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Abstract

Objective—This paper describes a data-analytic modeling approach for prediction of epileptic 

seizures from intracranial electroencephalogram (iEEG) recording of brain activity. Even though it 

is widely accepted that statistical characteristics of iEEG signal change prior to seizures, robust 

seizure prediction remains a challenging problem due to subject-specific nature of data-analytic 

modeling.

Methods—Our work emphasizes understanding of clinical considerations important for iEEG-

based seizure prediction, and proper translation of these clinical considerations into data-analytic 

modeling assumptions. Several design choices during pre-processing and post-processing are 

considered and investigated for their effect on seizure prediction accuracy.

Results—Our empirical results show that the proposed SVM-based seizure prediction system 

can achieve robust prediction of preictal and interictal iEEG segments from dogs with epilepsy. 

The sensitivity is about 90–100%, and the false-positive rate is about 0–0.3 times per day. The 

results also suggest good prediction is subject-specific (dog or human), in agreement with earlier 

studies.
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Conclusion—Good prediction performance is possible only if the training data contain 

sufficiently many seizure episodes, i.e., at least 5–7 seizures.

Significance—The proposed system uses subject-specific modeling and unbalanced training 

data. This system also utilizes three different time scales during training and testing stages.

Index Terms

data-analytic modeling; epilepsy; iEEG; feature representation; subject-specific modeling; post-
processing; seizure prediction; SVM; unbalanced classification

I. Introduction

There is a growing interest in data-analytic modeling for detection and prediction of 

epileptic seizures from intracranial electroencephalogram (iEEG) recording of brain activity 

[1]–[11]. Seizure prediction has the potential to transform the management of patients with 

epilepsy by administering preemptive clinical therapies (such as neuromodulation, drugs) 

and patient warnings [12]. It is commonly accepted that statistical characteristics of iEEG 

signal change prior to seizures. However, robust seizure prediction remains a challenging 

problem, due to the absence of long-term iEEG data recordings containing adequate seizures 

for training and testing [11] and patient-specific nature of seizure prediction models [1]. The 

main challenge for successful development of seizure forecasting models is a mismatch 

between clinical considerations and standard data-analytic modeling assumptions underlying 

most machine learning algorithms. Hence, we propose an SVM-based system for seizure 

prediction, where the design choices and performance metrics are closely correlated with 

clinical objectives. Furthermore, we apply this system to several data sets with adequate 

preictal and interictal segments to rigorously validate its performance.

This paper describes a data-analytic modeling approach for seizure prediction from canine 

iEEG recordings. Using canine data (from dogs with epilepsy) is important due to the 

biological similarity of canine and human seizures, and the availability of high-quality 

canine iEEG data [2], [13]–[15]. Previous research strongly suggests that a successful 

seizure forecasting should be subject-specific [8], [9], [16]–[18]. That is, a separate data-

analytic model should be estimated for each dog (or for each human subject), using only that 

dog’s past iEEG recordings as training data. The subject-specific or patient-specific nature 

of data-analytic modeling implies the need for long recordings of iEEG used as labeled 

training data. This provides additional motivation for using available canine data sets with 

months of recorded iEEG data.

Most seizure prediction studies assume that there are three distinct ‘states’ of brain activity 

in subjects with epilepsy (e.g., interictal, preictal and ictal), and that such states can be 

detected from iEEG signal. In fact, the ictal state can be easily detected from iEEG signal. 

However, the task of seizure forecasting (or prediction) is quite challenging, as it requires 

discrimination between interictal vs. preictal states. This clinical hypothesis (about 

discrimination between interictal and preictal states) can be empirically validated using 

previously recorded iEEG segments classified (or labeled by a human expert) as interictal or 

preictal. Using these past labeled data (aka training data), we estimate a data-analytic model 
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for discriminating between interictal and preictal iEEG segments, in order to apply it for 

prediction of future inputs (or test inputs). Then accurate prediction of test inputs (aka out-

of-sample data) may be used as the evidence for preictal state. Note that all data-analytic 

models discussed in this paper are subject-specific, and a separate prediction model is 

estimated for each dog.

The task of discriminating between preictal and interictal states is called seizure prediction 
or seizure forecasting (from iEEG signal). Thus, we adopt a binary classification setting, 

where a classifier is estimated using training data, and then its prediction performance is 

evaluated using out-of-sample test data. Support Vector Machine (SVM) classifiers are 

adopted in our seizure prediction system, due to their robustness for modeling high 

dimensional data.

Next, we discuss iEEG data preparation preceding data-analytic modeling. The training data 

represents 4hr segments obtained from a continuous stream of iEEG recording, and these 4hr 

segments are labeled as either preictal or interictal by human experts. That is, preictal 
segments correspond to lead seizures (defined as seizures preceded by a minimum of 4-hour 

period with no seizures), and interictal segments were chosen randomly from iEEG stream 

(but restricted to be at least one week away from any seizure). Note that the available iEEG 

data within one week of recorded seizures but not preceding a lead seizure has been 

discarded (i.e., not used for modeling). This labeled data set is appropriate for many 

statistical and machine learning techniques developed for binary classification. Since 

seizures are very rare events (for most patients and canines), there are plenty of available 

interictal data, but very few preictal data. Hence, it is common to preselect a ratio of 

interictal to preictal training data. This asymmetric nature of seizure data is usually known 

as an ‘unbalanced setting’ or ‘unbalanced classification’ in data-analytic studies [19], [20]. 

Unbalanced data modeling affects both training and testing stages, as well as the choice of 

proper performance metrics. For example, wide availability of interictal data implies that 

classification of interictal segments is intrinsically easier than classification of preictal 

segments. This consideration may motivate certain modifications of SVM classifiers and 

may also suggest using appropriate metrics for prediction performance.

This paper shows how the understanding of clinical assumptions and characteristics of 

available data directly affects the design choices for our SVM-based seizure prediction 

system. The paper is organized as follows. Section II presents important clinical 

considerations (for seizure prediction) leading to proper formalization of seizure prediction 

under predictive classification setting. Section III describes various design choices for the 

proposed seizure prediction system, including data representation and feature engineering. 

Section IV describes experimental design and post-processing steps important for robust 

prediction performance. Section V presents empirical performance evaluation using several 

canine data sets. Discussion and conclusions are presented in Section VI and Section VII. A 

preliminary version of this work has been reported in [21].
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II. Problem Formalization for Seizure Prediction

There are several important design considerations for data preparation and data encoding 

(preceding data-analytic modeling), leading to proper formalization of seizure prediction 

under classification setting as discussed next.

A. Available iEEG Data and Clinical Considerations

The available data are taken from a continuous stream of iEEG recording, then segmented 

and labeled as either ‘preictal’ or ‘interictal’ by human experts (Data are available at ftp://

msel.mayo.edu). The preictal segment is defined as the segment preceding an ictal (or 

seizure) period that can be clearly identified from the iEEG signal. However, the length of 

preictal segments is defined differently between studies, ranging from 10 to 60 minutes 

without much or any justification [2]–[6]. In addition, the interictal segments are chosen as 

any other available continuous iEEG data sufficiently far away from a seizure. There is 

clearly an overabundance of available interictal data, so it is typical to preselect an 

‘imbalance ratio’ of interictal to preictal training data. The imbalance ratios used in our 

study typically range from 8:1 to 10:1 (for different dog-specific models).

The problem of seizure prediction corresponds to classification of continuous iEEG 

segments (about 0.5–1hr long) extracted from iEEG signal recording. Yet in many studies 

this problem has been formalized as classification of short moving windows of iEEG signal 

(typically, 20s long). This formalization is adopted mainly due to data-analytic reasons, 

since a single 1hr segment contains 180 samples (corresponding to 20s windows). Such a 

significant increase in the number of training samples makes the classifier estimation/

training possible. However, it is not clear how accurate prediction of short windows is 

relevant to the clinical objective of predicting 1hr segments. In particular, during the 

operation or test stage, a prediction is made for each new moving window. This results in a 

large number of isolated mispredictions for 20s windows. Typically, these mispredictions 

adversely affect the prediction accuracy. In order to address this problem, several previous 

studies adopted simple post-processing, such as 3- out-of-5 majority voting (over five 

consecutive predictions for 20s windows), or a Kalman filter to smooth out the classifier 

outputs during testing [4]. In the proposed system, we differentiate between the time scales 

for SVM classification (20s windows) vs. clinical prediction (1hr segments). Hence, iEEG 

data is represented in two time scales:

• feature vectors extracted from 20s windows are used as inputs to SVM classifier,

• 1 hr segments (180 consecutive 20s windows) are used for prediction (or testing 

stage).

Thus prediction of 1hr segments involves some extensive post-processing, or majority voting 

over 180 consecutive predictions for 20s windows. These post-processing rules should 

reflect statistical properties of iEEG signals and also reflect the understanding of SVM 

classifiers (for unbalanced data), as explained in Section IV-B.

Two additional design considerations important for seizure prediction include:
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• Preictal period (PP), or preictal zone, preceding a seizure. The duration of 

preictal period is clinically unknown, however it is implicitly defined by the 

duration/size of labeled segments in the training data.

• Prediction horizon (PH) defined as time interval after a seizure prediction/

warning is made, within which a leading seizure is expected to occur. The 

prediction horizon is also unknown but it cannot be shorter than the preictal 

period. Also note that it is much easier to make predictions with very long 

prediction horizon. For example, one can predict reliably that the next seizure 

will occur sometime within the next year, but it is much harder to predict that a 

seizure will occur within the next two hours.

These two design parameters, PP and PH, are clearly important for a successful seizure 

prediction. Due to subject-specific nature of seizure prediction, there have been multiple 

attempts to ‘optimize’ these parameters. Past research in this area reflects two extreme 

views:

1. It may be possible to find good/optimal values of PP and PH for all patients [8], 

[9], [16]. Typically, good values for PP range between ten minutes to one hour. 

Sometimes, the selection of PH is performed independently of the chosen PP 

(subject to natural constraint PH > PP).

2. An optimal choice of PP should be always seizure-dependent. For example, 

Bandarabadi et al. [17] present a statistical analysis for the optimal choice of PP 

and conclude that optimal PP is seizure-specific, i.e., it is not possible to select a 

single good PP for future data.

Our approach to this dilemma is that inherent variability of seizure prediction should be 

captured via subject-specific modeling. So we adopt the view (1) by selecting fixed values of 

PP and PH for all patients/dogs. Specifically, we use 1hr preictal period—which effectively 

assumes that there is a ‘warning signal’ somewhere within 1hr before a lead seizure. Note 

that using 1hr PP is consistent with earlier studies using shorter PP (say, 10min or 20min), as 

long as the value of PH is at least 1hr. With regard to PH, our modeling approach uses two 

possibilities (1hr and 4hrs) during testing (or seizure prediction), reflecting the intrinsic 

statistical variability of seizure data.

Finally, we point out that a good choice of PP and PH reflects a number of clinical and data-

analytic constraints. Moreover, this choice is meaningful only in the context of a particular 

seizure prediction system (which uses other design parameters). For example, using 10min 

preictal period will result in 6-fold reduction of preictal training data. This would prevent an 

accurate model estimation (SVM training) due to high-dimensionality of input data samples 

(20s windows). In summary, our selection of 1hr preictal period can be empirically justified 

only by the empirical results (seizure prediction performance) presented later in the paper.

B. Summary of Available Data

The available data for each dog are continuously recorded from 16 channels of raw iEEG 

data sampled at 400Hz. Expert review of the recorded iEEG suggested multifocal seizure 

onset for all dogs, but propagation of seizures from a single focal onset region distant from 
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the implanted electrodes cannot be excluded. After pre-processing to remove discontinuities 

and large artifacts, each 4hr segment of iEEG data is labeled as ‘interictal’ or ‘preictal’ by 

human experts. Here a typical canine data set may contain several leading seizures (4hr 

preictal segments) and about eight times more interictal segments. Table I summarizes the 

number of interictal and preictal segments for the six dogs in our analysis. All dogs recorded 

at least seven seizure episodes (preictal segments corresponding to leading seizures), except 

for Dog-M3 (having just three leading seizures). Note that Table I represents a global view 

of the data as a collection of 4hr segments. However, data-analytic modeling is performed at 

several time scales. That is, 20s windows of iEEG signal are used for classifier training 

(SVM model estimation), whereas prediction/ testing is performed for 1hr segments 

(represented as a group of 180 windows). Optionally, SVM system’s predictions for four 

consecutive 1hr segments may be aggregated to form a prediction for each 4hr segment.

III. Feature Engineering and SVM System Design

For data-analytic modeling, each moving window is represented as a set of input features. A 

common set of input features for SVM classification is a set of spectral features calculated 

from the iEEG signals. Standard Delta (0–4Hz), Theta (4–8Hz), Alpha (8–12Hz), Beta (12–

30Hz), and Gamma (30–100Hz) spectral bands are the most common frequency ranges used, 

with some studies splitting the Gamma band into 3–4 sub-bands [2], [4]. Some studies also 

use additional features such as autoregressive errors, decorrelation time, wavelet 

coefficients, etc [3]. However, these studies have not had the same level of classification 

accuracy as studies that used only spectral features. Calculation of spectral features requires 

a predefined time window, with each window resulting in one data sample representing 

spectral features (for this window). The time window sizes vary from study to study, and the 

common window size is 20 seconds (also used in our system). Note that using 20s windows 

as training samples for model estimation is also clinically plausible, since seizure warning 

signals are often manifested as auras that last just a few seconds.

A. Feature Engineering

We represent each 1hr iEEG segment as a group of 20s non-overlapping windows. Further, 

we utilize three approaches to extract features from 20s windows, as illustrated in Fig. 1:

1. The iEEG signal within a 20s window is first passed through six Butterworth 

bandpass filters corresponding to 6 standard Berger frequency bands (0.1–4Hz, 

4–8Hz, 8–12Hz, 12–30Hz, 30–80Hz and 80–180Hz). Then the output signals 

from the filters are squared to obtain the estimates of power in six bands. This 

procedure is repeated for 16 iEEG channels and yields a 96-dimensional feature 

vector. This feature encoding will be referred to as BFB throughout this paper.

2. The frequency spectrum of the iEEG signal is obtained by applying Fast Fourier 

Transform (FFT) to each 20s window. Next, the power in each Berger frequency 

band is approximated by summing up the magnitudes of the spectrum in the 

corresponding band. This procedure, indicated as FFT in this paper, also encodes 

the spectral contents in 16 iEEG channels as a 96-dimensional feature vector. 

Note that both BFB and FFT methods perform signal encoding through power 
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estimation. But the former method utilizes signal representation in time domain, 

while the latter in frequency domain.

3. The third feature extraction, XCORR, calculates the cross-channel correlation of 

signals from two different channels in order to measure their similarity. Given 16 

iEEG channels, there are 120 different pairs. Calculating the cross-channel 

correlations for all 120 pairs results in a 120-dimensional feature vector.

Note that all three feature representation methods have the same or similar number of 

features. This observation may be important for interpretation of SVM modeling results 

reported later in Section V, because all three feature encoding methods yield similar 

dimensionality of the input space for SVM classifier. That is, comparison of prediction 

performance results for these feature encoding methods (reported in Section V) can indeed 

suggest possible advantages of a particular feature encoding method.

B. Proposed System

Next, we describe an SVM-based system for seizure prediction from iEEG data. The 

available iEEG data include pre-processed 4hr segments labeled as interictal or preictal. The 

data-analytic model should predict future (out-of-sample) 1hr test segments that were never 

used for model estimation. Hence, the proposed system assumes 1hr preictal period and 4hr 
prediction horizon [21].

In our system, an SVM classifier is trained using 20s labeled windows and then used to 

predict 1hr unlabeled test segments, as shown in Fig. 2. Many earlier SVM-based prediction 

systems used the same implementation for the training stage, i.e., training an SVM classifier 

using labeled samples corresponding to features extracted from short moving windows [2], 

[4], [6]. However, all these earlier efforts aimed at achieving good prediction for 20s 

windows, according to standard classification setting adopted in machine learning [19], [20]. 

In contrast, our system aims to make predictions for 1hr test segments. Hence, during the 

operation stage shown in Fig. 2(b), the system should assign the same class label to all 20s 

windows of an 1hr test segment. This involves some form of post-processing as explained 

later in Section IV-B.

The design of our system for seizure prediction is driven mainly by scarcity and poor quality 

of preictal data. That is, scarcity refers to very limited amount of preictal data (about 3–11 

seizure episodes), and ‘poor quality’ denotes the fact that a ‘seizure warning signal’ may 

occur somewhere within the 4hr training segment labeled as ‘preictal.’ We can reasonably 

assume that preictal signal is more likely to occur right before seizure onset; so only the last 
hour of a 4hr segment is used for training. Hence, the training data for model estimation 

include 1hr segments labeled as interictal or preictal. The limited amount and poor quality of 

preictal data contribute to the difficulty of reliable seizure prediction. In our system, these 

negative factors are partially alleviated by [21]:

• Large amount of interictal data, leading to highly imbalanced ratio of interictal 

vs. preictal data (typically, 8:1 to 10:1) during model estimation or training stage.

• Proper specification of training (model estimation) and ‘successful prediction’ 

(or testing). This includes using different time scales for training and operation 
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stages (shown in Fig. 2), and also additional post-processing steps critical for 

robust prediction, as discussed next.

From the clinical perspective, the problem of seizure prediction can be formalized as 

predictive classification of 1hr iEEG segments assuming 4hr prediction horizon. 

Consequently, the training data for model estimation includes 1hr segments labeled as 

preictal or interictal. The system is designed to predict/classify continuous 1hr test segments 

(as preictal or interictal), signaling that a seizure will or won’t occur in the next 4-hour 

period [21]. Hence, the test data consist of 4hr test segments that should be classified 

(predicted) as preictal or interictal. The system makes actual predictions for 1hr test 

segments, and further a 4hr segment is predicted as

• preictal, if at least one of the four consecutive 1hr test segments is classified as 

preictal; or

• interictal, if all four 1hr test segments are classified as interictals.

Our system’s predictions are made in three time scales (20s, 1hr, and 4hr) as shown in Fig. 

3. The system makes predictions for 20s windows, which are then aggregated into 

predictions for 1hr segments. Finally, predictions for four consecutive, non-overlapping 1hr 

test segments are combined into predictions for 4hr segments.

C. Prediction Performance Indices

The most common prediction performance metrics in machine learning are False Positive 

(FP) and False Negative (FN) error rates. A FP error corresponds to incorrect prediction for 

a preictal segment. A FN error is made when a system mispredicts a preictal test segment as 

‘interictal.’ It is important to note that all performance metrics for seizure prediction are 

contingent upon the pre-defined length of preictal period and prediction horizon. However, 

many earlier studies report FP/FN error rates without clearly defined preictal period and/or 

prediction horizon. Empirical results for our system’s prediction performance (shown in 

Section V) present FP and FN error rates for:

• 1hr test segments, and

• 4hr test segments (formed by combining predictions for four 1hr segments).

Note that reporting FP and FN error rates is identical to reporting errors for interictal test 

segments (FP) and for preictal test segments (FN). Further, we also report Sensitivity (SS) 

and False-Positive Rate (FPR) per day, as both are commonly used in seizure prediction 

research. The two sets of performance indices are in fact equivalent.

IV. Experimental Design and Post-processing

A. Experimental Design

This section describes experimental settings for data-analytic modeling (for the system 

shown in Fig. 2), using the Dog-L4 data set as an example. This data set has seven recorded 

leading seizures, i.e., seven 4hr segments labeled as preictal, and about eight times more 

interictal segments. The experimental design reflects both the clinical objectives (prediction 
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of 1hr test segments) and data-analytic constraints (very small number of preictal segments 

in the training data).

Based on these considerations, we adopted an unbalanced setting for training data (over a 

balanced one). Under unbalanced setting, the amount of interictal (negative) segments is 

about eight times more than that of preictal (positive) data. Since Dog-L4 data set has seven 

seizures, 6 preictal along with 55 interictal 1hr segments are used for training (model 

estimation), and two unlabeled 1hr segments are used for testing. Under this experimental 

setting, testing is always performed using out-of-sample data. This unbalanced modeling set 

up is summarized in Table II, which shows the labels of iEEG segments used for training 

and testing in each modeling experiment.

According to this experimental setting, we estimate seven different models and each model 

is tested on its own test set. The final performance index is the prediction accuracy, i.e., the 

number (or fraction) of accurately predicted test segments (in all seven experiments). 

Reporting prediction accuracy separately for interictal and preictal test segments reflects a 

requirement that a good system should classify each iEEG segment well, rather than many 

segments over a long observation period. This is because seizures occur very infrequently, so 

a trivial decision rule ‘label every segment as interictal’ will yield quite high prediction 

accuracy (over long observation period), but it is clinically useless [21].

Further, we discuss details of training the SVM model shown in Fig. 2(a). The SVM 

complexity parameter C is estimated via 6-fold cross-validation on the training set [19]–

[21], so that balanced validation data always include samples from one interictal and one 

preictal segment. Note that 6-fold cross-validation is used because Dog-L4 training data 

have six preictal segments. For other data sets, M-fold cross-validation is used if the training 

data contain M preictal segments. All SVM training and cross-validation are performed 

using equal misclassification costs. There are three important points related to SVM 

modeling under unbalanced setting [21]:

1. Linear SVM parameterization is adopted, even though available training data 

may not be linearly separable. Yet, introducing nonlinear kernels is avoided, as it 

may result in overfitting, due to high variability of (very limited) preictal training 

data.

2. Balanced validation data set was used for model selection (e.g., tuning C 

parameter). The decision to use balanced validation data reflects the clinical 

objective that the system should accurately predict each test segment.

3. Although SVM training is performed using equal misclassification costs, the 

combination of using unbalanced training data and balanced validation data is 

formally equivalent to using unequal misclassification costs [19].

B. Post-processing

During the test stage shown in Fig. 2(b), the prediction of a test segment involves some kind 

of post-processing or majority voting over all 180 windows (comprising this 1hr test 

segment). This post-processing should be related to the properties of binary SVM classifiers, 
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conveniently represented using the histogram-of-projections technique for visual 

representation of the trained SVM model [19]–[22]. This technique displays the empirical 

distribution of distances between (high-dimensional) samples and the SVM decision 

boundary (of a trained SVM model).

A typical histogram of projections of SVM model estimated using Dog-L4 training data is 

shown in Fig. 4(a). In the figure, the empirical distribution is represented in the form of a 

univariate histogram of distances for training samples (or test samples), along with SVM 

decision boundary (marked as ‘0’ distance on x-axis) and SVM margin borders for negative 

and positive classes (marked as ‘−1/+1’). Further, the x-axis of a histogram represents a 

scaled distance between a high-dimensional feature vector and SVM decision boundary. The 

y-axis represents the fraction of samples. The distance to the decision boundary is scaled so 

that the margin borders always have values −1 or +1.

The training data correspond to high-dimensional feature vectors for 20s windows. As 

shown in Table I and II, the training data include 55 interictal and 6 preictal 1hr segments; so 

it is very imbalanced. Note that a small portion of the training interictal segment (in red) 

falls on the wrong side of the decision boundary, indicating very small error rate (for 20s 

windows). A larger portion of the training preictal data (in blue) falls on the wrong side of 

SVM model, suggesting higher FN error rate. However, the histogram in Fig. 4(a) indicates 

that interictal (red, negative) and preictal (blue, positive) training samples are generally well-

separated by the SVM model.

The test data consist of one preictal and one interictal segment, and typical histograms for 

such balanced test data are shown in Fig. 4(b)–(d). The majority of samples for interictal test 

segment fall on the correct side of the decision boundary ‘0.’ Yet the histogram for preictal 

test samples is very unstable, i.e., it can be right-skewed or, left-skewed with respect to 

decision boundary, or even may fall within the margin borders, as shown in Fig. 4(b), 4(c), 

and 4(d), respectively. These observations can be used to implement meaningful post-

processing rules for classifying 1hr test segments, e.g., majority voting over 180 predictions 

for all 20s windows comprising 1hr test segment.

In our system, we adopted the 70% majority threshold [21]. That is, if at least 70% of all 

SVM predictions (for a given 1hr test segment) fall on one side of SVM decision boundary, 

this segment is classified as Reliable Interictal or Reliable Preictal; otherwise, it is classified 

as Unknown. As shown in Fig. 2(b), our system can make three different predictions. For 

example, the histograms of the preictal test segments (blue) in Fig. 4(b), 4(c), and 4(d) will 

be classified as reliable interictal (an error), reliable preictal, and unknown, respectively. On 

the other hand, all three interictal test segments (red) in Fig. 4(b)– (d) will be correctly 

predicted as reliable interictal.

The notion of reliable predictions for 1hr test segments in our system is quantified as the 

percentage of test inputs (20s windows) falling on one side of the decision boundary, as 

illustrated in Fig. 5(a). Three important points about ‘reliable’ predictions should be 

highlighted:
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1. The reliability of interictal predictions is expected to be higher than that of 

preictal predictions, since the histograms of projections for training interictal 

samples are much more stable than those for preictal samples.

2. Due to high confidence in interictal predictions (and low confidence in preictal 

predictions), segments that cannot be predicted reliably as interictal should be 

regarded as preictal. That is, 1hr test segments classified as ‘unknown’ in our 

system (see Fig. 2(b)) will be always regarded as ‘preictal,’ such as the segment 

(in blue) shown in Fig. 4(d). Hence, the post-processing decision rules for test 

segments can be summarized as follows:

An 1hr test segment is classified as ‘interictal’ if at least 70% of its 20s 

windows are predicted as interictal; otherwise this segment is classified as 

‘preictal.’

3. The confidence of predictions can be also controlled by the threshold for making 

prediction decision. In particular, instead of using SVM decision boundary 

(marked as ‘0’) for classification decision, we can use the margin borders 

‘−1/+1,’ as illustrated in Fig. 5(b). That is, reliable predictions correspond to test 

input samples falling on the correct side of SVM margin borders; whereas 

predictions falling between the margin borders are regarded as ‘unreliable.’ 

These choices for threshold level are discussed in Section V-D.

V. Empirical Evaluation

This section describes prediction performance results for the proposed system using 

experimental setup outlined in Section IV. These results illustrate the effect of system’s 

design choices on its prediction performance. These design choices include both pre-

processing (e.g., three feature representations) and post-processing (e.g., making predictions 

for 1hr vs. 4hr test segments). As noted earlier in Section III-B, seizure prediction using 4hr 

prediction horizon can be technically implemented by combining SVM predictions for four 

consecutive 1hr test segments. That is, a 4hr prediction horizon is modeled via 4hr test 

segment, which is classified as preictal only if at least one of the four consecutive 1hr test 

segments is predicted as preictal.

A. One-Hour vs. Four-Hour Test Segment

Prediction results for Dog-L4 (using the experimental design shown in Table II) are 

summarized in Table III. Specifically, Table III shows the prediction results for test segments 

under three different feature representations. This table presents predictions for four 

consecutive 1hr test segments, treated independently, under ‘1hr’ column. Combining these 

1hr predictions into a single prediction is shown under ‘4hr’ column. Symbols -, +, and ? 

denote ‘reliable interictal,’ ‘reliable preictal,’ and ‘unknown’ predictions, respectively.

These results indicate very good (stable) predictions for interictal test segments, and rather 

unstable performance for preictal segments. In particular, the patterns of 1hr predictions for 

preictal segments vary significantly under three feature encodings. However, most preictal 

test segments are correctly classified when four 1hr predictions are combined together. For 
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example, results under the FFT feature encoding indicate 100% prediction accuracy for 4hr 

preictal segments. Further the prediction errors for 4hr preictal segments are smaller than 

those for 1hr segments, for all feature representations. This observation underscores the 

significance of ‘4hr prediction horizon’ aspect in our system, discussed in Section III-B.

Next, we present prediction performance results for several representative data sets, under 

three feature encodings. All modeling results follow the same methodology as presented in 

Section IV for Dog-L4 data set. That is, for each data set we estimate several SVM models, 

so that the number of experiments equals the number of seizures in the available data. Table 

IV summarizes the prediction performance results. These results show error rates for 4hr test 

segments, obtained by combining predictions for four consecutive 1hr segments made by the 

system.

Due to asymmetric nature of the data, we report the FP and FN error rates separately, where 

FP and FN errors correspond to interictal and preictal errors, respectively. All prediction 

performance results are presented using two equivalent performance indices, i.e., FP and FN 

test error rates, and SS and FPR per day. Empirical results in Tables III and IV suggest that 

no single feature encoding is consistently superior to others. As expected, results in Table 

IV(a) indicate high FN error rate and much lower FP error rate. This is due to scarcity and 

poor quality of preictal training data, as noted in Section III-B.

B. Combining Predictions

Comparing the predictions for 1hr test segments under three different feature encodings in 

Table III suggests that some errors can be eliminated if the three predictions were combined. 

For example, an 1hr interictal segment in Experiment 2 of Dog-L4 is classified as unknown 

‘?’ under FFT, but is reliably predicted as interictal under BFB and XCORR encodings, as 

shown in Table III. Similarly, the last 1hr interictal segment in Experiment 4 is predicted as 

‘unknown’ under XCORR, but is classified correctly under BFB or FFT.

Therefore, we suggest combining the 1hr-segment predictions under BFB, FFT, and 

XCORR encodings before making the decisions for the 4hr segments. The combining rule is 

a simple majority voting (2-out-of-3). The corresponding error rates are shown in Table 

IV(a) under the ‘Combo’ column. Using this combining rule, both FP and FN error rates are 

reduced relative to error rates achieved by each feature representation. Equivalently, this 

combining rule results in improved sensitivity and reduced false-positive rate per day for all 

data sets, as shown in Table IV(b). Note that using such rule, system’s predictions could be 

better (but never worse) than predictions obtained by each component classifier (using its 

own feature encoding).

C. Insufficient Preictal Data

Prediction results shown in Table IV suggest rather poor prediction accuracy for Dog-M3. 

For instance, under FFT, 33% FP error rate translates to one false seizure prediction every 12 

hours, and 33% FN error rate means that one seizure (out of three) is mispredicted. Such a 

poor prediction performance can be anticipated/explained by noting that the available data 

set contains only three preictal segments (see Table I). These results suggest that good 
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predictions using the proposed system may be possible only if available data have 

sufficiently many (say, at least six) preictal segments.

Typical histograms of projections for Dog-M3 are shown in Fig. 6. Since Dog-M3 data set 

has only three seizures, SVM modeling requires three experiments, so that each experiment 

uses two preictal segments for training and one for testing. The histograms shown in Fig. 6 

clearly indicate that an SVM model (estimated using just two preictal training segments) 

cannot consistently predict preictal test segments [21].

This phenomenon may have a simple clinical explanation: all subject-specific seizures have 

two to three different modalities, e.g., seizures occurring during sleep, or during awake state, 

or seizures caused by stress. Clearly, data-analytic models should include all subject-specific 

modalities in the training data, in order to achieve clinically acceptable prediction 

performance. When the available data contain just a few seizures, this condition is not likely 

to be satisfied. For example, assume that for Dog-M3 two seizures (used as training data) 

occurred during awake state, and one seizure (used for testing) occurred during sleep. Then, 

of course, the data-analytic model (estimated using preictal segments during awake state) 

would not reliably predict seizures during sleep. Hence, we suggest excluding modeling 

results for Dog-M3 from our performance comparisons.

D. Decision Threshold Adjustments

Note that all prediction results presented in Tables III and IV used SVM decision boundary 

for making classification decisions. This SVM boundary is marked as ‘0’ in the histograms 

in Figs. 4–6. Using this standard threshold at ‘0,’ the proposed system achieves low FP and 

high FN test error rates. Clinically, it may be desirable to reduce FN error rate (at the 

expense of raising FP error rate). In our system, this can be achieved by moving the decision 

threshold from ‘0’ to margin borders ‘−1/+1’ (as illustrated in Fig. 5), and by varying the 

value of majority threshold. Table V shows the test error rates for three threshold values with 

respect to margin borders ‘−1/+1.’ Performance results using standard threshold at ‘0’ (as in 

our earlier experiments) are listed in the right column for comparisons. A few comments 

regarding the selection of threshold values:

• By moving the decision threshold from ‘0’ to margin borders ‘−1/+1,’ we should 

select a lower threshold value. Otherwise, most test segments would be predicted 

as ‘unknown’ in our system, and ultimately classified as preictal. This will result 

in very low FN but high FP error rate.

• Choosing decision threshold at margin borders ‘−1/+1’ generally tends to 

decrease FN error rate but increase FP rate, relative to using decision threshold at 

‘0,’ as evident from Table V. In practice, selection of a good decision threshold 

may be subject-specific, and should be made by a neurologist.

• Arguably, it may be possible to select an optimal threshold value for each data 

set (or patient), provided that the available data contain sufficiently many seizure 

episodes [21].
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E. Using Nonlinear SVM Parameterization

Note that all prediction results presented in Tables III, IV, and V used linear SVM, due to 

very small number of preictal training samples. In contrast, all previous seizure prediction 

studies employed nonlinear SVM classifiers, such as radial basis function (RBF) SVM [4], 

[14], [18]. These earlier studies provide no justification for using nonlinear SVM and/or for 

choosing RBF kernel.

Arguably, nonlinear (RBF) kernel parameterization is more flexible and it certainly includes 

linear SVM (as a special case). However, this additional flexibility results in a more difficult 

and potentially unstable model selection. That is, modeling using RBF SVM requires tuning 

two complexity parameters (regularization parameter C and the kernel width parameter γ) 

vs. tuning a single parameter C for linear SVM.

These arguments are quantified next using empirical comparisons between RBF SVM and 

linear SVM for Dog-L4 data set with BFB feature encoding. For both approaches, we use 

the same cross-validation procedure for model selection (as described in Section IV). Table 

VI shows the optimized values of the tuning parameters and the corresponding resampling 

error rates, for both approaches. As evident from this table:

• the chosen RBF width parameter is rather unstable;

• the cross-validation error rate for RBF SVM is much lower than for linear SVM.

These observations suggest that the RBF SVM tends to overfit available data, in the sense 

that it always achieves (almost) perfect separation between the two classes. Yet the 

prediction (test) errors for both methods are virtually the same, i.e., using 1hr prediction 

horizon the linear SVM yields zero FP and 29% FN test error rates, whereas RBF SVM 

yields zero FP and 25% FN error rates. Note that FN error rates shown in Table VI for linear 

SVM are in the 10–25% range which is quite close to ‘true’ 29% FN test error. In contrast, 

FN error rate estimated from training data using RBF SVM is mostly in 0–5% range (see 

Table VI), indicating overfitting. Overall, these results suggest that seizure prediction using 

SVM modeling should adopt linear SVM, assuming realistic (small) amount of preictal data, 

such as 7–20 seizures.

VI. Discussion

Modeling results presented in this paper suggest that reliable seizure prediction from iEEG 

signal is indeed possible. Since our SVM-based seizure prediction system used only iEEG 

input, its performance can be certainly improved by incorporating other physiological inputs 

(e.g., heart rate). Furthermore, it may be possible to include information about different 

seizure modalities, e.g. seizures during sleep vs. awake state— such additional information 

may improve the prediction accuracy. Several important findings and limitations based on 

our modeling experience are summarized next:

1. Quantity of preictal data. Successful data-analytic seizure prediction models can 

be estimated (using our system in Fig. 2) only if the training data contain 

sufficient amount of preictal data, e.g., at least 5–7 seizure episodes. For 

example, it is not possible to achieve good prediction performance using data 
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sets containing just three seizures. This is well-defined quantifiable limitation of 

the proposed data-analytic approach. This limitation is also supported by recent 

findings reported in human focal epilepsy [23].

2. Subject-specific modeling. An important property of our seizure prediction 

system is subject-specific (or patient-specific) aspect of data-analytic modeling. 

Hence, we expect that prediction quality varies for different subjects, due to 

varying quality of preictal data for different subjects. For example, prediction 

results for Dog-L2 were consistently worse than for Dog-L4, even though the 

Dog-L2 data set had more data segments (both preictal and interictal).

3. Seizure prediction for human data. Even though we have only limited experience 

in modeling human iEEG data, we can reasonably expect that the proposed 

system can be successfully used for human seizure prediction. This expectation 

is based on visual similarity of the histograms of projections for canine and 

human data. Figure 7 shows histograms of projections for trained SVM model 

(under unbalanced setting) for human and canine data sets from Kaggle 

competition. There is an apparent visual similarity, even though human and dogs’ 

iEEG data in Kaggle competition were obtained using different frequencies and 

different number of channels. This similarity (between human and canine 

histograms of projections) may suggest that our data-analytic seizure prediction 

system would provide similar prediction accuracy for human iEEG data.

While there exist human EEG recordings/databases such as EPILEPSIAE, these data are 

fundamentally different from canine iEEG data used in our study. That is, human EEG data 

represent the recordings from epilepsy patients undergoing pre-surgical intracranial EEG 

monitoring. These human EEG recordings are rarely more than 7–14 days in duration, and 

are typically taken while a patient’s medications are tapered to promote seizures, causing 

corresponding changes in baseline EEG signal characteristics. In contrast, the canine data 

used in our paper reflect continuous long-term (multiple months) recordings of dogs with 

naturally occurring epilepsy. No similar human EEG data are yet available, but canine 

epilepsy is an excellent analog for human epilepsy [13]. The data used in our paper are an 

order of magnitude longer per subject than the EPILEPSIAE and comparable databases.

We also briefly comment on the difference between earlier SVM-based seizure prediction 

studies and our approach. All earlier studies tried to optimize the classifier performance for 

20s windows [4], [24], [25], reflecting an assumption that good classification performance 

for 20s windows would result in accurate seizure prediction. This approach has two 

methodological flaws. First, the class labels for training data are known only for 1hr 

segments rather than for each 20s window. In fact, many 20s windows within a 1hr preictal 

segment may be statistically more similar to 20s interictal windows. Second, the clinical 

objective is to predict 1hr segments rather than individual 20s windows. The proposed SVM-

based system reflects this clinical knowledge and makes predictions for 1hr segments.

An important distinction of our system lies in its new approach to handling heavily 

unbalanced data. In this respect, we point out several earlier attempts to apply SVM 

classifiers to unbalanced seizure prediction data. One approach is to specify different 
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misclassification costs during SVM training [4]. Under this approach, it is not clear how to 

define the proper ratio of misclassification costs. Also, during testing stage, prediction is 

performed for individual 20s windows, leading to high FN error rate (equivalent to low 

sensitivity). Another approach is to use standard SVM classifier (under balanced setting with 

equal misclassification costs). According to this approach [18], using balanced SVM 

training is accomplished by removing the majority of interictal samples from the training 

set. This results in effectively discarding useful statistical information. Not surprisingly, our 

system’s prediction performance results (in terms of both sensitivity and FPR per day) are 

better than results reported in both studies [4], [18].

Finally, we summarize several important methodological aspects of seizure prediction. 

Sound application of machine learning methods for estimating predictive models requires 

clear understanding of application-specific objectives in the context of statistical 

assumptions underlying machine learning algorithms. This step is important and should 

always precede actual data modeling, i.e., application of a learning algorithm to available 

data. This step is called problem formalization [19], and it results in:

• Learning problem setting appropriate for a given application,

• Specific metrics used to evaluate prediction performance.

In many real-life applications, this formalization step is missing, and it leads to considerable 

confusion, e.g., exaggerated performance claims, non-reproducible results, etc. Notably, 

most widely used machine learning methods (such as neural networks, SVM, decision trees, 

LASSO, and so on) implement standard inductive learning setting [19], [20], where training 

and test inputs represent i.i.d. data samples from the same (unknown) distribution. The 

proposed seizure prediction system (shown in Fig. 2) has several novel data-analytic 

interpretations and improvements:

• During training stage, a binary classifier is estimated from labeled training 

samples (20s windows), as under standard classification setting. Further, we use 

unbalanced training data set, that includes 20s samples from many interictal 

segments, in addition to few available preictal segments. However, we use 

balanced validation data set (for model selection), to reflect the clinical 

requirement that the goal is to classify each 1hr test segment (as interictal or 

preictal).

• During testing stage, the goal is to predict a group of 180 unlabeled test samples 

(20s windows), under the assumption that all test samples (in this group) belong 

to the same class. This is clearly different from standard inductive setting. 

Further, the system can make three possible predictions for each 1hr test segment 

(e.g., reliable interictal, reliable preictal and unknown).

• Additional post-processing during testing stage is applied to ‘unknown’ 

predictions which are all regarded as preictals. This post-processing scheme 

assumes that (a) the seizure prediction system can predict interictal 1hr test 

segments very reliably, and (b) the system can predict preictal test segments 

either correctly or as ‘unreliable.’ This reflects clinical knowledge that interictal 

segments are inherently much easier to predict (than preictal).
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VII. Conclusions

This paper presents an SVM-based system for seizure prediction using iEEG signals. The 

system is designed based on proper understanding of clinical considerations and their 

formalization into data-analytic modeling assumptions. Two important properties of our 

seizure prediction system are subject-specific modeling and using heavily unbalanced 

training data. This system also has several novel data-analytic interpretations and 

improvements. During the training stage, a binary classifier is estimated using unbalanced 

interictal and preictal data. However, a balanced validation data set is used for model 

selection. In addition, different time scales are utilized for the training and testing stages. 

The system is trained using 20s labeled windows; however, predictions are made for 1hr test 

segments (corresponding to a group of 180 consecutive 20s windows). Our results show that 

this system can achieve robust prediction of preictal and interictal iEEG segments from dogs 

with epilepsy.
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Fig. 1. 
Three feature encodings for iEEG data: BFB, FFT, and XCORR.
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Fig. 2. 
Proposed system design for (a) training stage, and (b) prediction/operation stage.
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Fig. 3. 
Predictive modeling in three time scales: 20s, 1hr, and 4hr.
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Fig. 4. 
SVM modeling for Dog-L4 data set using BFB feature encoding. Histograms of Projections 

for training data (a), and for test data (b)–(d). The preictal data are shown in blue and 

interictal data in red. Margin borders correspond to −1/+1 (marked by dashed vertical lines). 

The x-axis is the scaled distance and y-axis the fraction of samples.
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Fig. 5. 
Univariate histogram of projections for test samples: (a) decision threshold for majority 

voting is taken relative to decision boundary ‘0’; (b) decision threshold is taken relative to 

margin borders (‘−1’ or ‘+1’).
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Fig. 6. 
SVM modeling for Dog-M3 data set using BFB feature encoding. Histograms of Projections 

(for three experiments) for training and test data are shown on the left and right side, 

respectively. The preictal data are shown in blue and interictal data in red.
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Fig. 7. 
Histograms of projections of trained SVM models for (a) human and (b) canine iEEG data.
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TABLE I

The number of interictal/preictal 4hr segments for each dog.

Dog interictal preictal

L2 152 19

L7 88 11

M3 15 3

P2 64 8

L4 56 7

P1 232 29
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TABLE II

Experimental design for Dog-L4 under the unbalanced Setting. The decimal labels encode 1hr segments.

Experiment
Training set Test set

interictal preictal interictal preictal

1 2–56 2, 3, 4, 5, 6, 7 1 1

2 1, 3–56 1, 3, 4, 5, 6, 7 2 2

3 1, 2, 4–56 1, 2, 4, 5, 6, 7 3 3

4 1–3, 5–56 1, 2, 3, 5, 6, 7 4 4

5 1–4, 6–56 1, 2, 3, 4, 6, 7 5 5

6 1–5, 7–56 1, 2, 3, 4, 5, 7 6 6

7 1–6, 8–56 1, 2, 3, 4, 5, 6 7 7
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