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Abstract This publication presents a computer method for
segmenting microcalcifications in mammograms. It makes
use of morphological transformations and is composed of
two parts. The first part detects microcalcifications mor-
phologically, thus allowing the approximate area of their
occurrence to be determined, the contrast to be improved,
and noise to be reduced in the mammograms. In the sec-
ond part, a watershed segmentation of microcalcifications
is carried out. This study was carried out on a test set
containing 200 ROIs 512 × 512 pixels in size, taken from
mammograms from the Digital Database for Screening
Mammography (DDSM), including 100 cases showing
malignant lesions and 100 cases showing benign ones.
The experiments carried out yielded the following average
values of the measured indices: 80.5% (similarity index),
75.7% (overlap fraction), 70.8% (overlap value), and
19.8% (extra fraction). The average time of executing all
steps of the methods used for a single ROI amounted to
0.83 s.
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Introduction

I n m ammog r a p h y im a g i n g , t h e p r e s e n c e o f
microcalcifications, i.e., small deposits of calcium in the
breast, is the primary indicator of breast cancer. However,
not all microcalcifications are proof of malignancy and their
distribution within the breast can be used to determine wheth-
er the clusters contain benign lesions or constitute a threat
indicating a malignancy. Microcalcifications presented in
Figs. 1a and 2a and d are small deposits of calcium in the
breast, which appear as small bright spots on mammograms.
Unfortunately, the correct detection of microcalcifications in
mammograms can often be very difficult. Breasts contain var-
iable quantities of glandular, fatty, and connective tissues, and
if there are a lot of glandular tissues, the mammograms are
very bright, which makes small microcalcifications poorly
visible [1]. If a physician has to examine numerous series of
mammograms, their visual assessment capacity is greatly re-
duced. Consequently, computer-aided diagnosis (CAD) is be-
ing developed to make the diagnostic process easier for the
radiologists [2–7]. The standard functions of CAD systems
comprise the segmentation [8–11], feature extraction
[12–15], and classification [5, 16–19] to determine whether
lesions are present.

Although the improvement of each of the listed functions
raises the capacity of the system, the segmentation can be
considered the most significant, as the precise segmentation
of lesions impacts the extraction of features and the classifi-
cation. Microcalcifications were segmented using several
techniques, such as morphological filters [1, 20–23], machine
learning [11, 24], and the wavelet transform [25] method
using normalized Tsallis Entropy and fuzzy sets [10]. Most
recent research based on machine learning [24], the wavelet
transform [25], and active contour [8, 9] demonstrate that
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microcalcification segmentation is highly significant and the
researchers report good results of the methods proposed.

Chen et al. [24] analyzed the topology/connectivity of in-
dividual microcalcifications inside a cluster using multiscale
morphology. In [24], microcalcifications were segmented
using a knowledge-based approach [11] with the application
of machine learning methods like the pixel-based boosting
classifier which automatically allows the most salient features
of microcalcifications to be selected. Chen et al. [24] report
high classification accuracies (up to 96%) and also good ROC
(region of convergence) results achieved.

Batchelder [25] proposed the 2D wavelet transform modu-
lus maxima method (WTMM) to detect microcalcifications in
mammograms. Then, fractal geometry was used to determine
benign and malignant microcalcification clusters, and in

particular, a Bfractal zone^ and BEuclidean zones^ (non-
fractal) were defined. The authors analyzed 118 images of
59 patients. According to their results, the probability that
fractal breast lesions are malignant is between 74 and 98%
and the probability that Euclidean breast lesions are benign
is between 76 and 96%.

Arikidis et al. [8] presented multiscale active contours
method (MAC) which enable single microcalcifications to
be segmented. This method requires the seed contour to be
initiated manually. In [8], rectangular ROIs 81 × 81 pixels in
size were analyzed and experiments were carried out for the
DDSM database, with the reported mean value of the area
overlap measure of 0.61 ± 0.15.

Duarte et al. [9] presented a geometric active contour meth-
od (GAC) for segmenting single microcalcifications. In every
instance, the active contour is initiated for a single
microcalcification. In [9], researches used 1000 rectangular
ROIs taken from mammograms from the DDSM database,
sized from 20 × 20 pixels to 41 × 41 pixels. Duarte et al. [9]
report that they obtained a mean value of the area overlap
measure of 0.52 ± 0.20.

The purpose of this publication was to propose solutions
for the following:

& Obtain the best possible segmentation results.
& Achieving a fast operation of all the methods used.

This project uses morphological image transformations
[23, 26] to detect microcalcifications, and then watershed seg-
mentation [23, 26] which makes it possible to extract the shape
of microcalcifications just as in [22, 27]. In publications by
Nieniewski [22, 27], user interaction is necessary to indicate

Fig. 2 Two examples of patches
with microcalcifications: benign
(upper row, based on the image
A_1551_1.LEFT_MLO),
malignant (lower row, based on
the image A_1214_LEFT_
MLO). First column:
mammographic image patches.
Second column: the image
inverted in gray levels. Third
column: segmentation—all
microcalcifications have been
marked

Fig. 1 Cranio-caudal view of an example mammogram A_1553_
1.LEFT_CC. a Mammogram A_1553_1.LEFT_CC with a white
rectangular ROI marked. b Enlarged ROI 512 × 512 pixels in size
extracted from item (a)
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the seed point of the watershed by immersion segmentation
[28, 29]. In this project, the whole segmentation process is
automated and does not require combining regions by maxi-
mizing average contrast, as was done in publications by
Nieniewski [22, 27, 30]. This study makes use of other gradi-
ent transformations of the image undergoing watershed seg-
mentation and fewer interim steps during the extraction of the
final shape of microcalcifications. This makes it possible to
execute the entire segmentation process in the mean time of
0.83 s.

Materials and Methods

Image Dataset Used

The research project used 220 ROIs with the constant dimen-
sions of 512 × 512 pixels, in an 8-bit format, obtained from
mammograms with the original high resolution (43.5 and
50 μm/pixel, digitized using the following scanners—
Howtek 960 , Lumisys 200 Lase r, and Howtek
MultiRad850), which came from the publicly accessible
DDSM database [31, 32]. Of that number, 110 ROIs contain
benign lesions, and the remaining 110 ROIs show malignant
cases. The images were selected by a breast radiologist with
10 years of experience and are mainly fatty breast cases from
different patients. Each ROI corresponds to a different patient.
It should be noted that 20 ROIs, or more exactly 10 benign
and 10 malignant ones, were used to determine the necessary
parameters allowing the segmentation process to be con-
trolled. The remaining 200 ROIs were used to test the present-
ed segmentation method, and the results obtained are present-
ed in the experimental part of this article. Methods which can
automatically mark suspicious-looking anomalies containing
potential microcalcifications form a useful functionality of
CAD software. Examples of their solutions can be found in
literature [33, 34]. However, these methods might mark false-
positive regions which contain no microcalcifications.
Consequently, the correct identification of microcalcification
regions by an experienced breast radiologist is indispensable
in analyzing the disease. Solutions presented in this publica-
tion concern microcalcification segmentation and make use of
rectangular ROIs marked by a radiologist on the source mam-
mogram, with suspicious-looking anomalies located in their
centers. This is illustrated in Fig. 1. For every case in the
DDSM database, there is a radiological diagnosis available. In
addition, for images with microcalcifications, a coded contour
identifying the area in which microcalcifications occur called
a ground truth area (GTA) is available. Each case has four
images acquired in the CC and MLO projections for the left
and the right breast. CC is the cranio-caudal projection show-
ing that central and medial part of the mamma. MLO is the

medio-lateral oblique projection. In the experiments, a single
viewwas taken, namely the CC orMLO view for each patient.

Detecting and Segmenting Microcalcifications
in Mammograms

The computer-aided detection and segmentation of
microcalcifications from mammograms is a complex process,
also because these microcalcifications are often much dis-
persed in the analyzed images, have low contrast, and are
difficult to distinguish from their surroundings. These features
may make it difficult to correctly segment them. Brief charac-
teristics of microcalcifications taken from [35] are presented
below:

& Microcalcifications are small, from 0.1 to 1.0 mm. Their
average size is 0.3 mm. Microcalcifications smaller than
of 0.1 mm also occur and are often impossible to distin-
guish from high-frequency noise.

& Microcalcifications can differ in their shape, size, and the
distribution within the mammary gland.

& They are characterized by a low contrast in mammograms.
& Sometimes they adhere closely to the tissues surrounding

them.

In the light of the above difficulties, the method presented
in this publication comprises two consecutive parts making
use of the morphological processing of digital images [22,
26, 27], namely

& Morphologically detecting microcalcifications.
& Watershed segmentation of microcalcifications.

Detecting microcalcifications allows the contrast to be in-
creased in the image, the noise to be removed from it, and also
some of the false-positive signals of microcalcifications to be
removed. The results obtained are treated as a Bmap^ onwhich
the approximate areas in which microcalcifications occur are
marked and will be used as an auxiliary image for a more
precise determination of their shape. The next step in working
with mammograms is to segment microcalcifications. This
will be done using the watershed segmentation [22, 26, 27]
to more accurately extract microcalcification shapes.
Knowing the shape of microcalcification is very important
as, together with their other features, it can prove tumor ma-
lignancy. The following description can be given based on the
recently published work by Chen et al. [24]:

& Malignant microcalcifications appear to be small, numer-
ous (>5 concentrated on an area of 1 cm2), and distributed
densely because they lie inside milk ducts and associated
structures in the breast.
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& Benign microcalcifications are generally larger, less nu-
merous (<4–5 per 1 cm2), and more spread out because
they form in the breast stroma, cysts, or benign masses.

These differences in the variability of the distribution,
the size, and the number of microcalcifications in the ROIs
analyzed allow radiologists to decide on the further assess-
ment and the possible biopsy of the breast. Consequently, a
correctly performed microcalcification segmentation can
great ly simplify decision-taking for the doctors.
F igure 2a–c shows example ROIs wi th ben ign
microcalcifications. These microcalcifications are rather
spread out, there are cases of a relatively larger size, and
they are less numerous than malignant microcalcifications
shown in Fig. 2d–f, which, in contrast, are small, numer-
ous, and densely distributed.

Morphological Detection of Microcalcification

To detect microcalcifications, four stages of subsequent mam-
mogram transformations are executed (shown in Fig. 3):

& Stage 1. The input mammogram marked I should be
subjected to an operation of shifting it 21 gray levels
down and then the same number of gray levels up in
order to remove small brighter points in the darkest
parts of the image, which could be wrongly recognized
as microcalcifications. As a result of these operations,
the variance of the image for gray levels between 0 and
21 will be removed. The output image is marked as I2.

& Stage 2. The second stage is about detect ing
microcalcifications of various sizes using the morpholog-
ical pyramid and a structural element of the constant size
of 3 × 3 pixels. The first level of the pyramid is the source
image. The second level is obtained by applying first the
closing-opening (C-O) filtration [26] with the aforemen-
tioned structural element to the source image, and then
sampling every second pixel from the image. The third
level is produced by conducting the same operations on
the second level image. The C-O filtration and sampling
produces an image size reduced twice but with the useful
information about its objects retained. Microcalcifications
are detected at the second and third levels of the pyramid,
using the following formula:

T ¼ I−min γS φS Ið Þ½ �; If g ð1Þ
where I is the input image, T is the output image, S is a square
structural element 3 × 3 pixels in size, γS and φS are, re-
spectively, the opening and closing operations [26], and min
represents the point minimum. The operation (1) detects
small brighter parts of the image (Fig. 3b, c). Pixels with
a less irregular brightness distribution in their surroundings

receive a higher value. This transformation also constitutes
de-noising filter. The min operation ensures that the result
will never be negative.

After the microcalcification detection at the second and
third levels of the pyramid, the results are subjected to
thresholding with the threshold equal to 4, i.e., pixels with
their gray level below the threshold are assigned the value
of 0 and the pixels with a gray level equal to 4 or higher are
assigned the value of 255. If the threshold value was set
lower, e.g., at 3, this produced too many potential
microcalcification signals. The results of thresholding at
the second and third level of the pyramid should then be
reduced to the dimensions of the input image and sum up
using the logical OR operator. The size of the input image
can be restored by replacing every pixel with a block sized
2 × 2 for the second or 4 × 4 pixels for the third the pyramid
level.
& Stage 3. The third stage consists in extracting all the

brighter areas found in the I2 image produced in stage 1.
This will be done by the morphological operation of the
extendedmaximum emax [26], where image I2 is the mask
and the image I2 after the number 5 is subtracted from all
of its pixels is the marker:

Iemax ¼ T1 h−convexity5 I2ð Þ½ � ð2Þ
The Iemax image is composed of both microcalcifications

and other brighter areas of image I2 (Fig. 3d). In the exper-
iments forming part of this project, the value of h was
adopted as 5 because higher values made the bright area
too large. However, in some cases, the image will contain
excessively large areas that do not correspond to the phys-
ical dimensions of microcalcifications. Such areas must be
removed from the image as part of a separate operation. It
was dec ided to e l im ina t e po t en t i a l s i gna l s o f
microcalcifications inside which a vertical, horizontal, left
diagonal, or right diagonal chord 50 pixels or less in length
can be drawn. These objects are deleted using erosion car-
ried out separately for every one of four linear structural
elements lying along the above directions. Erosion results
should be summed up logically. The summed up erosion
results will serve as a marker for the reconstruction by
dilating large regions from the Iemax image. The Iemax im-
age will be the mask in this reconstruction. The result of
calculations at this stage is the difference between the Iemax
image and the image produced by the reconstruction.
& Stage 4. The purpose of the last stage is to extract the area

occupied by microcalcifications detected using Eq. (2).
This will consist in reconstructing the appropriate areas
of image Iemax indicated by signals detected at the second
and third levels of the morphological pyramid. The logical
overlap of the image indicating the microcalcifications at
the given level of the pyramid and the Iemax image will
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constitute the marker in the reconstruction. The recon-
struction results from the second and third levels of the
pyramid should then be summed up using the logical OR
operator, and as a result the so-called microcalcification
Bmap^ should be produced (Fig. 3i).

In addition, the image obtained at stage 4 was subjected to
Bcleaning^ operations, namely

& Removing potential microcalcification areas located close
to the edge of the image using the reconstruction.

& Removing potential microcalcification areas smaller than
10 pixels and larger than 70 pixels in area by area opening
[26] and the logical subtraction of the images.

& Closing holes in image objects.

The Watershed Segmentation of Microcalcifications

The next step in working with mammograms is to extract the
microcalcification shape. The methods discussed in the previ-
ous subsection were a way of determining the masks of
microcalcifications, but their shape is, in the majority of cases,
dependent on the morphological operations executed, such as
the emax and the reconstruction [26]. The watershed segmen-
tation [26] coupled with the use of the so-called markers
which prepared the image for segmenting and control this
process was used to find the shape of microcalcifications.
Using markers provides additional knowledge about the ob-
jects for the segmentation process and makes their extraction
more efficient. It also reduces oversegmentation. A marker is
defined as a cohesive area of pixels belonging to the image.

Fig. 3 An illustration of detecting microcalcifications in an image
512 × 512 pixels in size, extracted from mammogram A_1131_
1.RIGHT_MLO. a The result of microcalcifications detection in stage
1. b, c The result of using the detector based on Eq. (1) at the second
and third levels of the morphological pyramid, respectively. d Extended
maximum emax. e An image showing the marker for reconstructing
microcalcifications detected at the second level of the morphological
pyramid—an intersection of images from items (b) and (d). f The result
of the reconstruction by dilation of the mask presented in item (d) and the
marker presented in item (e), i.e., an image presenting microcalcifications

detected at the second level of the morphological pyramid. g An image
showing the marker for reconstructing microcalcifications detected at the
third level of the morphological pyramid—an intersection of the images
from items (c) and (d). h The result of the reconstruction by dilation of the
mask presented in item (d) and the marker presented in item (g), i.e., an
image presenting microcalcifications detected at the third level of the
morphological pyramid. i The sum of images from items (f) and (h),
using the OR operator, as the result of extracting microcalcifications
using the morphological pyramid. The image has been subjected to
additional Bcleaning^ operations
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An internal marker is related to the object that should be ex-
tracted, while an external marker is related to the background.
Further down, the sets of internal markers and external
markers will be referred to, respectively, the internal marker
and the external marker, and the sum of these two sets—sim-
ply as a marker. The next steps in segmenting the shape of
microcalcifications are as follows:

1. The first is to find the mask of regional minima (assuming
an 8-neighborhood in the analyzed image) for the mam-
mogram image presented in Fig. 4b filtered through the C-
O operation and then inverted. The image of regional
minima generated at this step contains areas of
microcalcifications as well as other artifacts in the image
(Fig. 4d).

2. Having obtained an image of a regional minima mask, its
intersection with the map of microcalcifications generated
by the morphological microcalcification detection pre-
sented in Fig. 4c should be found. The result of this inter-
section will constitute an internal marker (Fig. 4e).

3. Then, the morphological gradient of the filtered and
inverted input image referred to an item 1 is calculated.
The definition of the morphological gradient used for im-
age I is the result of subtracting the dilation δ and erosion
ε with the use of structural element: 3 × 3 pixels in size.

gradB Ið Þ ¼ δB Ið Þ−εB Ið Þ ð3Þ
The result is presented in Fig. 4f, whereas the image of the

gradient has been multiplied times 10 to better distinguish
details.

4. The inverted and filtered image from Fig. 4b should be
subjected to the watershed segmentation in order to obtain
an external marker which will consist of the output water-
shed lines. In Fig. 5a, the marker lines have been overlaid
on the image from Fig. 4b.

5. The pixels of the internal marker must not touch the pixels
of the external one. For this purpose, the image generated
by dilating the external marker image should be
subtracted from the image of the internal marker from
Fig. 4e. The dilation operation on the external marker is
presented in Fig. 5c—the lines from the marker image
have been widened. The new internal marker should be
added to the external marker (not widened) to obtain the
complete marker image (Fig. 5d).

6. At the next computational step, the gradient undergoes
the minima imposition operation [36] in which the ar-
gument is the complete marker obtained in item 5. This
operation means that the only regional minima that
remain in the gradient will be found in the places
Bmarked^ by the marker. The result of the minima im-
position operation is presented in Fig 5e, whereas the
output image has been multiplied times 10 to better
distinguish details. The watershed segmentation is then
carried out on a gradient thus modified. Its results con-
sist in watershed lines running along the contour of
microcalcifications, without the oversegmentation ef-
fect. The result of this method for the image from
Fig. 3a is presented in Fig. 5f—the watershed lines
have been overlaid on the inverted image from
Fig. 4b in order to better present the areas of
microcalcifications identified by them.

Fig. 4 An illustration of
extracting the microcalcifications
shape. Part 1. a Image A_1131_
1.RIGHT. b The filtered and
inverted image from item (a). c
The result of extracting
microcalcifications using the
morphological pyramid from
Fig. 3. d Regional minima
obtained for the image from item
(b). e The intersection of images
from items (c) and (d). f The
gradient obtained for the image
from item (b)
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Methods of Measuring and Assessing Microcalcification
Segmentations Carried Out

The accuracy of microcalcification segmentation in mammo-
grams from the DDSM database was estimated by measuring

four indices, namely the similarity index SI ¼ 2⋅ M∩Ej j
Mj jþ Ej j, the

overlap fraction OF ¼ M∩Ej j Ej j, the overlap value OV ¼
M∩Ej j M∪Ej j, and the extra fraction OF ¼ M∩Ej j Ej j.
Where

& M denotes regions of microcalcifications identified by the
computer method, while |M| is the number of pixels.

& E represents areas of microcalcifications traced by the ex-
pert—a breast radiologist, while |E| is the number of pixels
in the traced regions.

& |M∩ E|, |M ∪ E| represent, respectively, the number of
pixels in the common area and the number of all pixels
in the M and E regions.

Using the four indices—SI, OF, OV, and EF—makes it
possible to exhaustively compare the similarity and differ-
ences between the analyzed regions M and R and determine
the overlap fraction, the underestimation, and the extra frac-
tion. In [8, 9], only the OV index was analyzed. During re-
search work, ROIs with the constant dimensions of
512 × 512 pixels were analyzed, while for mammograms from
the DDSM database, there are GTA contours identifying the
areas in which microcalcifications occur. Therefore, a radiol-
ogist participated in the experiments carried out and made the
appropriate assessments of the detected or undetected actual
and assumed microcalcification signals, namely

& If the computer method identified a microcalcification in
the GTA area correctly, it was classified as true positive
(TP).

& I f t h e compu t e r me thod d id no t i den t i f y a
microcalcification in the GTA area correctly (the
microcalcification does not occur in the area marked), it
was classified as false positive (FP).

& I f t h e compu t e r me thod d id no t i nd i c a t e a
microcalcification in the GTA area even though it was
there, this represented a false-negative case (FN).

& If the computer method produced a microcalcification sig-
nal outside of the GTA area, this represented a case of FP.

A radiologist’s assessment was used to calculate the mean
sensitivity (4) depending on the number of false-positive sig-
nals per image (FPI).

Sensitivity ¼ TPS

.
TPS þ FNSð Þ ð4Þ

Fig. 5 An illustration of
extracting the microcalcifications
shape. Part 2. a The result of the
watershed segmentation, i.e., the
external marker that has been
overlaid on the image from
Fig. 4b. b The internal marker. c
The dilation of the external
marker from item (a). d The
logical sum of the external and
internal markers. e The result of
the minima imposition operation
for the gradient image from
Fig. 4f and the complete marker
from Fig. 5d. f Output watershed
lines overlaid on the image from
Fig. 4b

Table 1 The established values of parameters of the morphological
detection and extraction of microcalcifications

Parameter diff Th h nPxls minPxls maxPxls

Value 21 4 5 50 10 70

diff the value used in the gray level difference at stage 1; Th the value of
the threshold at stage 2; h the height in the extended maximum (2); nPxls
the maximum number of pixels of the detected area of microcalcification:
vertically, horizontally, or transversely left or right; minPxls the minimal
number of pixels in the area of the microcalcification being detected;
maxPxls the maximal number of pixels in the area of the
microcalcification being detected
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In contrast, the sensitivity was not analyzed in [8, 9]. In [8,
9 ] , the segmenta t i on was pe r fo rmed for eve ry
microcalcification separately and in addition for patches of
various sizes, but after the previous initiation of the active
contour, which can, unfortunately, be a painstaking and
time-consuming activity if the number of microcalcifications
is large.

Selecting Parameters in Computer Method

Table 1 presents the values of parameters established for the
morphological detection of microcalcifications using 20 pre-
selected ROIs from mammograms from the DDSM database,
namely 10 benign and 10 malignant cases The 20-element
training set included ROIs containing microcalcifications of
various shapes, sizes, numbers, and distribution as well as

brightness levels. The watershed segmentation carried out af-
ter the microcalcifications are detected is automated and re-
quires no parameters to be used. The parameters presented in
Table 1 are selected so that the SI, OF, and OV indices are the
highest possible, while the EF index is as low as possible.

Results and Discussion

After the parameters necessary to control the segmentation
had been established, the method of detecting and segmenting
microcalcifications was tested on the remaining 200 mammo-
grams, using segmentations done manually by a radiologist
and GTA contours. The results of these segmentations are
presented in Table 2. Table 2 presents calculated statistical
parameters such as the maximum value (max), minimum

Table 2 Measurements (min,
max, mean, SD—standard
deviation) of indices: similarity
(SI), overlap fraction (OF),
overlap value (OV), and extra
fraction (EF) for segmentations
carried out onmammograms from
the DDSM database, specifically
100 benign cases, 100 malignant
cases, and jointly on all analyzed
200 ROIs

SI OF OV EF SI OF OV EF

Mean 0.831 0.781 0.735 0.174 Mean 0.780 0.733 0.682 0.223

SD 0.104 0.080 0.091 0.142 SD 0.123 0.109 0.101 0.204

Min 0.531 0.482 0.395 0.018 Min 0.432 0.415 0.341 0.021

Max 0.952 0.902 0.842 0.583 Max 0.924 0.865 0.825 0.653

Benign: computer method versus expert Malignant: computer method versus expert

SI OF OV EF
Mean 0.805 0.757 0.708 0.198

SD 0.113 0.094 0.096 0.173

Min 0.432 0.415 0.341 0.018

Max 0.952 0.902 0.842 0.653

Benign and malignant: computer method versus expert

Fig. 6 Graphs of the mean value and the standard deviation based on measurements of four indices: SI, OF, OV, and EF for the applied method,
compared to the contours drawn by the radiologist based on the data from Table 2
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value (min), the mean value (mean), and the standard devia-
tion (SD) of the following calculated indices: SI, OF, OV, and
EF. Figure 6 shows a graph of data from Table 2. Table 3, in
turn, presents

& The number of ROIs depending on the false positive per
image (FPI) examples obtained (there are altogether 200
ROIs).

& Th e me a n s e n s i t i v i t y v a l u e s o f d e t e c t e d
microcalcifications depending on the detected false-
positive (FP) examples.

& Standard deviations (SD), minimum values (min), and
maximum values (max).

Figure 7 shows a graph of the data from Table 3.
Table 4 shows the time measurements, in seconds, of the

morphological extraction and detection method for
microcalcifications (M) used for the 200 analyzed mam-
mograms. The presented method was implemented in the
Matlab R2015a environment. Time was measured for a PC
with an Intel Core i7 2 GHz processor. The average time
for a single ROI 512 × 512 pixels in size amounts to 0.83 s,
and this includes all steps of the method presented in this
publication.

Examples of differences in the segmentation of
microcalcifications by the computer method presented in this
publication and the contours manually traced by a radiologist
are presented in Figs. 8 and 9. These are typical results obtain-
ed during the experiments carried out. In order to make
microcalcification imaging easier, all examples of mammo-
grams have been filtered according to stage 1 of the presented
method and their gray levels have been inverted. In all exam-
ples from Figs. 8 and 9, GTA contours are superposed.
Figure 8 shows example results for benign cases and Fig. 9
for malignant ones. The values of calculated indices are pre-
sented next to each example extracted by the watershed seg-
mentation. Table 5 collates the results produced by active
contour methods: MAC [8] and GAC [9] with those produced
in this research work.

The experiments completed and the research results pre-
sented in Tables 2, 3, 4, and 5 and Figs. 6, 7, 8, and 9 justify
the following statements:

& In all experiments done on 200 ROIs 512 × 512 pixels in
size, the average values of the SI, OF, OV, and EF indices
amounted to, respectively, 80.5, 75.7, 70.8, and 19.8%.
Higher values of SI, OF, and OVindices and a lower value
of the EF index were obtained for benign cases, which are
relatively larger and less numerous than malignant ones.
The values of the SI, OF, OV, and EF indices for 100
analyzed ROIs containing benign lesions are 83, 78,
73.5, and 14%,while for those with malignant lesions they
equal 78, 73, 68, and 22%. In [9], only the OV index was

Table 3 Experiment results for
the test set based on 200
mammograms from the DDSM
database

FPI 0 1 2 3 4 5 6 7 8

Number of ROIs 24 36 32 34 20 8 12 22 12

Mean sensitivity 0.781 0.793 0.813 0.818 0.808 0.806 0.804 0.798 0.776

SD 0.116 0.154 0.143 0.153 0.108 0.04 0.042 0.052 0.062

Min 0.5 0.5 0.5 0.5 0.5 0.666 0.666 0.5 0.5

Max 1 1 1 1 1 0.85 0.857 0.857 0.857

The first row shows the number of ROIs depending on the number of false positives per image (FPI), and the
subsequent rows their correspondingmean values of sensitivity, standard deviations (SD), minimum values (min),
and maximum values (max)

Fig. 7 A graph of mean sensitivity values and standard deviations for
microcalcifications detected in 200 mammograms from the DDSM
database (100 malignant and 100 benign cases), depending on false-
positive (FP) examples per image detected. Data based on Table 3

Table 4 Time measurements (min, max, mean, SD—standard
deviation) of individual steps of the applied method (M), i.e.,
microcalcification detection (I) and extraction (II), expressed in seconds
for 200 analyzed ROIs, 512× 512 pixels in size, based on mammograms
from the DDSM database

I II M

Mean 0.514 0.321 0.836

SD 0.04 0.021 0.051

Min 0.420 0.312 0.730

Max 0.552 0.399 0.951
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analyzed, and just as here, higher values were obtained for
benign lesions than for malignant ones. In [8], in turn, only
the sizes of microcalcifications were distinguished, and no
results of experiments for types of microcalcifications are
presented. This study produced higher average values of
the OV index than in [9] (52%) and in [8] (61%).
However, it is worth noting that Duarte et al. [9]
researched 1000 ROIs from mammograms from the
DDSM database, so significantly more experiments were
carried out than in this publication (altogether 220 ROIs,
with 20 used to determine the parameters of the method,
and tests carried out on the remaining 200). What is more,
in [9], the researchers analyzed various types of
microcalcifications and for different types of breast tissues
according to their classification to four tissue density cat-
egories [37]. In this study, two types of microcalcifications
were analyzed, namely those which are symptoms of

malignant cases and those which represent benign cases,
and they are generally fatty breast cases. Unfortunately, as
the manual tracing of individual microcalcifications can
be very time consuming for the expert (as long as
30 min for a single ROI), this forms an obstacle to
conducting a large number of experiments and significant-
ly prolongs their time. In [8], 128 clusters of
microcalcifications were analyzed.

& According to the data from Table 3, there were eight sup-
posed microcalcifications at the most. In the experiments
completed, the most frequent ROIs had one, two, and
three supposed microcalcifications, and for these cases
the standard deviations are the greatest. The minimal num-
ber of microcalcifications that occurred was 5 and the
lowest value of the standard deviation can be observed
for this group. The mean sensitivity in all the experiments
amounted to 80% and reached themaximum value of 81%

Fig. 8 Benign cases—example
results of microcalcification
segmentation for selected
mammograms from then DDSM
database, together with the GTA
contours marked. The images
have been inverted in the gray
scale to better bring out individual
microcalcifications. First column:
the GTA contour marked. Second
column: contours of individual
microcalcifications traced by a
radiologist. Third column: results
of segmenting microcalcifications
using the computer method, with
the calculated indices. a–c Image
A_1480_1.LEFT_MLO. d–f A_
1551_1.LEFT_MLO. g–i A_
1553_1.LEFT_MLO
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for FPI 2 and 3. On the contrary, the lowest value of 77%
occurred when the maximum number of FPI signals was
equal to 8. Themost frequent cases which reduce themean

sensitivity of the method are those where few
microcalcifications occur in the mammogram but are not
all detectable by the computer method. For example, there

Fig. 9 Malignant cases—
example results of
microcalcification segmentation
for selected mammograms from
the DDSM database, together
with the GTA contours marked.
The images have been inverted in
the gray scale to better bring out
individual microcalcifications.
First column: the GTA contour
marked. Second column: contours
of individual microcalcifications
traced by a radiologist. Third
column: results of segmenting
microcalcifications using the
computer method, with the
calculated indices. a–c Image A_
1131_1.RIGHT_MLO. d–f A_
1201_1.RIGHT MLO. g–i A_
1214_1.LEFT MLO

Table 5 A comparison of the
results of two active contour
methods: (MAC) [8] and (GAC)
[9] with the method presented in
this study, based on
mammograms from the DDSM
database [31, 32]

MAC GAC M

Number of ROIs 128 1000 200

Size of ROI in pixels 81× 81 From 20× 20 to 41× 41 512× 512

Mean OV: benign cases – 0.55 0.735

Mean OV: malignant cases – 0.49 0.682

Mean OV: malignant and benign cases 0.61 0.52 0.708

Mean time in seconds for a single ROI – – 0.836

Mean time in seconds for a single microcalcification 0.42 0.4 –

The table compares the number of ROIs analyzed, their size in pixels, the mean values of the overlap value (OV)
for benign and malignant cases, as well as for the benign and malignant cases together. The table also presents the
mean time of executing the method in accordance with the adopted segmentation approach
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are three microcalcifications in Fig. 8b, but the computer
method missed one microcalcification—Fig. 8c, so its
sensitivity amounts to only 0.66. This relationship be-
comes vague when there are more microcalcifications,
and then omitting a few of them does not significantly
impact the sensitivity values obtained. The appropriate
examples are illustrated by the following pairs of Fig. 8e
and f as well as Fig. 9b and c. Figure 8e contains five
microcalcifications, so not detecting one of them yields
the sensitivity of 0.8—Fig. 8f. In the example from
Fig. 9b, the radiologist has found 11 microcalcifications,
and if the computer method misses two, the sensitivity
amounts to 0.81. Figure 9e, in turn, contains nine
microcalcifications, so if the computer detection misses
three, this represents the sensitivity of 0.66. According to
the data from Table 3, sensitivity falls to 0.5 in the worst
case and is equal to 1 in the best case, which means that all
microcalcifications had been found.

& The average completion time of all steps of the computer
method for ROIs 512 × 512 pixels in size amounted to
0.83 s and consisted of 0.51 s for the morphological de-
tection of microcalcification and 0.32 s for the watershed
segmentation. In comparison, the authors of [8] analyzed
ROIs 81 × 81 pixels in size and reported that the average
segmentation time of a single microcalcification was
0.42 s. Duarte et al. [9] also give the average segmentation
time for a single microcalcification, which amounted to
0.4 s for analyzed ROIs whose dimensions ranged from
20 × 20 to 41 × 41 pixels. It should be noted that the active
contour methods presented in [8, 9] require a manual ini-
tialization for every single microcalcification, which rep-
resents a significant limitation because it prolongs the seg-
mentation process, particularly if a large number of ROIs
is analyzed and they contain an even greater number of
microcalcifications. In summary, the solutions proposed in
this publication are more practical because they do not
require initializing in every instance—they allow the seg-
mentation process to be automated not just for single
microcalcifications but for many at the same time, inside
ROIs larger in size and within a shorter time; and they do
not require initializing in every instance—they allow the
segmentation process to be automated not just for single
microcalcifications but for many at the same time, inside
ROIs larger in size and within a shorter time.

Summary and Conclusion

This publication presents a computer method for detecting and
segmenting microcalcifications in mammograms from the
DDSM database. It uses morphological transformations and
is composed of two parts . The first part detects

microcalcifications morphologically, thus allowing the ap-
proximate area of their occurrence to be determined, the con-
trast to be improved, and noise to be reduced in the mammo-
g r ams . Then , t h e wa t e r s h e d s e gmen t a t i o n o f
microcalcifications is performed. In the experiments carried
out for 200 ROIs taken from mammograms from the DDSM
database, the measured values of the SI, OF, OV, and EF
indices amounted to, respectively, 80.5, 75.7, 70.8, and
19.8%. Higher values of the SI, OF, and OV indices and a
lower value of the EF index were obtained for benign cases
than for malignant ones. Compared to other solutions present-
ed in [8, 9], the process of microcalcification segmentation
was automated and the computer methods used achieved at
a significant speed. In the experiments completed, the average
running time of the entire processing of a single ROI
512 × 512 in size amounted to 0.83 s. Increasing the number
of cases from the DDSM database, particularly to include
different types of microcalcifications according to the classi-
fication presented in [37], should be considered in further
research. The segmentation results produced by the computer
method should be evaluated by two experienced breast radi-
ologists, and this would additionally allow the consistency of
these evaluations to be compared. It should be noted that the
DDSM database is not new and it will be worthwhile to add
examination results produced by the newest generation of
mammographs. On the other hand, the publicly accessible
DDSM database is the only one containing the highest num-
ber of images together with the detailed location of lesions and
their descriptions, so many researchers are willing to use it.
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priate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

1. ArodźT, Kurdziel M, Popiela TJ, Sevre EO, Yuen DA: Detection of
clustered microcalcifications in small field digital mammography.
Comput Methods Prog Biomed 81(1):56–65, 2006

2. Andreadis II, Spyrou GM, Nikita KS: A CAD scheme for mam-
mography empowered with topological information from clustered
microcalcifications atlases. IEEE J Biomed Health Inform 19(1):
166–173, 2015

3. Elter M, Horsch A: CADx of mammographic masses and clustered
microcalcifications: a review. Med Phys 36(6):2052–2068, 2009

4. Nishikawa RM: Current status and future directions of computer-
aided diagnosis in mammography. Comput Med Imaging Graph
31(4):224–235, 2007

5. Paquerault S, Yarusso LM, Papaioannou J, Jiang Y, Nishikawa RM:
Radial gradient-based segmentation of mammographic
microcalcifications: observer evaluation and effect on CAD perfor-
mance. Med Phys 31:2648–2657, 2004

J Digit Imaging (2017) 30:172–184 183



6. Sharma S, Khanna P: Computer-aided diagnosis of malignant
mammograms using Zernike moments and SVM. J Digit Imaging
28(1):77–90, 2015

7. Singh SP, Urooj S: An improved CAD system for breast cancer
diagnosis based on generalized pseudo-Zernike moment and Ada-
Dewnn classifier. J Med Syst 40(4):1–13, 2016

8. Arikidis NS, Karahaliou A, Skiadopoulos S, Korfiatis P, Likaki E,
Panayiotakis G, Costaridou L: Size-adapted microcalcification seg-
mentation in mammography utilizing scale-space signatures.
Comput Med Imaging Graph 34(6):487–493, 2010

9. Duarte MA, Alvarenga AV, Azevedo CM, Calas MJG, Infantosi
AF, Pereira WC: Evaluating geodesic active contours in
microcalcifications segmentation on mammograms. Comput
Methods Prog Biomed 122(3):304–315, 2015

10. Mohanalin J, Kalra PK, Kumar N: Microcalcification segmentation
using normalized Tsallis entropy: an automatic q calculation by
exploiting type II fuzzy sets. IETE J Res 55(2):90–96, 2009

11. Oliver A, et al: Automatic microcalcification and cluster detection
for digital and digitized mammograms. Knowl-Based Syst 28:68–
75, 2012

12. Andreadis I, Spyrou G, Nikita K: A comparative study of image
features for classification of breast microcalcifications. Meas Sci
Technol 22(11):114005, 2011

13. He W, Hogg P, Juette A, Denton ER, Zwiggelaar R: Breast image
pre-processing for mammographic tissue segmentation. Comput
Biol Med 67:61–73, 2015

14. MeteM, SirakovNM: Dermoscopic diagnosis ofmelanoma in a 4D
space constructed by active contour extracted features. Comput
Med Imaging Graph 36(7):572–579, 2012

15. Szczypiński PM, Strzelecki M, Materka A, Klepaczko A: Mazdaa
software package for image texture analysis. ComputMethods Prog
Biomed 94(1):66–76, 2009

16. Diaz-Huerta CC, Felipe-Riveron EM, Montaño-Zetina LM:
Quantitative analysis of morphological techniques for automatic
classification of micro-calcifications in digitized mammograms.
Expert Syst Appl 41(16):7361–7369, 2014

17. Tsai DY, et al: Medical image classification using genetic-algorithm
based fuzzy-logic approach. J Electron Imaging 13(4):780–788,
2004

18. Wei L, Yang Y, Nishikawa RM: Microcalcification classification
assisted by content-based image retrieval for breast cancer diagno-
sis. Pattern Recogn 42(6):1126–1132, 2009

19. Ren J: ANN vs. SVM: which one performs better in classification
of MCCS in mammogram imaging. Knowl-Based Syst 26:144–
153, 2012

20. Betal D, Roberts N, Whitehouse GH: Segmentation and numerical
analysis of microcalcifications on mammograms using mathemati-
cal morphology. Br J Radiol 70:903–917, 1997

21. Halkiotis S, Botsis T, Rangoussi M: Automatic detection of clus-
tered microcalcifications in digital mammograms using

mathematical morphology and neural networks. Signal Process
87(7):1559–1568, 2007

22. Nieniewski M: Watershed extraction of the exact shape of
microcalcifications in mammograms. In: Computer Recognition
Systems. Springer, 2005, pp 635–643

23. Xu S, Liu H, Song E: Marker-controlled watershed for lesion seg-
mentation in mammograms. J Digit Imaging 24(5):754–763, 2011

24. Chen Z, Strange H, Oliver A, Denton ER, Boggis C, Zwiggelaar R:
Topological modeling and classification of mammographic
microcalcification clusters. IEEE Trans Biomed Eng 62(4):1203–
1214, 2015

25. Batchelder KA, Tanenbaum AB, Albert S, Guimond L, Kestener P,
Arneodo A, Khalil A: Wavelet-based 3D reconstruction of
microcalcification clusters from two mammographic views: new
evidence that fractal tumors are malignant and Euclidean tumors
are benign. PLoS ONE 9(9):e107, 2014. 580

26. Soille P: Morphological image analysis: principles and applica-
tions. Springer Science & Business Media, 2013

27. Nieniewski M: Digital image segmentation: watershed segmenta-
tion methods. Academic Publishing House Exit, 2005

28. Roerdink JB, Meijster A: The watershed transform: definitions,
algorithms and parallelization strategies. Fundam Informaticae
41(1-2):187–228, 2000

29. Vincent L, Soille P: Watersheds in digital spaces: an efficient algo-
rithm based on immersion simulations. IEEE Trans Pattern Anal
Mach Intell (6): 583–598, 1991

30. Nieniewski M: Extraction of diffuse objects from images by means
of watershed and region merging: example of solar images. IEEE
Trans Syst Man Cybern B Cybern 34(1):796–801, 2004

31. Heath M, Bowyer K, Kopans D, Kegelmeyer Jr P, Moore R.,
Chang, K, Munishkumaran S: Current status of the digital database
for screening mammography. In: Digital mammography. Springer,
1998, pp 457–460

32. Heath M, Bowyer K, Kopans D, Moore R, Kegelmeyer WP: The
digital database for screening mammography. In: Proceedings of
the 5th International Workshop on Digital Mammography, 2000,
pp 212–218

33. Agrawal P, Vatsa M, Singh R: Saliency based mass detection from
screening mammograms. Signal Process 99:29–47, 2014

34. Jen CC, Yu SS: Automatic detection of abnormal mammograms in
mammographic images. Expert Syst Appl 42(6):3048–3055, 2015

35. Cheng HD, Cai X, ChenX, Hu L, Lou X: Computer aided detection
and classification of microcalcifications in mammograms: a survey.
Pattern Recogn 36(12):2967–2991, 2003

36. Gonzalez RC, Woods RE: Digital image processing, 3rd edition.
Prentice Hall, 2007

37. Balleyguier C, Ayadi S, Van Nguyen K, Vanel D, Dromain C, Sigal
R: Birads classification in mammography. Eur J Radiol 61(2):192–
194, 2007

184 J Digit Imaging (2017) 30:172–184


	Microcalcification Segmentation from Mammograms: A Morphological Approach
	Abstract
	Introduction
	Materials and Methods
	Image Dataset Used
	Detecting and Segmenting Microcalcifications in Mammograms
	Morphological Detection of Microcalcification
	The Watershed Segmentation of Microcalcifications
	Methods of Measuring and Assessing Microcalcification Segmentations Carried Out
	Selecting Parameters in Computer Method

	Results and Discussion
	Summary and Conclusion
	References


