNA positive cells was performed by in situ hybridization using 

antisense SIV riboprobes (Lofstrand Labs, Gaithersburg, MD) comprising essentially the 

entire SIV genome as described previously [9–13]. Labeled cells were visualized using 

horseradish alkaline phosphatase-conjugated sheep antidigoxigenin antibodies. For objective 

quantification of the number of infected cells/mm2 of tissue, computer assisted image 

analysis was used. Briefly, the number of infected cells/mm2 was determined by using a 

Leica DMLB microscope with SPOT insight digital camera (Digital Instrument Inc, Sterling 

Heights, MI) interfaced to Image-Pro Plus (Media Cybernetics, Inc.) image analysis 

software. In situ hybridization demonstrated that midbrain had the highest number of SIV-

RNA+ cells, followed by ileum, jejunum, inguinal LN, mesenteric LN, axillary LN, spleen 

and colon (Supplemental Fig. 1A). SIV RNA+ cells diffusely distributed throughout these 

organs (Supplemental Figs. 1B–E). However, SIV-RNA+ cells were undetectable in bone 

marrow and thymus suggesting that these organs play a minor role in viral replication or as a 

source of reservoir.

To further phenotype these SIV infected cells, tissues were processed for in situ 
hybridization for SIV mRNA and immunohistochemistry for CD3 (Rabbit anti-human 

polyclonal, Dako), Ham56 (clone Ham56, IgM kappa, Dako), dendritic cell specific 

ICAM-3 grabbing nonintegrin (DC-SIGN, clone DCN46, IgG2b kappa, BD Biosciences), 

Mac387 (clone MAC387, IgG1 kappa, Dako), and Ki67 (clone MIB-1, IgG1 kappa, Dako) 

by multilabel confocal microscopy. In brief, formalin-fixed, paraffin-embedded tissue 

sections were stained first with anti-sense SIV riboprobes. SIV mRNA positive cells were 

detected by a 2-hydroxy-3-naphthoic acid-2 phenylanilide phosphate (HNPP) fluorescence 

detection kit (Roche Diagnostic Corporation, USA). Sections were then co-labeled with any 

one of the unconjugated primary antibodies (CD3, Mac387, Ham56, DC-SIGN and Ki67) 

and then with secondary antibodies conjugated to either Alexa 488 or Alexa 633 (Life 

Technologies, USA). Nuclear staining was performed with anti-nuclear ToPro3 antibodies 

(Life Technologies). After staining, slides were washed, and labeled tissue sections were 

mounted using Prolong Gold antifade medium (Life Technologies) and imaged using a TCS 

SP2 confocal laser scanning microscope (Leica, Germany) [14–17]. Negative control slides 

were incorporated in each experiment either by omitting the primary antibody or using 

isotype IgG1 and IgG (H+L) controls [14–16]. The midbrain contained multiple multi-
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nucleated giant cells (MNGC) infected with SIV with occasional CD3+ T-cells around these 

MNGC (Supplemental Fig. 2A). In both jejunum and ileum, SIV infected CD3+ T-cells 

were also detected (Supplemental Fig. 3B–C). Consistent with previous findings [18, 19] 

SIV infected monocytes/histiocytes (Mac387+) and/or Ham56+ macrophages were also 

detected in midbrain, jejunum and ileum demonstrating these cells may act as reservoirs for 

the virus (Fig. 1 and Supplemental Figs. 2D–F). Finally, DC-SIGN (a marker of dendritic 

cells) positive cells were also found in midbrain, ileum and mesenteric LN tissues (Fig. 1 

and Supplemental Figs. 2G–H). A few DC-SIGN+ cells distributed in the lamina propria of 

the ileum were positive for SIV. Similarly, DC-SIGN+ cells distributed along the barrier of 

the germinal center and T-cell zone of the follicle were also positive for SIV indicating that 

dendritic cells may also play an important role as a viral reservoir. The data consistent with 

previous findings [10, 18, 20] suggest that CD3+, Mac387+, Ham56+, and DC-SIGN+ cells 

were all contributing to the marked viral infection and replication in these tissues.

Total Ki67pos proliferating cells in various tissues were quantified (Table 1). Interestingly 

the colon (491 ± 54 cells/mm2) had the highest number of proliferating cells compared to 

other tissues examined. However, interestingly, a significant higher numbers of SIV positive 

cells were nonproliferating, resting (Ki67neg) cells in midbrain, mesenteric LN, and jejunum 

(Fig. 1, Table 1). Representative confocal images of midbrain, ileum, mesenteric LN and 

jejunum tissues (Fig. 1 and Supplemental Figs. 2I–J) suggested that majority of the SIV 

infected cells in this particular animal were nonproliferating (Ki67neg) cells.

Majority of the SIV infected cells were documented as resting memory CD4+ T-cells during 

acute stage of SIV infection [21, 22]. The presence of increased number of SIV-infected 

resting-cells suggested these cells may serve as a potential source of viral reservoirs and 

replications. It may be possible that these cells were initially infected while they were 

activated (expressed reservoir), yet later became quiescent or “resting” cells that had 

persistent virus (latent reservoir). Overall, we presented an interesting case where the 

nonproliferating resting cells could be the reservoir of SIV or HIV in AIDS patients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
SIV RNA positive cells were detected by multilabel confocal microscopy in ileum and 

midbrain. Ham56+ macrophages (A) and DC-SIGN positive dendritic cells (B) are shown in 

ileum and midbrain tissues respectively. Colocalization of Ham56 and SIV positive cells 

were shown in yellow. Distribution of SIV infected cells in proliferating (Ki67pos) and 

resting (Ki67neg) cells were shown in ileum (C) and midbrain (D) tissues by multilabel 

confocal microscopy. SIV positive cells in resting cells are indicated by white arrows. 

Yellow arrows represent the double positive cells for the respective markers in each panel. 

Inserts in figures B and D show DC-SIGN positive and Ki67 positive SIV infected cells 

respectively.
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Table 1

Quantification of total Ki67posand SIV RNA positive proliferating (Ki67pos) and resting (Ki67neg) cells in 

different tissues.

Tissue Ki67pos

(mean ± SEM)#
SIVposKi67pos

(mean ± SEM)#
SIVposKi67neg

(mean ± SEM)#
Significance between SIVposKi67pos

and SIVposKi67neg cells/mm2

Midbrain 11 ± 4 5 ± 2 58 ± 8 P<0.0001

Mesenteric LN 265 ± 58 3 ± 2 13 ± 3 P<0.001

Jejunum 191 ± 44 2 ± 1 28 ± 6 P<0.0001

Ileum 459 ± 93 15 ± 4 36 ± 14 NS

Colon 491 ± 54 0.7 ± 0.5 1.4 ± 0.8 NS

#
cells/mm2; Twenty fields (40× magnification) in each slide were counted by two different individuals

SEM: standard error of mean
“pos” and “neg” denote positive and negative respectively
NS: not significant (using two-tailed paired t test, α=0.05)
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