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The olivo-cerebellar network is a key neuronal circuit that provides
high-level motor control in the vertebrate CNS. Functionally, its
network dynamics is organized around the oscillatory membrane
potential properties of inferior olive (IO) neurons and their elect-
rotonic connectivity. Because IO action potentials are generated at
the peaks of the quasisinusoidal membrane potential oscillations,
their temporal firing properties are defined by the IO rhythmicity.
Excitatory inputs to these neurons can produce oscillatory phase
shifts without modifying the amplitude or frequency of the oscil-
lations, allowing well defined time-shift modulation of action
potential generation. Moreover, the resulting phase is defined only
by the amplitude and duration of the reset stimulus and is inde-
pendent of the original oscillatory phase when the stimulus was
delivered. This reset property, henceforth referred to as self-
referential phase reset, results in the generation of organized
clusters of electrically coupled cells that oscillate in phase and are
controlled by inhibitory feedback loops through the cerebellar
nuclei and the cerebellar cortex. These clusters provide a dynamical
representation of arbitrary motor intention patterns that are
further mapped to the motor execution system. Being supplied
with sensory inputs, the olivo-cerebellar network is capable of
rearranging the clusters during the process of movement execu-
tion. Accordingly, the phase of the IO oscillators can be rapidly
reset to a desired phase independently of the history of phase
evolution. The goal of this article is to show how this self-
referential phase reset may be implemented into a motor control
system by using a biologically based mathematical model.

neuron � nonlinear � oscillation � Andronov–Hopf bifurcation

Coordinated motor control signals addressing large numbers
of muscles at a given time must implement strict temporal

coherence, also known as ‘‘temporal motor binding,’’ to generate
appropriate motricity (1). Electrophysiological studies have in-
dicated that such motor intention patterns require proper olivo-
cerebellar system function (1–4). And, in particular, sets of
time-coherent inferior olive (IO) action potentials reach given
motor neuron pools by means of the cerebellar nuclei (1, 5–7).
To provide the required synchrony of muscle activation, the IO
signals must be temporally coherent at the final motor path
regardless of the distance between the activated muscle groups.
As such, then, the main coherence control parameter is the
mutual temporal shifts among sequences of action potentials
innervating different muscles. Recent experimental work indi-
cates that such a temporal signal mechanism is provided by the
sequence of oscillatory events in the olivo-cerebellar system (7).
The possibility that a ‘‘universal control system,’’ based on
olivo-cerebellar physiology, may be implemented in analog
hardware electronic chips has been proposed (8).

Indeed, temporal motor intention patterns may be formed as
oscillatory phase clusters in the IO (9–12). Because IO neurons
in vivo may be considered close to 10-Hz oscillators that generate
action potentials at the peaks of subthreshold oscillations (9–11),
oscillation phase shifts would uniquely define the time shift
between spikes. Olivo-cerebellar inhibitory feedback and sen-
sory inputs are capable of reconfiguring IO oscillatory phase and

thus of setting the required phase cluster pattern. Once attained,
a given cluster phase is sustained by the internal mechanism of
IO neuron synchronization. Local oscillation synchrony is pro-
vided through dendritic gap junctions that are formed among
�50 neighboring cells (13, 14). Obviously, such local coupling
can provide neither global coherence nor the transition from one
cluster configuration to another at sufficiently fast time scales.
Rather, the reset of the IO oscillators phases occurs through
sensory signals from effector feedback. Accordingly, the IO
reconfigures the oscillation, automatically evolving to an optimal
cluster configuration.

Analysis of intracellular recordings from in vitro IO neurons
has shown that phase reset in the IO oscillators differs from
typical oscillatory systems (12). Phase reset is controlled by input
parameters and does not depend on the time moment (initial
phase) when the input is received. In this sense, the phase reset
is self-referential and ignores the ‘‘history’’ of the system. This is
a key property that makes IO neuronal oscillators extraordinarily
f lexible and able to process a forthcoming motor command in
accordance with current environment conditions. Moreover,
uncoupled oscillators located at distant places can be rapidly
synchronized in phase if they receive the same stimulus.

Here, we propose a physiologically based mathematical model
of the IO that is capable of self-referential phase reset (SPR). We
describe SPR mechanisms and discuss the applications of the
phase control strategy for artificial automatic control systems by
using phase synchronization.

Methods and Results
Phase Reset Effect. The experimental basis for the model is
summarized in Fig. 1 (12). In agreement with previous results
(9), spontaneous IO neuronal oscillations are interrupted by an
extracellular stimulus (Fig. 1 A, boxed area) and resume with a
different phase without affecting their frequency or amplitude
(Fig. 1B). Thus, the stimulus phase reset can be obtained
repeatedly in any given cell. The stimulation-induced shift in the
oscillation phase is remarkably similar and independent from
stimulus time onset. This result is illustrated in Fig. 1C, where an
average of six individual stimulus-evoked oscillatory reset results
with the same average frequency and similar phase indicates that
the reset is independent of the original phase. Thus, the phase
reset has two basic features. (i) The poststimulus phase is
independent of the initial phase and can be controlled by the
characteristics of the stimulus. (ii) The same stimulus resets all
of the cells to the same phase, i.e., it synchronizes them.

IO Neuron Model. We have developed a mathematical model that
reproduces the key IO neuron electrophysiological properties (8,
15) and the SPR effect. In particular, the model comprises two
sets of functionally coupled equations where the oscillations of
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a supercritical Andronov–Hopf bifurcation in the first set drive
the dynamics of the second set of parameters. Because spike
threshold occurs mostly at the peak of a subthreshold oscillation,
spike onset is determined by the subthreshold oscillation. De-
pending on the values of the control parameters, the model
qualitatively reproduces the spontaneous and stimuli-induced
oscillations observed in IO neurons (8, 15). A mathematical
model comprising a set of four nonlinear differential equations
can describe these properties:

�Na

du
d�kt�

� f�u� � v;

du
d�kt�

� u � �z � ICa� � INa;
[1]

dz
dt

� f�z� � w;

dw
dt

� �Ca�z � ICa � Iext�t��,

where the variables z and w are responsible for the subthreshold
oscillations and low-threshold (Ca-dependent) spiking, and the
variables u and v describe the higher-threshold (Na�-dependent)
spiking. The parameters �Ca and �Na control the oscillation time
scales; ICa and INa drive the depolarization level of the two blocks;
ƒ is a cubic shape nonlinearity, ƒ(x) � x (x � a)(1 � x); the
parameter k sets a relative time scale between the two blocks.
Function Iext(t) describe the extracellular stimulus. It has nonzero
value, Iext(t) � Ist only when the stimulus has been applied, ti � t �

ti � tst. Here Ist and tst are constants describing the magnitude and
duration of the stimulus pulse arriving at the time instants ti.

The oscillations appear in the (z, w) subsystem with a fre-
quency and amplitude that is controlled by the depolarization
parameter, ICa. The shape of the corresponding limit cycle in the
(z, w) phase plane is shown in Fig. 2A. The oscillations are close
to sinusoidal shape; however, they have a sharper peaks for the
z-variable. These peaks provide sharper pedestals for the Na�

pulses when reaching the threshold potential in the (u, v)
subsystem (Fig. 2 B and C). Due to these pedestals (Ca2�-
dependent spikes), IO spiking has a precise timing. The timing
of the spikes can be associated with subthreshold oscillation
phase. Let us define the phase j as the phase shift with a
reference oscillator, R:(z̃, w̃), whose dynamics is described by
Eqs. 1 with Iext(t) � 0. This shift can be determined by calculating
the oscillation peak times:

� � 2�
t � t r

T
, [2]

where t and tr are the peak times of the subthreshold oscillations
and the reference oscillations, respectively (16). Note that the
oscillation phase � is a free parameter and can be set to an
arbitrary value from 0 to 2� (corresponds to the zero Lyapunov
exponent of the limit cycle).

Stimulus-Induced Phase Reset. To study phase reset effects, we set
the unit parameters to the following values: �Na � 0.001; �Ca �
0.02; k � 0.1; ICa � 0.01; INa � �0.11; a � 0.01. Fig. 3 illustrates
the reset properties of the model (Eqs. 1) when an extracellular
stimulus of Ist � 0 and �st � 0.4T was applied. This stimulus
arrived in-phase with the reference oscillator, i.e., it corresponds
to a peak of z̃. Let the IO oscillator have an initial phase shift �1
relative to the reference unit (Eq. 2). After a short transient
process, the oscillation recovers its shape and frequency, ap-
proaching the resulting phase �2 (Fig. 3A).

Let us now change the initial phase. Fig. 3B shows superim-
posed traces from 20 initial phases uniformly distributed within
the interval [0, 2�]. Their reset phases are localized in the small
neighborhood of the mean phase �*. Indeed, the reset properties
are independent of the initial state of the oscillator. Fig. 4A
illustrates the dependence of the reset phase deviation (the
difference between maximum and minimum values of the reset
phases) on the stimulus amplitude, Ist, for a fixed stimulus pulse
duration of �st � 0.4T. The phase deviation decreases for
increasing stimulus amplitudes. For longer values of �st, stimulus-
duration-dependent deviation vanishes (data not shown). Note
that the deviation can be significantly decreased if one or more
additional pulses are applied (Fig. 4A, blue curve). Note also
that, for small stimulus amplitudes, the reset phases are distrib-
uted within the whole interval [0, 2�], and the SPR effect
disappears. In the SPR state the reset phase is controlled only by
the characteristics of the stimulus.

Thus, the phase response curve (representing the dependence
of the reset phase on the initial phase) is close to the constant
line �*. Fig. 4B shows how the value of the mean reset phase, �*,
changes with increasing stimulus amplitude. Because the curve
covers the whole interval [0, 2p], there is a point-by-point
correspondence between the stimulus amplitude and the reset
phase. Any desired value of the oscillation phase can be set by
an appropriate choice of stimulus amplitude. Consequently, at
any moment, one can control the oscillation phase independently
on the ‘‘history’’ of the system. The SPR effect also takes place
for an inhibitory extracellular stimulus, i.e., for Ist � 0, (Figs. 3C
and 4A).

SPR Mechanism. The SPR effect can be explained as follows.
Consider Eqs. 1 for the (z, w) subsystem (Fig. 2 A). Numerical

Fig. 1. Intracellular inferior olive oscillations recorded in vitro. (A) Sponta-
neous oscillations are interrupted by an extracellular stimulus (arrowhead),
delivered to the dorsal border of the IO nucleus. After stimulation, the
oscillations were interrupted for 750 ms (boxed area) before resuming. (B)
Superposition of recordings of spontaneous (dashed line) and stimulus-
evoked (solid line) oscillations from the same cell. Note that extracellular
stimulation modified only the phase of spontaneous oscillations without
affecting their amplitude or frequency. (C) Superposition of six (color-coded)
individual intracellular traces of stimulus-evoked oscillations from the same
cell are superimposed on the left. Note that the frequency of all of the
stimulation-evoked oscillations is 2.0 Hz, and the stimulation-induced shift in
the oscillatory phase is similar. Oscillations are clearly seen after the stimulus
induced reset but can be barely detected before the stimulation. (D) Super-
position of mean stimulus-evoked oscillations (n � 6, red line) and spontane-
ous oscillations (dashed black line). Note that the average trace has the same
frequency and amplitude as the spontaneous oscillations and differs only in
the phase shift. [Calibration bar: 1 mV; 1s (A), 500 ms (B and D), and 415 ms (C).]
(Modified from ref. 9.)
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solutions (Fig. 5A) illustrate how n � 100 points, uniformly
distributed along the limit cycle, are transformed by the excita-
tory stimulus. After the stimulation, the phase volume occupied
by the limit cycle becomes strongly compressed and converges to
the reset point. A similar compression occurs for inhibitory
stimuli. Fig. 5B illustrates the phase volume transformation. In
this case, the reset occurs faster (the excursion of the points is
shorter) but with less precision. There are two basic mechanisms
leading to the reset: one for short pulses and another for long
pluses. In the case of relatively short pulses (less than oscillation
period), due to the small parameter �Ca �� 1, its trajectories have
fast and slow time scales. The trajectories slow down in the
neighborhood of the nonlinear curve z � f(w) and speed up out

of this neighborhood. Because the limit cycle is located within
this neighborhood, the oscillation has a relatively slow time scale.
When a sufficiently strong stimulus is applied, the w-nullcline is
shifted either to the right portion of the nonlinear curve for an
excitatory stimulus or to the left for an inhibitory stimulus. Thus,
any trajectory initiated at the limit cycle circle goes into the fast
motion region approaching either the left or the right branches
of nonlinear curve f(u). The transformation of the circle can be
estimated by the value of the appropriate Lyapunov exponent.
Note that, due to different time scales, the initial circle becomes
strongly compressed. This compression can be treated with
Lyapunov exponents, indicating an exponential change in the
phase volume along the trajectories. The slow motions manifold

Fig. 2. Subthreshold oscillatory properties. (A) Qualitative phase portrait of (z, w)-subsystem. The nullclines are shown by the dashed curves. The arrows
illustrate fast and slow motions. Stable limit cycle corresponding to the subthreshold oscillations appears from Andronov–Hopf bifurcation that happens when
the fixed point loses its stability at the minimum of the u-nullcline curve. (B) Oscillations (u-variable) of model 1. Subthreshold oscillations with Ca2�-dependent
spiking [(u, v) subsystem is unexcited]. Parameter values: �Na � 0.001; �Ca � 0.02; k � 0.1; ICa � 0.018; INa � �0.61; a � 0.01. (C) Spiking (Na�-dependent) at the
peaks of subthreshold oscillations. Parameter values: �Na � 0.001; �Ca � 0.02; k � 0.1; ICa � 0.018; INa � �0.59; a � 0.01.

Fig. 3. Oscillatory reset. (A) Phase reset in the IO oscillatory unit. The phase computed according to formula 2 is reset from the initial value �1 to the value �2.
The lower oscillation trace corresponds to the base oscillator staying unperturbed. The upper signal corresponds to the stimulus. (B) Excitatory stimulus-induced
SPR effect in the IO unit. Superimposed traces from n � 20 initial phases uniformly distributed illustrate that the reset phase is almost the same for all initial phases.
Parameter values: Ist � 1.15, �st � 0.4T, T � 51.1. (C) Inhibitory stimulus-induced SPR effect. Superimposed traces from n � 20 initial phases uniformly distributed.
Parameter values: Ist � �1, �st � 0.4T, T � 51.1.
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located near the nonlinear curve z � f(w) has quite a large
transverse Lyapunov exponent, �, corresponding to the manifold
stability relative to the fast motions. The value of � can be
estimated by using Eqs. 1.

� � f	�z0���, [3]

where z0 is the coordinate of the points at the manifold. Then,
for the outer parts of the nonlinear curve f	(z0) � 0, and the
Lyapunov exponent is strongly negative for small �. This result
corresponds to the strong phase volume compression in the
transverse direction when the trajectories evolve near the man-
ifold (Fig. 5 A and B). The volume becomes elongated near the
manifolds. Then, for excitatory stimuli, the trajectories jump
once more into the fast motion region, elongating in the hori-
zontal direction. The phase volume is again compressed near the
left stable compartment of the manifold (Fig. 5A). Such a double
compression provides better reset precision, compared with the
inhibitory case (Fig. 5B). All points return to the limit cycle
almost in-phase when the stimulus ends. If the stimulation is

longer, �st �� T, the reset mechanism drives system relaxation to
a stable fixed point. Let us suppose that Ist � zmax � ICa, where
zmax is the coordinate of the maximum of f(z) (Fig. 2 A). When
the system is being stimulated the (z, w)-subsystem of Eqs. 1 has
a stable fixed point located on the right part of the nonlinear
curve f(z) attracting all trajectories. If the stimulation is long
enough, all points from the limit cycle (different initial phases)
asymptotically tend to this fixed point. That is, the phase volume
(the limit cycle circle) is compressed to this point. When the
system is released, the oscillation recovers with the same phase.
In the case of inhibitory pulses, the condition of the reset is
Ist � zmax � ICa and provides the stability of the fixed point during
the stimulation. In this case, phase volume compression is
provided by the Lyapunov eigenvalues of the stable fixed point
that appears due to the stimulus.

SPR-Induced Synchronization. When the SPR effect is applied to
large ensembles of oscillatory units, it can provide their phase
synchronization. Indeed, if the same pulse stimulates a large
number of isolated IO units, they will return to the same phase

Fig. 4. Characteristics of the SPR effect. (A) Deviation of the reset phase (red curve) depending on the stimulus amplitude for fixed stimulus duration �st � 0.4T,
T � 51.1. The deviation 
� is defined as the difference between the maximum and minimum reset phase values. The blue curve corresponds to the doublet
stimulation for interpulse interval 12T. n � 100 initial phases have been uniformly distributed in the interval [0, 2�]. (B) Stimulus amplitude � reset phase
dependence for fixed stimulus duration �st � 0.4T, T � 51.1. The reset phase �* is computed as the mathematical average from n � 100 oscillation traces. The
green arrows show how the desired value of the reset phase can be obtained by the appropriate choice of stimulus amplitude for excitatory, Ist � 0, and inhibitory,
Ist � 0, stimulation.

Fig. 5. SPR mechanism illustrated in the (z, w) phase plane of Eqs. 1. n � 100 initial points are uniformly distributed along the limit cycle. Due to the stimulation,
the initial circle is strongly compressed during the excursion in the phase plane. (A) Sequence of snapshots of initial circle transformation under the excitatory
stimulus. The circle is compressed while evolving along the right and left compartment of the slow motions manifold located near z-nullcline (dashed curve).
After the excursion, the trajectories return to the limit cycle almost in-phase. Parameter values: Ist � 1.15, �st � 0.4T, T � 51.1. (B) Circle transformation under
inhibitory stimulus. The reset is faster but less precise. The circle is compressed only near the left compartment of the slow motions manifold. Parameter values:
Ist � �1, �st � 0.4T, T � 51.1.
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and becoming mutually synchronized (Fig. 3 B and C). By
contrast, with classical examples of networks of intercoupled
units (ensembles of electrically coupled oscillators) (16), the
SPR-induced synchronization is coupling-independent, and so
even spatially distant cells can be phase synchronized by just one
or a few stimulation pulses. Moreover, for appropriate stimulus
parameters (amplitude and duration), the oscillators in the
network can be set to any value of mutual phase lag (Fig. 4B).
In this fashion, phase clusters of any complex spatial configu-
ration can be formed. By changing the stimulus parameters, the
cluster configuration can be easily rearranged, irrespective of
prior clusters configuration. Transient isolation of individual IO
neurons is accomplished through inhibitory feedback that inter-
rupts interunit coupling. During the short time IO neurons are
electrically uncoupled, they may receive direct sensory feedback
that can provide the desired cluster configuration. The olivo-
cerebellar cluster-based universal control system (UCS) has
been described in detail (8). SPR-induced synchronization as
implemented with the UCS architecture is illustrated in Fig. 6.
A square network of 200 � 200 locally coupled IO oscillators is
stimulated by a given input pattern. The stimulus has a fixed
duration �st � 0.4T and variable amplitudes Ist � [Ist

1 , Ist
2 ]. As

shown in Fig. 4B, each unit will be reset to a certain phase. We
take as the stimulus pattern the grayscale picture of a scarab
digitized and mapped into the interval of amplitudes [Ist

1 , Ist
2 ].

Starting from an initial random oscillatory phase distribution,
the network evolves to the phase distribution corresponding to
the scarab picture (Fig. 6). Note that, in the case of excitatory
stimulation (Fig. 6 B and C), the picture is positive because
the amplitude-phase curve has a positive slope (Fig. 4B). For the
inhibitory stimulus pattern, the slope is negative; hence, the
image would appear inverted (negative). Note also that the am-
plitude-phase curves are, in fact, piece-wise linear. Therefore,
the nonlinear image distortions during the transformation are
negligible.

The phase distribution in the network is further translated to
corresponding action potential patterns when the IO units fire
Na-dependent spikes [the (u, v)–variables in Eqs. 1 at the peak
times of the oscillations (Fig. 2C)]. When they are stimulated, the
units are effectively uncoupled by the inhibitory feedback. When
synchronized to the desired cluster configuration, the system
tends to sustain this configuration if no other stimuli are applied.
Because in-phase oscillators have a shorter coupling inhibition
than out-of-phase oscillators, IO cells become effectively cou-
pled, sustaining the synchronization. When the oscillators are

phase-shifted, there is prolonged coupling inhibition because the
inhibition periods are summarized from the two units. Thus, they
stay effectively uncoupled, sustaining the phase shift. The ex-
ample of SPR effect in the universal control system-based
network represents the mechanism of sensory-motor transfor-
mation in the brain. The sensory information arriving as se-
quences of action potentials appropriately resets the motor
control oscillators to a phase pattern that further converts to a
space-time distribution of action potentials that implements a
motor execution pattern.

Chaotic Modes. New functionally significant properties appear
when shorter stimulation impulses �st �� T applied to oscillatory
component (Ca2��K�) of the system (1):

dz�dt � f�z� � w
[4]

dw�dt � ��z � I � Ist�.

This case is biologically important because a stimulus may
arrive to an IO neuron by means of synaptic input as a single or
several action potentials. Action potentials have a characteristic
time �1�100th of a period subthreshold oscillation of membrane
potential. For our computer simulations, we chose the stimula-
tion duration �st � 0.01T. In such a case, when stimulated with
frequency not higher than frequency of subthreshold oscilla-
tions, the evolution of system’s phase is defined by the sequent
iterations of the phase response curve. The bifurcation diagram
shown in Fig. 7 illustrates different attractor regions that cor-
respond to different amplitude Ast of external stimulus Ist.

Three regions present main interest are designated as D1, D2,
and D3. In region D1, the stable fixed point seems to attract all
map trajectories with n 3 �. In this case, the map derivative
T	( f ) is close to 1, and therefore the map trajectories have quite
a long transition before reaching the fixed point. The self-
referential phase reset occurs, but it takes longer for a system to
‘‘forget’’ the initial state. The regions D2 and D3 present special
interest (Fig. 7 Insets). In D2, a classical period doubling bifur-
cation occurs, and the map exhibits a chaotic behavior coexisting
with period 2 stable limit cycles. Hence, there are an infinite
number of 2m (m � 1, 2, . . . , 8) coexisting orbits, and changing
the stimulus amplitude can stabilize each orbit. After each
stimulus, the oscillation phase jumps along the orbit. Therefore,
spiking behavior of the IO neuron displays the spike conse-
quences encoded by the orbits and represents the built-in

Fig. 6. Stimulus-induced pattern formation in the network of 200 � 200 IO oscillatory units. During the stimulation, the units are uncoupled. The initial phases
are randomly distributed in the interval [0, 2�]. The stimulus has fixed duration �st � 0.4T, T � 51.1 and variable amplitudes. The stimulus amplitude pattern is
taken from digitized grayscale 200 � 200 image, Ist[i, j] � Ist

1 � (Ist
2 � Ist

1 )c[i, j], where c[i, j] � [0,1] is the matrix of real numbers corresponding to the grayscale
levels. The image c[i, j] contains a picture reproduced with permission from www.beautifulbugs.com. (A) Initial random distribution. (B and C) Phase cluster
formation for excitatory stimulus pattern, Ist

1 � 0.4, Ist
2 � 3.5. Phase distribution after the stimulation nicely reproduces the desired bug picture. After the stimulus,

the oscillators group with required phases. The images are plotted with the same grayscale grade as the phase values interval [0,2�].
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mechanism for information encoding in the oscillatory neurons
when the spike timings is associated with well defined stimulus-
dependent phase reset. In the region D3 (Fig. 7), the attractors
are characterized by intermittent behavior. The map trajectories
stay for a long time near the saddle-node bifurcation point,
followed by long excursions in the whole [0,2�] region. The
regions of chaotic behavior alternate with windows of stable
periodic orbits. Each orbit also represents the encoded phase
sequences realized for particular values of stimulus amplitude.

Discussion
In a previous study (17), we demonstrated that IO neurons have
robust but sensitive subthreshold oscillation dynamics modu-
lated by mutual electrotonic coupling. From that study, we
learned that these dynamics intrinsically exhibit weakly chaotic
properties, allowing almost regular periodic oscillations, while
also supporting nonlinear sensitivity to initial conditions, result-
ing in the fast renewal of the system’s memory (at �4 ms).
Indeed, the phase plane portrait of the oscillation demonstrates
radial trajectory divergence (stretching and folding) with little
azimuthal divergence, as the result of the channels kinetics
responsible for the membrane potential oscillation. These ex-
perimental findings were supported by a formal model of the IO
neuron’s subthreshold oscillations by using a Rössler-type non-
linear system (17).

Recently, using a nonlinear dynamical system (8), we modeled
the SPR effect, originally observed experimentally in IO neurons

(9–12). The results of the present study demonstrate an excellent
fit to the experimental data. The SPR property has true non-
trivial attributes concerning the type of global motor control
function implemented by the olivo-cerebellar network. Because
its response is independent of the IO oscillatory phase when the
stimulus arrives, the system demonstrates extraordinary flexi-
bility in organizing a given motor intention and in modifying its
activity on-line according to sensory feedback. The system does
not need an operational memory. This result makes it very
reliable and prevents ‘‘computational overloads’’ that appear
when memorizing the states. In fact, the speed of the SPR
operation (of order of an oscillation period) is limited only by the
oscillatory frequency and so it can operate many times faster
than the actuators it controls.

The SPR property of IO oscillator can be very powerful in
artificial control systems. Indeed, the oscillator represents a
phase controller. One can set and maintain a required phase by
delivering to the oscillator an appropriate stimulus pulse. Then,
if the phase is associated with any given physical parameter (e.g.,
position, velocity, angle, or temperature), the phase controller
can maintain it at a desired level. In contrast with standard
control systems, the controlling principle here deals with a
‘‘motor recovery response’’ (16). Within limits, a walking animal
may stumble without falling, in which case it promptly recovers
its walking rhythm irrespective of when an obstacle is encoun-
tered during the stride. Such synchronization of large oscillator
array requires only a synchronous reset stimulus and does not
require to be electrically coupled. A fundamental aspect con-
cerns the possibility of phase encoding when the map has both
periodic orbits and chaotic attractors. In this case, the phase
resets associated with these orbits are naturally transformed into
neuron spiking. In turn, neurons fire spike trains with interspike
intervals that are directly correlated with the orbits (18). Finally,
the SPR effect can be viewed as an effective tool to represent
and�or store information in the form of oscillatory clusters. In
contrast to Hopfield gradient networks (19), cluster reorgani-
zation can be extremely fast because the oscillator frequency may
be moved up to the limits of the constituent materials. Compared
with Kuramoto-like oscillatory systems, where a complex cou-
pling matrix should be applied to form the clusters (Hebbian
learning rule), the SPR-based pattern formation can work
directly with digitized information converted to the stimulus
template.
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Fig. 7. Bifurcation diagram of the reset phase for �st � 0.01T. Di are the
regions described in the main text. (Insets) The chaotic regions D1 and D2.
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